
AMSC 607 / CMSC 764 Advanced Numerical Optimization
Fall 2008

UNIT 3: Constrained Optimization
PART 4: Introduction to Interior Point Methods

Dianne P. O’Leary
c©2008

Interior Point Methods

We’ll discuss linear programming first, followed by three nonlinear problems.

Algorithms for Linear Programming Problems

min
x

cT x

Ax = b

x ≥ 0

The Plan

There are two main approaches for solving linear programming problems:

• The Simplex method (Dantzig and others, 1940’s) (Predecessors such as
Motzkin)

• Interior Point methods (Karmarkar, 1980’s) (Predecessors such as Fiacco
and McCormick)

The geometry of the methods

The algebra of the Simplex Method

See the feasible direction notes.

The algebra of Interior Point Methods

Our starting point: Affine scaling algorithm.

This is not the best method, but it will help us fix ideas.

The basic intuition

• Suppose we are at an interior point of the feasible set

1

• Picture.

• Consider the steepest descent step.

• This step doesn’t make much progress unless our starting point is central.

• So we’ll change the coordinate system so that the current point is always
central.

Some facts we need

• The matrix P = I− AT (AAT)−1A is a projector into the nullspace of A:

If we have a vector y, then z = Py = y− AT (AAT)−1Ay, so

Az = APy = Ay− AAT (AAT)−1Ay = Ay− Ay = 0 .

Therefore, for any vector y, Py is a feasible direction.

• If we want the steepest descent direction at a particular point x, we need
to solve

min
‖Py‖=1

cT (x + Py) ,

and the solution to this is the same as the solution to

min
‖Py‖=1

cT Py .

Therefore, the steepest descent direction is a vector of length 1 in the
direction −Pc.

• Central means being approximately equidistant from all of the bounds
x ≥ 0. Therefore, x is central if x = βe for some positive scalar β.

• A convenient notation: If we make a diagonal matrix out of a vector, we
will denote the matrix by using the same letter of the alphabet, but its
upper case form. For example, in Matlab notation,

X = diag(x)

Affine scaling to a central point

The object of the game: Rewrite the linear program so that the current guess
x(k) is transformed to e. This is an affine (or linear) scaling:

e = (X(k))−1x(k)

2

so our new variables are
x̄ = (X(k))−1x .

How does this change the rest of the problem?

cT x = cT X(k)x̄ ≡ c̄T x̄ ,

b = Ax = AX(k)x̄ ≡ Āx̄ ,

x ≥ 0↔ x̄ ≥ 0 ,

current iterate x(k) ↔ current iterate x̄(k) = e

The resulting problem

min
x̄

c̄T x̄

Āx̄ = b

x̄ ≥ 0

Now we can find the steepest descent direction in this transformed space:

∆x̄ ≡ p̄ = −P̄c̄ = −(I− Ā
T (ĀĀ

T)−1Ā)c̄

and we can take a step
x̄ = e + α∆x̄

where α is chosen so that x̄ ≥ 0.

The point x̄ is no longer central, so we return to the original coordinate system.
In terms of x, our step is

∆x = X(k)∆x̄ = −X(k)(I− X(k)T AT (AX(k)2AT)−1AX(k))X(k)c ,

and
x(k+1) = x(k) + α∆x .

3

A heuristic: We don’t want to hit a boundary, since then we can’t make an affine
transformation to a central point, so we step 90 (or 99)% of the way to the
boundary:

αmax = min
∆xi<0

−xi

∆xi

α = .9αmax.

Then we can repeat the process of making the transformation and taking a step.

Issues

• The primary computational task is the projection. We have seen how to do
this with QR factors.

• The affine scaling method is not the best. We’ll build toward better
algorithms.

5 equivalent problems

We know lots of different ways to write our linear programming problem, and
these different variants will yield insights and algorithms.

Problem 1: The primal
min
x

cT x

Ax = b

x ≥ 0

Problem 2: The dual
max
y

bT y

AT y ≤ c

(Notice that I used the variable y instead of λ, to match the notation in the
book.)

This can be written with a slack variable as

max
y

bT y

4

AT y + z = c

z ≥ 0

Problem 3: Log-Barrier formulation

min
x

B(x, µ)

Ax = b

where

B(x, µ) = cT x− µ

n∑
i=1

lnxi

Problem 4: Optimality conditions for the Log-Barrier formulation

The Lagrangian for the Log-Barrier problem is

LB = cT x− µ

n∑
i=1

lnxi − yT (Ax− b)

so we need

c− µX−1e− AT y = 0

Ax− b = 0

We take these conditions to define the central path: The central path is defined
by x(µ), y(µ), z(µ), where

Ax = b

x > 0

AT y + z = c

z > 0

Xz = µe .

