Supplemental Exercises: Unit 1
Scientific Computing with Case Studies
Dianne P. O'Leary
SIAM Press, 2009

1. Suppose we have a computer that uses (single-precision) IEEE Standard floating point arithmetic: 24 digits to represent the mantissa, and exponents in the range $[-126,127]$.
(a) Consider evaluating the expression $\mathrm{c}=\mathrm{a} * \mathrm{~b}$ on this machine. Give a machine-representable (finite) value for a and a machine-representable (finite) value for b for which the computed value $c=I N F$ because of overflow.
(b) What is the distance between 2^{20} and the next larger floating point number?
2. If we type $\cos (\mathrm{pi} / 2)$ in Matlab, the computed answer is $6.1232 \mathrm{e}-17$. Why doesn't Matlab return the correct value, 0 ?
3. Let \boldsymbol{A} be an $m \times n$ matrix, and define

$$
\|\boldsymbol{A}\|_{\infty}=\max _{i} \sum_{j=1}^{n}\left|a_{i j}\right| .
$$

Write an efficient column-oriented algorithm to compute $\|\boldsymbol{A}\|_{\infty}$. (Don't use any Matlab function calls except abs and max.)

Note: In practice, for maximal efficiency, we would just say normA $=$ norm (A, inf) to access a column-oriented algorithm.

