Notes on Convergence of Stationary Iterative Methods Dianne P. O'Leary September 1996

Some definitions:

- 1. A Hermitian matrix is *positive definite* if each of its eigenvalues is positive.
- 2. A matrix A is *reducible* if there exists a permutation matrix P so that

$$PAP^T = \left[\begin{array}{cc} F & G \\ 0 & H \end{array} \right]$$

where H is a square matrix and 0 is a block of zeros. Otherwise, A is *irreducible*.

3. A matrix A is (weakly) diagonally dominant if

$$|a_{ii}| \geq \sum_{j \neq i} |a_{ij}|, \ i = 1, \dots, n$$
$$|a_{kk}| > \sum_{j \neq k} |a_{kj}|, \text{ for at least one } k$$

4. A matrix A is strongly diagonally dominant if

$$|a_{ii}| > \sum_{j \neq i} |a_{ij}|, \ i = 1, \dots, n.$$

5. A matrix A has Property A if there exists a permutation matrix P so that

$$PAP^T = \left[\begin{array}{cc} D_1 & H \\ K & D_2 \end{array} \right]$$

where D_1 and D_2 are diagonal matrices. (Young)

- 6. A matrix A is consistently ordered if there exist disjoint subsets S_1, S_2, \ldots, S_T of indices such that
 - (a) $S_1 \cup S_2 \cup \ldots \cup S_T = \{1, 2, \ldots, n\}.$
 - (b) If $a_{ij} \neq 0$ or $a_{ji} \neq 0$ and $i \in S_k$ then $j \in S_{k+1}$ if j > i and $j \in S_{k-1}$ if j < i.

Example: Tridiagonal matrices are consistently ordered.

Note: Only matrices with Property A can be consistently ordered.

An equivalent definition is that the eigenvalues of $B(\alpha) \equiv \alpha^{-1}D^{-1}L + \alpha D^{-1}U$ are independent of α for $\alpha \neq 0$, where A = D - L - U, D is diagonal, L is strictly lower triangular, and U is strictly upper triangular.

- 7. A matrix A is an L-matrix if $a_{ii} > 0$ for all i and $a_{ij} \leq 0$ for $i \neq j$.
- 8. A Stieltjes matrix is a real symmetric positive definite L-matrix.
- 9. An *M*-matrix is a real nonsingular L-matrix with $A^{-1} \ge 0$ (elementwise).

The following table gives conditions under which various iterative methods converge.

Does the Relative Method Converge.			
conditions on A	Jacobi	Gauss-Seidel	SOR
symmetric pos def	if $2D - A$ pos def	yes	if $0 < \omega < 2$
	(Young, p.109)	(Young,p.109)	(Young, p.109)
irred. diag. dom.	yes	yes	if $0 < \omega \leq 1$
	(Young,p.107)	(Young,p.107)	(Young,p.107)
real, sym, nonsing,	iff A and $2D - A$ pos def	iff A pos def	iff A pos def and $0 < \omega < 2$
D > 0	(Young,p.111)	(Young,p.113)	(Young, p.113)
L-matrix	iff M-matrix	iff M-matrix	if M-matrix and $0 < \omega \leq 1$
	(Young,p.120)	(Young, p.120)	(Young, p. 120)
		(faster than J, p.122)	
D > 0, sym,	iff A pos def	if Jacobi does	if Jacobi does and $0 < \omega < 2$
consist. ord	(Young, p.147)	(Ortega p.134)	(Ortega p.134)
strictly diag. dom.	yes	yes	
	(Varga p.73)	(Varga p.73)	

Does the Iterative Method Converge?

References:

James M. Ortega, Numerical Analysis, A Second Course, Academic Press, 1972.

Richard S. Varga, *Matrix Iterative Analysis*, Prentice-Hall, Englewood Cliffs, NJ, 1962, Chapters 3 and 5.

David M. Young, Iterative Solution of Large Linear Systems, Academic Press, New York, 1971,