The last condition defines what we mean by centering: we keep both x and z
bounded away from zero this way.

5

Problem 5: Optimality conditions for linear programming

Ax = b

x ≥ 0

AT y + z = c

z ≥ 0

xT z = 0

Important Observation 1: These match the central path definition except that for
the central path,

xT z = eT Xz = µeT e > 0 .

(And except for nonnegativity rather than positivity.)

But it is clear that we achieve optimality by driving µ to zero!

Important Observation 2: This relation between the central path and the
optimality conditions gives us a hint about how to set a stopping criterion:

If Ax = b, x ≥ 0, AT y + z = c, and z ≥ 0, then

xT c− yT b = xT (AT y + z)− yT Ax = xT z ≥ 0 .

Recall that the duality gap for linear programming is zero, so if (x∗, y∗) is
optimal,

cT x∗ = bT y∗,

so, since cT x = bT y + xT z,

0 ≤ cT x− cT x∗ = xT z + bT y− bT y∗ .

By optimality, bT y− bT y∗ ≤ 0, so

0 ≤ cT x− cT x∗ ≤ xT z .

So when xT z is small enough, we can stop!

The computational formulation of IPMs

From Problem 5, we see that we need to solve a system of nonlinear equations

Xz− µe = 0,

Ax− b = 0,

AT y + z− c = 0

6

with x ≥ 0, z ≥ 0, and we want to also drive µ to zero.

Suppose we use Newton’s method to solve this system. The Jacobian matrix is

J =

 Z 0 X
A 0 0
0 AT I

so the Newton step is Z 0 X

A 0 0
0 AT I

 ∆x
∆y
∆z

 =

 µe− Xz
b− Ax

c− AT y− z

 .

We need to solve this linear system using our favorite method: LU factorization,
an iterative method, etc.

If we do factor the matrix J, which is expensive, then we can get multiple uses
from it by using an algorithm called predictor- corrector (Mehrotra). Solve the
linear system as written, and then re-solve it, updating the right-hand side by
evaluating the first component at

x + ∆x ,

y + ∆y ,

z + ∆z .

The reduced system

So far we have the system X−1Z 0 I
A 0 0
0 AT I

 ∆x
∆y
∆z

 =

 µX−1e− X−1Xz
b− Ax

c− AT y− z

 ,

where we have multiplied the first block equation by X−1.

We can also work with the reduced system obtaining by using the 3rd block
equation to solve for ∆z:

∆z = c− AT y− z− AT ∆y .

Then our system becomes[
X−1Z AT

A 0

] [
∆x

−∆y

]
=

[
µX−1e− z−c + AT y + z

b− Ax

]
.

7

This is called the KKT system after Karush, Kuhn, and Tucker, who made a lot
of contributions toward deriving the optimality conditions for nonlinear
programming.

Reducing further

Let D2 = X−1Z and note that this is a positive definite diagonal matrix.

If we take −AD−2 times the first equation and add the second equation, we
obtain

AD−2AT ∆y = b− Ax−AD−2(µX−1e− c + AT y) .

This is the system of normal equations.

So, to determine the Newton direction, we have the choice of solving the big
system, the medium system, or the small system.

Implementation issues

• The KKT matrix is symmetric but indefinite.

• The normal equations matrix is symmetric positive definite.

• Whatever system we choose, the sparsity pattern remains the same for
every iteration. (This is in contrast to the simplex algorithm for linear
programming, in which the basis changes each iteration.)

• We don’t need to solve the system to high accuracy; we only need a
descent direction. But for superlinear convergence, a reasonably good
direction is needed.

• The KKT system becomes very ill-conditioned as we approach the solution,
because some components of X−1 get very large. Even so, the
ill-conditioning does not prevent us from computing a good search
direction. This mystery was unraveled by Margaret Wright.

Primal-Dual Interior Point Methods for Linear Programming

• Primal-Dual methods perform better than Primal methods or Dual
methods.

• The current most popular algorithm is Predictor-Corrector. This may
change.

The basis of the Complexity Theory

8

• The problem size is the number of bits needed to store the problem on a
machine. This is finite if all of the data is rational, so we will make this
assumption, specifying each entry in A, b, and c as the ratio of two
integers. We’ll suppose that it takes L bits to store these entries along
with m and n.

