Notes on Convergence of Stationary Iterative Methods Dianne P. O'Leary
 September 1996

Some definitions:

1. A Hermitian matrix is positive definite if each of its eigenvalues is positive.
2. A matrix A is reducible if there exists a permutation matrix P so that

$$
P A P^{T}=\left[\begin{array}{cc}
F & G \\
0 & H
\end{array}\right]
$$

where H is a square matrix and 0 is a block of zeros. Otherwise, A is irreducible.
3. A matrix A is (weakly) diagonally dominant if

$$
\begin{aligned}
& \left|a_{i i}\right| \geq \sum_{j \neq i}\left|a_{i j}\right|, \quad i=1, \ldots, n \\
& \left|a_{k k}\right|>\sum_{j \neq k}\left|a_{k j}\right|, \text { for at least one } k
\end{aligned}
$$

4. A matrix A is strongly diagonally dominant if

$$
\left|a_{i i}\right|>\sum_{j \neq i}\left|a_{i j}\right|, \quad i=1, \ldots, n .
$$

5. A matrix A has Property A if there exists a permutation matrix P so that

$$
P A P^{T}=\left[\begin{array}{cc}
D_{1} & H \\
K & D_{2}
\end{array}\right]
$$

where D_{1} and D_{2} are diagonal matrices. (Young)
6. A matrix A is consistently ordered if there exist disjoint subsets $S_{1}, S_{2}, \ldots S_{T}$ of indices such that
(a) $S_{1} \cup S_{2} \cup \ldots \cup S_{T}=\{1,2, \ldots, n\}$.
(b) If $a_{i j} \neq 0$ or $a_{j i} \neq 0$ and $i \in S_{k}$ then $j \in S_{k+1}$ if $j>i$ and $j \in S_{k-1}$ if $j<i$.

Example: Tridiagonal matrices are consistently ordered.
Note: Only matrices with Property A can be consistently ordered.
An equivalent definition is that the eigenvalues of $B(\alpha) \equiv \alpha^{-1} D^{-1} L+$ $\alpha D^{-1} U$ are independent of α for $\alpha \neq 0$, where $A=D-L-U, D$ is diagonal, L is strictly lower triangular, and U is strictly upper triangular.
7. A matrix A is an L-matrix if $a_{i i}>0$ for all i and $a_{i j} \leq 0$ for $i \neq j$.
8. A Stieltjes matrix is a real symmetric positive definite L-matrix.
9. An M-matrix is a real nonsingular L-matrix with $A^{-1} \geq 0$ (elementwise).

The following table gives conditions under which various iterative methods converge.

Does the Iterative Method Converge?

conditions on A	Jacobi	Gauss-Seidel	SOR
symmetric pos def	if $2 D-A$ pos def (Young,p.109)	$\begin{gathered} \hline \text { yes } \\ \text { (Young,p.109) } \end{gathered}$	$\begin{gathered} \text { if } 0<\omega<2 \\ (\text { Young,p.109) } \end{gathered}$
irred. diag. dom.	$\begin{gathered} \text { yes } \\ \text { (Young,p.107) } \end{gathered}$	$\begin{gathered} \text { yes } \\ \text { (Young,p.107) } \end{gathered}$	$\begin{gathered} \text { if } 0<\omega \leq 1 \\ \text { (Young,p.107) } \end{gathered}$
real, sym, nonsing, $D>0$	iff A and $2 D-A$ pos def (Young,p.111)	iff A pos def (Young,p.113)	iff A pos def and $0<\omega<2$ (Young,p.113)
L-matrix	$\begin{aligned} & \text { iff M-matrix } \\ & \text { (Young,p.120) } \end{aligned}$	iff M-matrix (Young,p.120) (faster than J, p.122)	if M-matrix and $0<\omega \leq 1$ (Young,p.120)
$D>0, \mathrm{sym},$ consist. ord	iff A pos def (Young,p.147)	if Jacobi does (Ortega p.134)	if Jacobi does and $0<\omega<2$ (Ortega p.134)
strictly diag. dom.	$\begin{gathered} \text { yes } \\ \text { (Varga p. } 73 \text {) } \end{gathered}$	$\begin{gathered} \text { yes } \\ (\text { Varga p. } 73) \end{gathered}$	

References:

James M. Ortega, Numerical Analysis, A Second Course, Academic Press, 1972.

Richard S. Varga, Matrix Iterative Analysis, Prentice-Hall, Englewood Cliffs, NJ, 1962, Chapters 3 and 5.

David M. Young, Iterative Solution of Large Linear Systems, Academic Press, New York, 1971,

