Supplemental Exercises: Unit 2 Scientific Computing with Case Studies Dianne P. O'Leary SIAM Press, 2009

1. Your research advisor wants to solve a least squares problem

$$\min_{\boldsymbol{x}} \|\boldsymbol{A}\boldsymbol{x} - \boldsymbol{b}\|$$

Given \boldsymbol{b} and the results below explain how to solve the problem. (Make clear exactly what you would compute and why.)

>> [Q,R] = qr(A)

Q =

R

-0.5765	-0.4958	0.2491	0.2479	-0.5127	-0.1884
-0.1796	-0.1225	-0.8396	-0.3736	-0.3094	0.1119
-0.4759	0.0858	-0.2201	0.5221	0.4019	0.5325
-0.4737	0.3507	-0.1337	-0.0877	0.3476	-0.7115
-0.2391	0.7489	0.2168	-0.1234	-0.5040	0.2566
-0.3569	-0.2192	0.3460	-0.7095	0.3242	0.3104
=					
-1.5911	-0.9448	-0.9956	-0.8336	-0.8998	

	1.0011	0.0110	0.0000		0.0000
	0	0.9456	0.5002	0.5695	-0.2729
	0	0	-0.0006	-0.0004	0.0099
	0	0	0	-0.0011	-0.6413
	0	0	0	0	-0.1391
	0	0	0	0	0
>>	[Qp,Rp,Pp]	= qr(A)			

Qp =

-0.5765	-0.4958	-0.1298	0.2511	-0.5536	-0.1884
-0.1796	-0.1225	0.4180	-0.8460	-0.2231	0.1119
-0.4759	0.0858	-0.5987	-0.2111	0.2821	0.5325
-0.4737	0.3507	0.0100	-0.1339	0.3583	-0.7115
-0.2391	0.7489	0.2307	0.2133	-0.4663	0.2566
-0.3569	-0.2192	0.6298	0.3365	0.4672	0.3104

Rp	=							
	-1.5911		-0.9448	-0.	8998	-0.995	56	-0.8336
	0		0.9456	-0.	2729	0.500)2	0.5695
	0		0	0.	6563	-0.000	00	0.0010
	0		0		0	-0.000)6	-0.0004
	0		0		0		0	0.0002
	0		0		0		0	0
Рр	=							
	1	0	0	0	0			
	0	1	0	0	0			
	0	0	0	1	0			
	0	0	0	0	1			
	0	0	1	0	0			

2. Suppose we have factored A = QR, and that we now want to change the 4th and 5th rows of A. Recall the formula

$$(A - ZV^{T})^{-1} = A^{-1} + A^{-1}Z(I - V^{T}A^{-1}Z)^{-1}V^{T}A^{-1}.$$

(a) Define \boldsymbol{Z} and \boldsymbol{V} so that the new matrix is $\boldsymbol{A} - \boldsymbol{Z}\boldsymbol{V}^{T}$.

(b) Given a vector \boldsymbol{b} , describe how to use the formula to solve $(\boldsymbol{A} - \boldsymbol{Z}\boldsymbol{V}^T)\boldsymbol{x} = \boldsymbol{b}$.

3. Your research advisor wants to solve a least squares problem

$$\min_{\boldsymbol{x}} \|\boldsymbol{A}\boldsymbol{x} - \boldsymbol{b}\|.$$

The entries in the matrix A were measured with a precision of $\pm 10^{-3}$. Given b and the results on the attached sheet, explain how to solve the problem. (Make clear exactly what you would compute and why.)

> [U,S,V] = svd(A)

U =

-0.5468	0.5684	-0.1184	-0.2047	0.5656	-0.0464
-0.3451	-0.3358	0.5244	0.5478	0.2844	-0.3352
-0.5090	-0.0719	-0.1584	-0.2461	-0.5874	-0.5523
-0.4232	-0.4894	0.2331	-0.4489	0.0157	0.5703
-0.3490	0.3332	-0.0486	0.5659	-0.4363	0.5042
-0.1478	-0.4567	-0.7933	0.2752	0.2522	0.0323

S =

0	0	0	0	3.2143
0	0	0	1.1092	0
0	0	0.3060	0	0
0	0.0006	0	0	0
0.0002	0	0	0	0
0	0	0	0	0

V =

-0.3278	0.5021	-0.4255	-0.6029	-0.3098
-0.5640	-0.3190	0.6510	-0.2702	-0.2885
-0.2664	0.2047	-0.1087	0.7069	-0.6129
-0.6410	0.2826	-0.0163	0.2526	0.6672
-0.3043	-0.7241	-0.6189	-0.0006	-0.0005