• We note that m ≤ n, so m never appears in the complexity bounds.

• Suppose we know the active constraints at the optimal solution x∗. Then
x∗ can be expressed as the solution to the linear system of equations
defined by these constraints. Since the coefficient matrix and right-hand
side are rational, so is x∗, and it has an exact representation in a number
of bits bounded by a polynomial in the number of bits of data. In fact, the
nonzero components are bounded below by ε ≡ 2−L

• Thus we have motivation for allowing an algorithm to “round-off” to the
closest rational number that is representable within our bit bound, and
complexity proofs need to show that this does not hurt convergence.

• And we know that at some stage we can terminate the iteration and set all
of the very small components of the solution vector to zero, using a linear
system to solve for the exact values of the others.

• Each iteration will take time polynomial in L, so we just need to make sure
that the number of iterations is bounded by a polynomial in L.

The basic algorithm

Given (x(0), y(0), z(0)) satisfying

Ax(0) = b

AT y(0) + z(0) = c

x(0) > 0

z(0) > 0

For k = 0, 1, . . . , until x(k)T z(k) small enough,

• Solve Z(k) 0 X(k)

A 0 0
0 AT I

 ∆x(k)

∆y(k)

∆z(k)

 =

 −X(k)z(k) + σkµke
0
0

where σk ∈ [0, 1] and µk = x(k)T z(k)/n.

• Set x(k+1)

y(k+1)

z(k+1)

 =

 x(k)

y(k)

z(k)

 + αk

 ∆x(k)

∆y(k)

∆z(k)

choosing αk so that x(k+1) > 0 and z(k+1) > 0.

9

Note: For nonzero σ, if we set αk = 1, then we will have

x
(k+1)
i z

(k+1)
i ≈ σµk,

so we are targeting the particular point on the central path corresponding to the
parameter σµk. If we set σ = 0, we are targeting the point corresponding to 0,
i.e., the solution to the LP.

Some Variations

Potential Reduction Methods

• Goal: reduce a potential function, rather than follow the central path.

• Measuring progress: The value φ should decrease sufficiently fast, where φ
is a potential function. One very useful one (Tanabe-Todd-Ye):

φρ(x, z) = ρ log xT z−
n∑

i=1

log(xizi)

where ρ > n .

• Implementation:

– Choose σk = n/ρ.

– Choose αk using a line search for the function φ with an upper bound
on α equal to αmax = the maximal step that hits the boundary.

• Convergence result: If ρ = n +
√

n, the bound on the number of iterations
is O(

√
n log(1/ε)).

• Practicalities:

– Choose a larger value like ρ = 10n.

– Line search need not be exact: see if .99αmax (or similar values) yield
a prescribed constant decrease in φ.

Path Following Methods

• Goal: try to stay in a neighborhood of the central path, and thus avoid
points that are too close to the boundary where xi = 0 or zi = 0.

• Measuring progress: The value µ should decrease, so that we move closer
to a KKT point, one that satisfies the optimality conditions for the LP.

• Classes of methods:

– Short-step methods choose σ close to 1 and are able to set αk = 1
without straying far from the central path.

10

– Long-step methods choose smaller values of σ and thus must choose

an αk so that x
(k+1)
i z

(k+1)
i ≥ γµk, where γ is chosen between 0 and

1. (A typical γ is 10−3.)

– Predictor-corrector methods take

∗ a predictor step with σ = 0 and αk chosen to keep
||Xz− µe||2 ≤ θµ (typical θ is 0.5),

∗ followed by a corrector step with σ = 1 and α = 1.

The predictor step is a “long step”, and the “short” corrector step
pulls the iterate back toward the central path without significantly
changing the µ value achieved by the predictor.

• Convergence analysis: The short-step and predictor-corrector algorithms
can be shown to terminate in O(

√
n log 1/ε) iterations, and µk converges

to zero superlinearly for the predictor-corrector algorithm. The bound on
the long-step algorithm is O(n log 1/ε), but it behaves well in practice.

Dealing with infeasible initial points

• It is easy to choose an x > 0 and a z > 0.

• It is hard to satisfy the equality constraints Ax = b and AT y + z = c.

So infeasible IPMs replace the step equation by Z(k) 0 X(k)

A 0 0
0 AT I

 ∆x(k)

∆y(k)

∆z(k)

 =

 −X(k)z(k) + σkµke
c− AT y(k) − z(k)

b− Ax(k)

The convergence analysis is not as pretty: O(n2 log 1/ε) for a “medium-step”
version, but the algorithms are much more convenient to use!

