Supplemental Exercises: Unit 6
Scientific Computing with Case Studies
Dianne P. O'Leary
SIAM Press, 2009

1. Consider solving a nonlinear system of equations using the limited memory quasi-Newton method using Broyden's update formula with $\boldsymbol{B}^{(0)}=\boldsymbol{I}$:

$$
\boldsymbol{B}^{(k+1)}=\boldsymbol{B}^{(k)}+\frac{\left(\boldsymbol{y}^{(k)}-\boldsymbol{B}^{(k)} \boldsymbol{s}^{(k)}\right) \boldsymbol{s}^{(k) T}}{\boldsymbol{s}^{(k) T} \boldsymbol{s}^{(k)}} .
$$

As an example, let $k=2$.
(a) Let

$$
\left(\boldsymbol{B}^{(k+1)}\right)^{-1}=\left(\boldsymbol{B}^{(k)}\right)^{-1}+\boldsymbol{w}^{(k)} \boldsymbol{u}^{(k) T}
$$

Use the Sherman-Morrison-Woodbury formula

$$
\left(\boldsymbol{A}-\boldsymbol{Z} \boldsymbol{V}^{T}\right)^{-1}=\boldsymbol{A}^{-1}+\boldsymbol{A}^{-1} \boldsymbol{Z}\left(\boldsymbol{I}-\boldsymbol{V}^{T} \boldsymbol{A}^{-1} \boldsymbol{Z}\right)^{-1} \boldsymbol{V}^{T} \boldsymbol{A}^{-1}
$$

to write formulas for the vectors $\boldsymbol{w}^{(k)}$ and $\boldsymbol{u}^{(k)}$.
(b) What vectors would you store in order to be able to form $\left(\boldsymbol{B}^{(3)}\right)^{-1} \boldsymbol{v}$ for an arbitrary vector \boldsymbol{v} ?
(c) How many floating-point multiplications would it take to form $\left(\boldsymbol{B}^{(3)}\right)^{-1} \boldsymbol{v}$?

