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Feasible Direction Methods

Reference: N&S Chapter 15

Idea:

• We have a collection of methods that work for unconstrained problems:

– Newton’s method

– steepest descent

– quasi-Newton

– ...

• Can we modify them to work when we have constraints?

One advantage of these methods over Penalty methods (to be discussed later):
We only need to evaluate the function f(x) for points in the feasible region.

This can be important if the function is undefined outside the feasible region or if
we need to stop early.

Example: If f(x) involves taking the log of one of the variables, then the
function is undefined for zero and negative values of this variable. []

The plan:

• Handle linear equality constraints: generating feasible directions.

• Handle linear inequality constraints: active set strategies.

• Handle more general constraints:

– sequential quadratic programming

– reduced-gradient methods

Handling linear equality constraints

Problem:
min
x

f(x)
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subject to
Ax = b

We’ll assume that A ∈ Rm×n.

We will assume rank(A) = m < n. This is a constraint qualification.

Suppose we have factored A as

AT = QR

where Q ∈ Rn×n and R ∈ Rn×m is upper trapezoidal. Then the last n−m
columns of Q form a basis for the null space of A.

How does this help us?

Once we have a basis for the nullspace of A, we can express any feasible point as

x = x̂ + Zv

where v ∈ Rn−m and x̂ solves the equations:

Ax̂ = b .

So now our minimization problem becomes

min
v

f(x̂ + Zv)

with no constraints at all!

So we can solve this using our old favorite methods.

Computational issues

The QR method guarantees that the condition number of the reduced Hessian
matrix is no worse than the condition number of the Hessian matrix, since the
columns of Z are orthonormal.

Handling linear inequality constraints

Problem:
min
x

f(x)

subject to
Ax ≥ b
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Suppose someone told you that at the optimal solution x∗, the first k constraints
held as equalities

Awx = bw

but the other constraints were inactive:

Aw̄x > bw̄ .

Then you could replace this problem by the equality constrained problem

min
x

f(x)

subject to
Awx = bw.

Notation: We will let W be the index set for the set of active constraints and W̄
be its complement. In the example we just did,

W = {1, 2, . . . , k}, W̄ = {k + 1, . . . ,m} .

Our strategy

We can’t expect someone to tell us what constraints are active at the solution
point, but we can take a guess, reduce the function value, and repeat until we
can’t do any better.

Active set algorithms

The general scheme: Given an initial feasible point x(0), set k = 0.
Until optimality,

1. Choose W = the set of active constraint indices.

2. Using x(k) as an initial guess, solve

min
x

f(x)

subject to
Awx = bw

(or, at least step toward a solution to this problem) but don’t allow the
algorithm to walk outside the feasible set. Call your final point x(k+1) and
set k = k + 1.
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Let’s think about this in a bit more detail.

Finding a descent direction

We want to compute a descent direction for

min
v

f(x + Zv)

where x is our current guess at the solution and Z is a basis for the nullspace of
the matrix of the constraints that are active at x.

• The Newton direction: The search direction for the v variables is

(ZT H(x)Z)p = −ZT g(x)

(or, equivalently, Zp for the x variables)

• The steepest descent direction:

p = −ZT g(x)

• Quasi-Newton direction:
Bwp = −ZT g(x)

Complication: Every time we change the active set W , we have the issue
of how to modify Bw.

How far to walk?

Step in that direction until we satisfy the Wolfe (or G-A) linesearch conditions or
until we encounter another constraint.

Unquiz: For Newton’s method, we used an initial step length guess of 1. Now we
need to reduce this length if another constraint is violated first. How can we
compute how far can we step in direction v before encountering another
constraint? []

Modifying W

Clearly, if we encounter another constraint on our step, we need to add it to the
set of active constraints.

What if we don’t encounter a constraint, and we succeed (eventually) in
minimizing the function over the current set of active constraints W . Have we
solved our problem?

Lagrange multipliers to the rescue
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We need to check the optimality conditions for constrained optimization: is the
gradient a nonnegative linear combination of the columns of Aw?

So we are trying to solve the (possibly inconsistent) linear system

AT
wλ = g(x) .

• If we have a QR factorization of AT
w, then the least squares solution to this

problem is
λ = R−1QT g .

• We could use the partitioning method as an alternative to QR, partitioning
A = [B,N], computing

Z =
[
−B−1N

I

]
,

and letting
λ =

[
B−T 0

]
g(x) .

Then

AT
wλ =

[
BT

NT

] [
B−T 0

]
g(x)

=
[

I 0
NT B−T 0

]
g(x)

and λ is a solution to the first k equations.

Thus we have estimates for the current values of the Lagrange multipliers.

So now we know how to test optimality:

• If no constraints are active, we need to check that g(x) = 0 and H(x) is
positive definite.

• When constraints are active, we need to check that the Lagrange
multipliers satisfy λ ≥ 0 and AT

wλ = g and ZT H(x)Z is positive definite.

An important special case: Linear Programming

Example: linear programming

Consider this problem:
min
x

cT x

subject to
Ax = b, x ≥ 0 .
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where A ∈ Rm×n.

What does our algorithm look like in this special case?

We need to see how to

• solve the problem for the current set of active constraints.

• check optimality.

• choose a new set of active constraints.

Solving the problem for the current set of active constraints

Suppose we are currently at a point x. Partition (and rearrange) x so that its
nonzero components xB come first, and rearrange the columns of A in the same
way. Call the zero components xN , suppose it has n−m components, and write
the active constraints as [

B N
0 I

] [
xB

xN

]
=

[
b
0

]
Then this is a system of n equations in n unknowns and has a unique solution as
long as B is nonsingular.