Reference

Stephen J. Wright, Primal-Dual Interior-Point Methods (for linear programming),
SIAM, 1997.

A Note on Fiacco and McCormick

Back in the 1960s, Anthony Fiacco and Garth McCormick proposed solving linear
programming problems (or any constrained optimization problem) using a barrier
method. They called it “Sequential Unconstrained Minimization Technique” or
SUMT.

11

Everyone laughed.

No one is laughing now.

IPM for Nonlinear Programming

• general NLP

• 2nd-order cone programming

• semi-definite programming

Nonlinear Programming

IPM for NLP

Primal problem:
min
x

f(x)

c(x) ≥ 0

Note: Linear equality constraints can be handled as in IPMs for LP, but we’ll
omit these from the discussion.

Barrier function:
B(x, µ) = f(x)− µ

∑
log ci(x)

Optimality conditions for barrier function:

g(x)− µA(x)T C(x)−1e = 0

c(x) ≥ 0

Optimality conditions for NLP primal problem:

g(x)− A(x)T λ = 0

c(x) ≥ 0

λ ≥ 0

λT c(x) = 0

12

Consequently, we have these multiplier estimates:

λ = µC(x)−1e ,

or, equivalently, λ is defined by

C(x)λ = µe .

The central path

Therefore, we define the central path as

g(x)− A(x)T λ = 0

λici(x) = µ

Follow that path as µ → 0.

What we need to accomplish:

• Propose a good algorithm for following that path.

• Establish convergence and complexity for some interesting class of
problems.

Following that path

g(x)− A(x)T λ = 0

λici(x) = µ

What does Newton’s method look like for this problem?

[
H(x)−

∑
λi 52 ci(x) −A(x)T

ΛA(x) C(x)

] [
∆x
∆λ

]
= −

[
g(x)− A(x)T λ
C(x)λ− µe

]
≡

[
r1
r2

]
.

Some notes:

13

• Later, we’ll use the notation p to denote the solution vector for this system
of equations.

• Note that the (1, 1) block is HL, the Hessian matrix for the Lagrangian, an
old friend.

• Recall that we got a similar system for linear constraints.

• Since x is temporarily fixed, we drop it from the notation.

We can take AT C−1 times the second equation and add it to the first, to
eliminate the ∆λ variables:

(HL + AT C−1ΛA)∆x = r1 + AT C−1r2 .

Note that C−1Λ = µ−1Λ2, so the matrix is

HL+µ−1AT Λ2A .

Again, just as in our barrier function discussion, we are taking a well-behaved
matrix HL and adding a piece that is growing without bound in k directions (k
= number of active constraints at the solution) as µ → 0.

We overcome it the same way, using a QR factorization and then changing to
that coordinate system. Review the old notes (Constrained Optimization,
Feasible Direction Methods, p. 2).

Convergence and complexity

We have now developed the basic algorithm: apply Newton’s method to the
equations defining the central path.

What we haven’t specified is

• how far to step along the Newton direction, and

• when and how fast we can reduce µ.

The answers to these questions are given in N&S 17.7.

An important assumption:

Convergence results for general nonlinear programming are not very strong, since
having multiple local solutions can be hindrances.

So we will assume that the function f(x) is convex, and the feasible set defined
by c(x) ≥ 0 is convex.

14

For convex programming problems such as these, the convergence results are
almost as nice as for linear programming.

Some ingredients to an algorithm

1. Choose a self-concordant barrier function. This overcomes the problems of
the 1960s algorithms and enables proof that the complexity is low.

• A convex function F of a single variable x is self-concordant on some
open convex set if, for all x in the set,

|F ′′′(x)| ≤ 2F ′′(x)3/2 .

Example:

F (x) = − log x

F ′′(x) =
1
x2

F ′′′(x) = − 2
x3

so − log x is self-concordant for x > 0. []

• A convex function F of several variables is self-concordant on some
domain if F (x(k)) →∞ as x(k) → boundary.

| 53 F (x)[h,h,h]| ≤ 2[hT 52 F (x)h]3/2

for all x in the interior of the domain and all h ∈ Rn, where
53F (x)[h,h,h] is a third-order directional derivative:

53F (x)[h1,h2,h3] ≡
∂3

∂t1∂t2∂t3
F (x+ t1h1 + t2h2 + t3h3)|t1=t2=t3=0 .

Example: -log(aT x− b) is self-concordant on the set defined by
aT x− b > 0, so the log barrier can be used for linear constraints. []

What do self-concordant functions do for us?

