AMSC 607 / CMSC 764 Homework 1, Fall 2008

Partial Solution

1. (3) At what rate does the sequence

$$
e_{k}=1+(0.5)^{2^{k}}
$$

converge to $1 ?$

Answer: The limit of the sequence is 1 , and, for $k=0,1, \ldots$,

$$
\frac{\left(e_{k+1}-1\right)}{\left(e_{k}-1\right)^{r}}=\frac{.5^{2^{k+1}}}{.5^{r 2^{k}}}
$$

The ratio is 1 when $r=2$, so the convergence rate is quadratic with rate constant 1.
2. (5) Let $\boldsymbol{x}=\boldsymbol{S} \boldsymbol{z}+\boldsymbol{d}$, where \boldsymbol{S} is a given $n \times n$ matrix and \boldsymbol{d} is a given $n \times 1$ vector.

Suppose f is a function of n variables, and define $\hat{f}(\boldsymbol{z})=f(\boldsymbol{x})=f(\boldsymbol{S} \boldsymbol{z}+\boldsymbol{d})$. Write expressions for the gradient and Hessian of \hat{f} with respect to the variables \boldsymbol{z}, using the gradient and Hessian of the function f. (Hint: compute $\partial \hat{f} / \partial z_{j}$ by using the chain rule and the values $\partial f / \partial x_{i}$ and $\partial x_{i} / \partial z_{j}$.)

Answer: The gradient at \boldsymbol{z} is

$$
\boldsymbol{S}^{T} \boldsymbol{g}(\boldsymbol{S} \boldsymbol{z}+\boldsymbol{d})
$$

where \boldsymbol{g} is the gradient of f, and the Hessian matrix at \boldsymbol{z} is

$$
\boldsymbol{S}^{T} \boldsymbol{H}(\boldsymbol{S} \boldsymbol{z}+\boldsymbol{d}) \boldsymbol{S}
$$

where \boldsymbol{H} is the Hessian matrix of f. We'll use these expressions in our study of constrained optimization problems.
3. Consider the following problem: Find a value of γ so that the solution \boldsymbol{p} to the linear system

$$
(\boldsymbol{H}+\gamma \boldsymbol{I}) \boldsymbol{p}=-\boldsymbol{g}
$$

satisfies $\|\boldsymbol{p}\|_{2}=\delta$, where $\delta>0$ is a given value.
Suppose we have factored $\boldsymbol{H}=\boldsymbol{U} \boldsymbol{\Lambda} \boldsymbol{U}^{T}$, where $\boldsymbol{\Lambda}$ is a diagonal matrix with diagonal elements λ_{i} and \boldsymbol{U} is orthogonal, so that $\boldsymbol{U} \boldsymbol{U}^{T}=\boldsymbol{U}^{T} \boldsymbol{U}=\boldsymbol{I}$.

3a. (5) Write the solution \boldsymbol{p} to the linear system in terms of $\boldsymbol{g}, \gamma, \boldsymbol{U}, \boldsymbol{u}_{i}$, and λ_{i}, where \boldsymbol{u}_{i} is the i th column of \boldsymbol{U}. (Hint: Remember that scalars like γ commute with matrices.)

Answer:

$$
\begin{aligned}
-\boldsymbol{g}=(\boldsymbol{H}+\gamma \boldsymbol{I}) \boldsymbol{p} & =\left(\boldsymbol{U} \boldsymbol{\Lambda} \boldsymbol{U}^{T}+\gamma \boldsymbol{I}\right) \boldsymbol{p} \\
& =\left(\boldsymbol{U} \boldsymbol{\Lambda} \boldsymbol{U}^{T}+\gamma \boldsymbol{U} \boldsymbol{U}^{T}\right) \boldsymbol{p} \\
& =\boldsymbol{U}(\boldsymbol{\Lambda}+\gamma \boldsymbol{I}) \boldsymbol{U}^{T} \boldsymbol{p}
\end{aligned}
$$

Let $\boldsymbol{s}=\boldsymbol{U}^{T} \boldsymbol{p}$ and $\boldsymbol{c}=-\boldsymbol{U}^{T} \boldsymbol{g}$. We multiply our equation by \boldsymbol{U}^{T} to obtain

$$
(\boldsymbol{\Lambda}+\gamma \boldsymbol{I}) s=\boldsymbol{c}
$$

Therefore, for $j=1, \ldots, n$,

$$
s_{j}=\frac{c_{j}}{\lambda_{j}+\gamma}
$$

Notice that $c_{j}=-\boldsymbol{u}_{j}^{T} \boldsymbol{g}$, and

$$
\begin{aligned}
\boldsymbol{p} & =\boldsymbol{U} \boldsymbol{s} \\
& =\sum_{j=1}^{n} s_{j} \boldsymbol{u}_{j} \\
& =\sum_{j=1}^{n} \frac{c_{j}}{\lambda_{j}+\gamma} \boldsymbol{u}_{j} .
\end{aligned}
$$

3ba. (2) Show that, for any vector $\boldsymbol{w},\|\boldsymbol{w}\|_{2}=\left\|\boldsymbol{U}^{T} \boldsymbol{w}\right\|_{2}$.