Therefore, by solving this system, we determine the optimal solution for this set
of active constraints without doing any minimization or line search.

Checking optimality

We need to compute the Lagrange multipliers[
BT 0
NT I

] [
λ1

λ2

]
= c

so [
λ1

λ2

]
=

[
B−T 0

−NT B−T I

] [
cB

cN

]
=

[
B−T cB

cN −NT B−T cB

]

To be optimal, we need λ2 ≥ 0.

Jargon: The entries of λ2 are called the reduced costs.

(λ1 is unrestricted in sign since its constraints are equality constraints.)

6



Choosing a new set of active constraints

Suppose that λ2 is not nonnegative.

Then we need to drop a constraint so that we can reduce the function value.

Which constraint can we drop? If we drop any constraint with a negative
component in λ2, the function value will go down.

Customarily, we choose the constraint corresponding to the most negative
multiplier.

This gives us a new set of active constraints, so we are ready for the next
iteration.

A variant

Suppose we drop constraint j and let xj be nonzero.

What is a feasible direction?

We need [
B N
0 I

]
p =

[
0
ej

]
or

p =
[

B−1 −B−1N
0 I

] [
0
ej

]
=

[
−B−1N

I

]
ej .

Now that we have our direction, we can step along it until we hit a new
constraint. Then we have n active constraints again, and we can repeat the
process.

The Simplex Method for Linear Programming

The algorithm we just described is the simplex method for linear programming.
The original variant is due to George Dantzig in the 1940s, building on work of
many others, and there has been considerable effort since then. (See N&S p.
143, 180, 233.)

We’ve cleaned it up to present it in matrix terms, rather than the traditional
tableau form.

Unquiz: Write up the algorithm.

Some interesting questions about the simplex method
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• complexity.

• geometry: walk around edge.

• stability issues.

• history

Another important special case: Quadratic programming

In quadratic programming, we minimize a quadratic function subject to linear
equality and inequality constraints.

• We encountered such problems in our discussion of trust regions.

• We’ll see them in our SQP algorithm later in these notes.

• They are important in their own right.

It is a good exercise to work through what feasible direction algorithms look like
in the special case of quadratic programming.

Handling nonlinear constraints

Two methods:

• sequential quadratic programming

• reduced gradient approach

Sequential quadratic programming

My question: This isn’t a “feasible point” method, so why do N&S include it in
this chapter?

A good reference: Boggs and Tolle, Acta Numerica 1995 p.1

SQP

An almost feasible point method.

Idea: For unconstrained optimization, we generate a search direction for

min
x

f(x)

8



from a quadratic model q(x + p) to f at x.

This is Newton’s method applied to f(x).

So for constrained optimization, we’ll try to generate a feasible direction for

min
x

f(x)

subject to
c(x) = 0

(linear or nonlinear constraints) from a quadratic model. We’ll apply Newton’s
method to the Lagrangian

L(x,λ) = f(x)− λT c(x) .

There are two good ways to think about this.

Derivation 1: Quadratic model

We want a saddle point of the Lagrangian, minimizing with respect to x and
maximizing with respect to λ. Let’s hold λ fixed. Then we have

L(x(k) +p,λ(k)) ≈ L(x(k),λ(k))+(5xL(x(k),λ(k)))T p+
1
2
pT 52

xx L(x(k),λ(k))p

and
c(x(k) + p) ≈ c(x(k)) + A(x(k))T p

So we choose to determine p by solving the quadratic programming problem

min
p

(5xL(x(k),λ(k)))T p +
1
2
pT 52

xx L(x(k),λ(k))p

subject to
c(x(k)) + A(x(k))T p = 0 .

Derivation 2: Newton’s method

We want the gradient of the Lagrangian to be zero, so we apply Newton’s
method to

5L(x,λ) = 0 .

This gives [
x
λ

](k+1)

=
[

x
λ

](k)

+ α

[
p
v

](k)
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where we define the directions p and v by solving the Newton equation

52L(x(k),λ(k))
[

p
v

](k)

= −5 L(x(k),λ(k)) .

What does this look like? L(x,λ) = f(x)− λT c(x), so

5L(x(k),λ(k)) =
[

g(x(k))− AT (x(k))λ(k)

−c(x(k))

]

52L(x(k),λ(k)) =
[

H(x(k))−G(x(k),λ(k)) −AT (x(k))
−A(x(k)) 0

]
where G is the derivative with respect to x of AT λ.

Fact: The Newton equation is the first order optimality condition for the
quadratic programming problem in Derivation 1.

The SQP idea

Repeat until optimality:

• Generate a direction from solving the Newton equation.

• Take a step in that direction.

Advantages of SQP:

• Newton’s method gives hope of quadratic convergence rate!

• Builds on well-understood technology: solving quadratic programming
problems.

• One of the simpler algorithms for nonlinear constraints.

Disadvantages of SQP:

• It does not generate a sequence of feasible points, although it ultimately
forces feasibility. (See, for example, the last column of Table 15.1 in N&S,
p. 513.)
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• Each iteration is very expensive and ordinarily we must compromise,
making approximations:

– Either neglect or approximate G.

– Might use Quasi-Newton to approximate the (1,1) block of the matrix
in the Newton equation.

– Don’t solve the QP; just insure sufficient progress. (But beware of
trouble with feasibility if we stop early.)

Local expert

There are a lot of implementation issues that we have not discussed here.

Andre Tits (ECEE) is an expert on this method and has a very nice software
package implementing it.

Reduced gradient methods

I don’t think these methods have much of a future, but see N&S Section 15.6 if
you are interested.

Final words

• Feasible direction methods and reduced gradient methods are losing
popularity.

• SQP is still a good option.
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