• They ensure that the second derivative is not changing too rapidly, so
a quadratic model works well and Newton’s method converges quickly.

• They ensure that as the barrier parameter changes, the solution does
not move too much, so the solution to the previous problem is a good
guess for the next problem.

2. If the Newton step is zero, then we know that we have reached the
solution. Thus we can measure the progress of the algorithm using the
norm of the Newton step. This number is called the Newton decrement
and is measured as

δ ≡ ‖p‖x

15

where
‖h‖2x = hT 52 F (x)h,

F is the barrier function, and x is the current iterate.

This is truly a norm if 52F (x) is positive definite for all x of interest,
which we assume from now on.

3. How far should we step in the Newton direction p? We take a damped
Newton step:

α =
1

1 + δ
.

This means that the step length is always bounded above by 1, and
converges to 1 as we approach the solution.

4. We’ll put the primal problem in a standard form

min
x,y

y

subject to

c(x) ≥ 0

y− f (x) ≥ 0

where y is a new scalar variable, making n + 1 variables in all.

5. We stop the iteration for a subproblem (a fixed value of µ) when we have a
feasible (x, y) and

δ ≤ κ

for some fixed positive number κ.

6. We update the barrier parameter µ by the rule

µ(k+1) =
(

1 +
γ√
ν

)
−1µ(k)

where γ is a fixed positive number and ν is defined on p.604.

This completely specifies the algorithm.

Now, what can we say about its speed?

The convergence result

This IPM can determine the solution to a convex programming problem, within a
specified tolerance, in polynomial time.

16

(This is Theorem 17.4 in N&S.)

The result also holds for linear programming as a special case.

Two special cases of convex programming

We’ll conclude our consideration of IPMs by discussing two special cases of
convex programs:

• second-order cone programs.

• semi-definite programs.

By using these formulations, we can solve some surprisingly complicated
problems.

Second-order cone programs

A second-order cone program (SOCP) is defined as

min
x

f T x

subject to
‖Aix + bi‖ ≤ cT

i x + di , i = 1, . . . ,m

Unquiz:

1. Show that linear programming is a special case of SOCP.

2. Show that this problem is an SOCP:

min
x

∑̀
i=1

‖Fix + gi‖2

3. Show that this problem is an SOCP:

min
x

max
i
‖Fix + gi‖2

We’ll come back to these last two problems when we discuss nonlinear least
squares.

[]

Many other problems can be written as SOCPs: for example,

min
x

∑ 1
aT

i x + bi

17

subject to linear inequality constraints, including the positivity of each
denominator.

For more information: See the article by Lobo, Vandenberghe, Boyd, and Lebret
in Linear Algebra and Its Applications 284 (1998) p.193 for this and other
examples from portfolio management, truss design, etc.

Semi-definite Programming

SOCPs are a special case of semi-definite programming problems. These
problems are of the form

min
X

C • X

subject to

A(X) = b

X ≥ 0

They look a lot like linear programming problems, but

• We define
C • X ≡ trace(CT X) =

∑
i,j

cijxij

where C and X are symmetric matrices.

• We define

A(X) ≡

 A1 • X
. . .

Am • X

• We define

X ≥ 0

to mean that X is symmetric positive semidefinite.

The dual problem:
max
y,S

bT y

subject to

m∑
i=1

yiAi + S = C

S ≥ 0

where Ai and S are symmetric matrices.

Examples:

18

• In control theory, structural optimization, and matrix theory, we frequently
need to minimize the maximum eigenvalue of a matrix

B(y) = T0 +
∑

i

yiTi

where the matrices Ti are given.

We can write this as
max
y,t

−t

subject to

tI− B(y) = S

S ≥ 0

• Some data fitting problems can also be cast as semidefinite programs. For
example,

min
x

max
i
| log(aT

i x)− log(bi)|

For more information on semidefinite programming: see

• Vandenberghe and Boyd, SIAM Review 38 (1996) p.49.

• Todd, Acta Numerica 10 (2001) p.515.

Final words

• When using IPMs, go for the most specific algorithm you can:

– Don’t use a semidefinite programming code if the problem is a SOCP.

– Don’t use a SOCP code on a linear programming problem.

• Although you are writing your own code as an exercise, writing a
production-quality code is quite difficult. Use available software rather than
relying on your own.

• The most important reference for IPMs:
Interior-Point Polynomial Algorithms in Convex Programming,
Y. Nesterov and A. Nemirovskii, SIAM Press, 1994.

19

