Supplemental Exercises: Unit 2
Scientific Computing with Case Studies
Dianne P. O'Leary
SIAM Press, 2009

1. Your research advisor wants to solve a least squares problem

$$
\min _{\boldsymbol{x}}\|\boldsymbol{A} \boldsymbol{x}-\boldsymbol{b}\| .
$$

Given \boldsymbol{b} and the results below explain how to solve the problem. (Make clear exactly what you would compute and why.)

```
>> [Q,R] = qr(A)
Q =
\begin{tabular}{rrrrrr}
-0.5765 & -0.4958 & 0.2491 & 0.2479 & -0.5127 & -0.1884 \\
-0.1796 & -0.1225 & -0.8396 & -0.3736 & -0.3094 & 0.1119 \\
-0.4759 & 0.0858 & -0.2201 & 0.5221 & 0.4019 & 0.5325 \\
-0.4737 & 0.3507 & -0.1337 & -0.0877 & 0.3476 & -0.7115 \\
-0.2391 & 0.7489 & 0.2168 & -0.1234 & -0.5040 & 0.2566 \\
-0.3569 & -0.2192 & 0.3460 & -0.7095 & 0.3242 & 0.3104
\end{tabular}
R =
    -1.5911 -0.9448 -0.9956 -0.8336 -0.8998
        0
        0
        0
>> [Qp,Rp,Pp] = qr(A)
Qp =
\begin{tabular}{rrrrrr}
-0.5765 & -0.4958 & -0.1298 & 0.2511 & -0.5536 & -0.1884 \\
-0.1796 & -0.1225 & 0.4180 & -0.8460 & -0.2231 & 0.1119 \\
-0.4759 & 0.0858 & -0.5987 & -0.2111 & 0.2821 & 0.5325 \\
-0.4737 & 0.3507 & 0.0100 & -0.1339 & 0.3583 & -0.7115 \\
-0.2391 & 0.7489 & 0.2307 & 0.2133 & -0.4663 & 0.2566 \\
-0.3569 & -0.2192 & 0.6298 & 0.3365 & 0.4672 & 0.3104
\end{tabular}
```

$R p=$

-1.5911	-0.9448	-0.8998	-0.9956	-0.8336
0	0.9456	-0.2729	0.5002	0.5695
0	0	0.6563	-0.0000	0.0010
0	0	0	-0.0006	-0.0004
0	0	0	0	0.0002
0	0	0	0	0

Pp =

1	0	0	0	0
0	1	0	0	0
0	0	0	1	0
0	0	0	0	1
0	0	1	0	0

2. Suppose we have factored $\boldsymbol{A}=\boldsymbol{Q R}$, and that we now want to change the 4 th and 5 th rows of \boldsymbol{A}. Recall the formula

$$
\left(\boldsymbol{A}-\boldsymbol{Z} \boldsymbol{V}^{T}\right)^{-1}=\boldsymbol{A}^{-1}+\boldsymbol{A}^{-1} \boldsymbol{Z}\left(\boldsymbol{I}-\boldsymbol{V}^{T} \boldsymbol{A}^{-1} \boldsymbol{Z}\right)^{-1} \boldsymbol{V}^{T} \boldsymbol{A}^{-1}
$$

(a) Define \boldsymbol{Z} and \boldsymbol{V} so that the new matrix is $\boldsymbol{A}-\boldsymbol{Z} \boldsymbol{V}^{T}$.
(b) Given a vector \boldsymbol{b}, describe how to use the formula to solve $\left(\boldsymbol{A}-\boldsymbol{Z} \boldsymbol{V}^{T}\right) \boldsymbol{x}=\boldsymbol{b}$.
3. Your research advisor wants to solve a least squares problem

$$
\min _{\boldsymbol{x}}\|\boldsymbol{A} \boldsymbol{x}-\boldsymbol{b}\| .
$$

The entries in the matrix \boldsymbol{A} were measured with a precision of $\pm 10^{-3}$. Given \boldsymbol{b} and the results on the attached sheet, explain how to solve the problem. (Make clear exactly what you would compute and why.)
$>[\mathrm{U}, \mathrm{S}, \mathrm{V}]=\operatorname{svd}(\mathrm{A})$
$\mathrm{U}=$

```
\begin{tabular}{lrrrrr}
-0.5468 & 0.5684 & -0.1184 & -0.2047 & 0.5656 & -0.0464 \\
-0.3451 & -0.3358 & 0.5244 & 0.5478 & 0.2844 & -0.3352 \\
-0.5090 & -0.0719 & -0.1584 & -0.2461 & -0.5874 & -0.5523 \\
-0.4232 & -0.4894 & 0.2331 & -0.4489 & 0.0157 & 0.5703 \\
-0.3490 & 0.3332 & -0.0486 & 0.5659 & -0.4363 & 0.5042 \\
-0.1478 & -0.4567 & -0.7933 & 0.2752 & 0.2522 & 0.0323
\end{tabular}
S =
\begin{tabular}{rrrrr}
3.2143 & 0 & 0 & 0 & 0 \\
0 & 1.1092 & 0 & 0 & 0 \\
0 & 0 & 0.3060 & 0 & 0 \\
0 & 0 & 0 & 0.0006 & 0 \\
0 & 0 & 0 & 0 & 0.0002 \\
0 & 0 & 0 & 0 & 0
\end{tabular}
V =
\begin{tabular}{rrrrr}
-0.3278 & 0.5021 & -0.4255 & -0.6029 & -0.3098 \\
-0.5640 & -0.3190 & 0.6510 & -0.2702 & -0.2885 \\
-0.2664 & 0.2047 & -0.1087 & 0.7069 & -0.6129 \\
-0.6410 & 0.2826 & -0.0163 & 0.2526 & 0.6672 \\
-0.3043 & -0.7241 & -0.6189 & -0.0006 & -0.0005
\end{tabular}
```

