AMSC 607 / CMSC 764 Homework 1, Fall 2008 Partial Solution

1. (3) At what rate does the sequence

$$e_k = 1 + (0.5)^{2^{\kappa}}$$

converge to 1?

Answer: The limit of the sequence is 1, and, for k = 0, 1, ...,

$$\frac{(\boldsymbol{e}_{k+1}-1)}{(\boldsymbol{e}_k-1)^r} = \frac{.5^{2^{k+1}}}{.5^{r2^k}}$$

The ratio is 1 when r = 2, so the convergence rate is quadratic with rate constant 1.

2. (5) Let $\boldsymbol{x} = \boldsymbol{S}\boldsymbol{z} + \boldsymbol{d}$, where \boldsymbol{S} is a given $n \times n$ matrix and \boldsymbol{d} is a given $n \times 1$ vector.

Suppose f is a function of n variables, and define $\hat{f}(\mathbf{z}) = f(\mathbf{x}) = f(\mathbf{S}\mathbf{z} + \mathbf{d})$. Write expressions for the gradient and Hessian of \hat{f} with respect to the variables \mathbf{z} , using the gradient and Hessian of the function f. (Hint: compute $\partial \hat{f}/\partial z_j$ by using the chain rule and the values $\partial f/\partial x_i$ and $\partial x_i/\partial z_j$.)

Answer: The gradient at *z* is

$$S^T g(Sz+d),$$

where \boldsymbol{g} is the gradient of f, and the Hessian matrix at \boldsymbol{z} is

$$S^T H(Sz+d)S,$$

where H is the Hessian matrix of f. We'll use these expressions in our study of constrained optimization problems.

3. Consider the following problem: Find a value of γ so that the solution p to the linear system

$$(\boldsymbol{H} + \gamma \boldsymbol{I})\boldsymbol{p} = -\boldsymbol{g}$$

satisfies $\|\boldsymbol{p}\|_2 = \delta$, where $\delta > 0$ is a given value.

Suppose we have factored $\boldsymbol{H} = \boldsymbol{U}\boldsymbol{\Lambda}\boldsymbol{U}^{T}$, where $\boldsymbol{\Lambda}$ is a diagonal matrix with diagonal elements λ_{i} and \boldsymbol{U} is orthogonal, so that $\boldsymbol{U}\boldsymbol{U}^{T} = \boldsymbol{U}^{T}\boldsymbol{U} = \boldsymbol{I}$.

3a. (5) Write the solution p to the linear system in terms of g, γ , U, u_i , and λ_i , where u_i is the *i*th column of U. (Hint: Remember that scalars like γ commute with matrices.)

Answer:

$$-\boldsymbol{g} = (\boldsymbol{H} + \gamma \boldsymbol{I})\boldsymbol{p} = (\boldsymbol{U}\boldsymbol{\Lambda}\boldsymbol{U}^T + \gamma \boldsymbol{I})\boldsymbol{p}$$

= $(\boldsymbol{U}\boldsymbol{\Lambda}\boldsymbol{U}^T + \gamma \boldsymbol{U}\boldsymbol{U}^T)\boldsymbol{p}$
= $\boldsymbol{U}(\boldsymbol{\Lambda} + \gamma \boldsymbol{I})\boldsymbol{U}^T\boldsymbol{p}.$

Let $s = U^T p$ and $c = -U^T g$. We multiply our equation by U^T to obtain

$$(\boldsymbol{\Lambda} + \gamma \boldsymbol{I})\boldsymbol{s} = \boldsymbol{c}.$$

Therefore, for $j = 1, \ldots, n$,

$$s_j = \frac{c_j}{\lambda_j + \gamma}.$$

Notice that $c_j = -\boldsymbol{u}_j^T \boldsymbol{g}$, and

$$oldsymbol{p} = oldsymbol{Us}$$

 $= \sum_{j=1}^n s_j oldsymbol{u}_j$
 $= \sum_{j=1}^n rac{c_j}{\lambda_j + \gamma} oldsymbol{u}_j.$

3ba. (2) Show that, for any vector \boldsymbol{w} , $\|\boldsymbol{w}\|_2 = \|\boldsymbol{U}^T \boldsymbol{w}\|_2$.

Answer:
$$\| \boldsymbol{U}^T \boldsymbol{w} \|_2^2 = (\boldsymbol{U}^T \boldsymbol{w})^T (\boldsymbol{U}^T \boldsymbol{w}) = \boldsymbol{w}^T \boldsymbol{U} \boldsymbol{U}^T \boldsymbol{w} = \boldsymbol{w}^T \boldsymbol{w} = \| \boldsymbol{w} \|_2^2$$

3bb. (5) Use 3ba to write an expression for $\|\boldsymbol{p}\|_2$ in terms of $\boldsymbol{g}, \gamma, \boldsymbol{U}$, and λ_i .

Answer: The previous result means that $\|p\| = \|s\|$, so

$$\|p\|^2 = \sum_{j=1}^n s_j^2$$

= $\sum_{j=1}^n \frac{c_j^2}{(\lambda_j + \gamma)^2}$

$$=\sum_{j=1}^nrac{(oldsymbol{u}_j^Toldsymbol{g})^2}{(\lambda_j+\gamma)^2}$$

3c. (5) Find an interval for γ on which $\|\boldsymbol{p}\|_2$ is monotonically decreasing. (Hint: Remember that some of the λ_i might be negative.)

Answer: Notice that the expression in the previous answer goes to infinity when $\gamma = -\lambda_j$. But once γ is bigger than the absolute values of all of the negative eigenvalues of \mathbf{A} , then each of the terms in the summation is decreasing with γ , so the entire expression is monotonically decreasing with γ . Therefore, one such interval stretches from $\max(0, -\lambda_{\min}(\mathbf{A}))$ to infinity, where $\lambda_{\min}(\mathbf{A})$ is the smallest eigenvalue of \mathbf{A} .

3d. (5) Describe how you could use MATLAB's **fzero** to find a value of γ for which $\|\boldsymbol{p}\|_2 = \delta$ (if such a value exists). What initial interval would you give zeroin?

Answer: We use fzero to find a solution to $t(\gamma) \equiv \|\mathbf{p}\|^2 - \delta^2 = 0$, where

$$t(\gamma) = \sum_{j=1}^{n} \frac{(\boldsymbol{u}_{j}^{T}\boldsymbol{g})^{2}}{(\lambda_{j} + \gamma)^{2}} - \delta^{2}.$$

Evaluating this function is quite inexpensive, especially if we precompute (once only) the numerators.

Since

$$\sum_{j=1}^{n} \frac{(\boldsymbol{u}_{j}^{T}\boldsymbol{g})^{2}}{(\lambda_{j}+\gamma)^{2}} \leq n \frac{\max_{j}(\boldsymbol{u}_{j}^{T}\boldsymbol{g})^{2}}{\min_{j}(\lambda_{j}+\gamma)^{2}},$$

we can find an upper limit for our interval by solving

$$n \frac{\max_j (\boldsymbol{u}_j^T \boldsymbol{g})^2}{\min_j (\lambda_j + \gamma)^2} = \delta^2.$$

For the lower limit, it is probably easiest to use 0, if \boldsymbol{A} is positive definite, or a number just bigger than $-\lambda_{min}(\boldsymbol{A})$, if \boldsymbol{A} has a negative eigenvalue: for example, $-\lambda_{min}(\boldsymbol{A})(1+\epsilon)$, where $1+\epsilon$ is the floating-point number next to 1.

It is not a good idea to initialize $\verb+fzero$ with points that give infinite function values.

In Homework 2, you will write a program, using this algorithm to solve minimization problems.