Answer: $\left\|\boldsymbol{U}^{T} \boldsymbol{w}\right\|_{2}^{2}=\left(\boldsymbol{U}^{T} \boldsymbol{w}\right)^{T}\left(\boldsymbol{U}^{T} \boldsymbol{w}\right)=\boldsymbol{w}^{T} \boldsymbol{U} \boldsymbol{U}^{T} \boldsymbol{w}=\boldsymbol{w}^{T} \boldsymbol{w}=\|\boldsymbol{w}\|_{2}^{2}$.

3bb. (5) Use 3ba to write an expression for $\|\boldsymbol{p}\|_{2}$ in terms of $\boldsymbol{g}, \gamma, \boldsymbol{U}$, and λ_{i}.

Answer: The previous result means that $\|\boldsymbol{p}\|=\|s\|$, so

$$
\begin{aligned}
\|\boldsymbol{p}\|^{2} & =\sum_{j=1}^{n} s_{j}^{2} \\
& =\sum_{j=1}^{n} \frac{c_{j}^{2}}{\left(\lambda_{j}+\gamma\right)^{2}}
\end{aligned}
$$

$$
=\sum_{j=1}^{n} \frac{\left(\boldsymbol{u}_{j}^{T} \boldsymbol{g}\right)^{2}}{\left(\lambda_{j}+\gamma\right)^{2}}
$$

3c. (5) Find an interval for γ on which $\|\boldsymbol{p}\|_{2}$ is monotonically decreasing. (Hint: Remember that some of the λ_{i} might be negative.)

Answer: Notice that the expression in the previous answer goes to infinity when $\gamma=-\lambda_{j}$. But once γ is bigger than the absolute values of all of the negative eigenvalues of \boldsymbol{A}, then each of the terms in the summation is decreasing with γ, so the entire expression is monotonically decreasing with γ. Therefore, one such interval stretches from $\max \left(0,-\lambda_{\min }(\boldsymbol{A})\right)$ to infinity, where $\lambda_{\min }(\boldsymbol{A})$ is the smallest eigenvalue of \boldsymbol{A}.

3d. (5) Describe how you could use Matlab's fzero to find a value of γ for which $\|\boldsymbol{p}\|_{2}=\delta$ (if such a value exists). What initial interval would you give zeroin?

Answer: We use fzero to find a solution to $t(\gamma) \equiv\|\boldsymbol{p}\|^{2}-\delta^{2}=0$, where

$$
t(\gamma)=\sum_{j=1}^{n} \frac{\left(\boldsymbol{u}_{j}^{T} \boldsymbol{g}\right)^{2}}{\left(\lambda_{j}+\gamma\right)^{2}}-\delta^{2}
$$

Evaluating this function is quite inexpensive, especially if we precompute (once only) the numerators.

Since

$$
\sum_{j=1}^{n} \frac{\left(\boldsymbol{u}_{j}^{T} \boldsymbol{g}\right)^{2}}{\left(\lambda_{j}+\gamma\right)^{2}} \leq n \frac{\max _{j}\left(\boldsymbol{u}_{j}^{T} \boldsymbol{g}\right)^{2}}{\min _{j}\left(\lambda_{j}+\gamma\right)^{2}}
$$

we can find an upper limit for our interval by solving

$$
n \frac{\max _{j}\left(\boldsymbol{u}_{j}^{T} \boldsymbol{g}\right)^{2}}{\min _{j}\left(\lambda_{j}+\gamma\right)^{2}}=\delta^{2}
$$

For the lower limit, it is probably easiest to use 0 , if \boldsymbol{A} is positive definite, or a number just bigger than $-\lambda_{\min }(\boldsymbol{A})$, if \boldsymbol{A} has a negative eigenvalue: for example, $-\lambda_{\min }(\boldsymbol{A})(1+\epsilon)$, where $1+\epsilon$ is the floating-point number next to 1 .

It is not a good idea to initialize fzero with points that give infinite function values.

In Homework 2, you will write a program, using this algorithm to solve minimization problems.

