Supplemental Exercises: Unit 4
Scientific Computing with Case Studies
Dianne P. O'Leary
SIAM Press, 2009

1.

- Suppose that we have n uniformly distributed random vectors $\boldsymbol{x}_{j} \in S$, where

$$
S=\left\{\boldsymbol{x} \in \mathcal{R}^{5}:-2 \leq x_{i} \leq 2, \quad i=1, \ldots, 5\right\}
$$

- Suppose we have a region $T \subset S$ and a function $\hat{T}(\boldsymbol{x})$ that equals 1 if $\boldsymbol{x} \in T$ and 0 otherwise.
(a) Use this information to estimate the volume of T.
(b) In what way would your estimate improve if you were given $2 n$ points?

2. Consider the following counting problem. Let $C(k)$ be the number of distinct arrangements of k dimers on a particular lattice. We are told that $C(20)=200$, and we want to determine $C(55)$.

Suppose that we have sampled $6,000,000$ arrangements (uniformly among all possible arrangements), counted the number of dimers in each of these arrangements, and stored the counts in a $6,000,000 \times 1$ vector called d. Write Matlab statements to estimate $C(55)$.

