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Renegar’s approach to IPMs

James Renegar’s book, A Mathematical View of Interior-Point Methods in
Convex Optimization (SIAM 2001) provides a 45 page development of the
complexity theory for a particular IPM for LP.

Here we summarize the argument.

Our starting point

Our starting point in this discussion is your 10th homework problem.

———————————————————————————————–

10. In this problem, we establish various properties of the log function that will
help us in studying its use as a barrier.

10a. (8) Let f(x) = − log(x) for x > 0. Let f̂(x) = − log(ax + b) where
a, b > 0.

Prove the following properties:

• |f ′′′(x)| ≤ 2(f ′′(x))3/2.

• |f̂ ′′′(x)| ≤ 2(f̂ ′′(x))3/2.

This is one way to characterize a “self-concordant function”, but Renegar prefers
a different definition.

10b. Let

f(x) = −
n∑

j=1

log(xj).

As usual, let H(x) denote the Hessian of f .

The domain of f is Df = {x : x > 0}.

Define the x-inner product

〈u, v〉x = uT H(x)v,

so that
‖u‖2

x = uT H(x)u.
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Define the Diken ball of radius r with center x:

Bx(x, r) = {w : ‖w− x‖x < r}.

Note that this is a very elongated ellipsoid as we approach the boundary.

Prove the following properties:

• P1: For any x ∈ Df , Bx(x, 1) ⊂ Df .

• P2: If w ∈ Bx(x, 1) and if v 6= 0, then

1− ‖w− x‖x ≤
‖v‖y

‖v‖x
≤ 1

1− ‖w− x‖x
.

Hint: Show that ‖v‖2
y ≤ ‖v‖2

x maxj(xj/yj)2. Then show that
yj/xj > 1− |yj/xj − 1|.

———————————————————————————————–

The set of functions that define norms so that P1 and P2 are satisfied is called
the set of self-concordant functions, so you have shown that the log barrier is
self-concordant.

The Newton step

Let’s investigate Newton’s method using our x-inner product:

f(w) ≈ f(x) + g(x)T (w− x) +
1
2
(w− x)T H(x)(w− x)

= f(x) + 〈H(x)−1g(x),w− x〉x +
1
2
〈w− x,H(x)(w− x)〉

≡ f(x)− 〈n(x),w− x〉x +
1
2
‖w− x‖2

x

Note that n(x) = H(x)−1g(x) is the Newton step for minimizing the function.

LP via minimizing the log barrier

We can formulate an IPM for linear programming by following the path of
minimizers of the function

fη(x) = ηcT x + f(x)

as η →∞, where f(x) is defined in 10b.

Note the relationship between Renegar’s η and the parameter µ more commonly
used.

The Newton step is

nη(x) = −H(x)−1(ηc + g(x)) ≡ −(ηcx + gx(x)).
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Unquiz: Show that

nη̂(x) =
η̂

η
nη(x) + (

η̂

η
− 1)gx(x),

and therefore

‖nη̂(x)‖x ≤
η̂

η
‖nη(x)‖x + (

η̂

η
− 1)‖gx(x)‖x.

We will call this Equation 1.

Unquiz: Show that the jth component of the vector gx(x) = H(x)−1g(x) is xj ,
and therefore

‖gx(x)‖2
x = gx(x)T H(x)gx(x) = n.

This is Equation 2.

We will call ‖gx(x)‖2
x = n the complexity value of f .

A key convergence result for Newton’s method

Suppose ‖n(x)‖x < 1. This means that w = x + n(x) is inside Bx(x, 1) ⊂ Df

and therefore w > 0. We can take the full Newton step without hitting the
boundary of the feasible region.

Renegar shows (Thm 2.2.4) Equation 3:

‖n(w)‖w ≤
(

‖n(x)‖x

1− ‖n(x)‖x

)2

.

This doesn’t look very interesting until we realize that the size of the Newton
step is related to the size of the error ‖x− x(η)‖x, where x(η) is the minimizer of
fη. This is Equation 4:

‖w− x(η)‖x ≤
3‖n(x)‖2

x

(1− ‖n(x)‖x)3
,

valid when ‖n(x)‖x < 1/4. (Thm 2.2.5)

So if we can force ‖n(x)‖x to go to zero for our sequence of iterates, we force
convergence to the solution x(η).

Example: Suppose we start with a point x1 for which ‖n(x1)‖x1 < 1/4. Then

‖n(x2)‖x2 <

(
1/4

1− 1/4

)2

=
(

1
4
∗ 4

3

)2

=
1
9
,

‖n(x3)‖x3 <

(
1/9

1− 1/9

)2

=
(

1
9
∗ 9

8

)2

=
1
64

,

etc.

Stop and think how amazing Equation 4 is. We have a computable bound on the
error! Too bad this only works for self-concordant functions....
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But luckily,

... in this IPM, we are minimizing a sequence of self-concordant functions.

So we have to see if this convergence result for a single self-concordant function,
with η fixed, can be bootstrapped into a result for a sequence of self concordant
functions, with a sequence of η values.

Putting it all together
Equation 1:

‖nη̂(x)‖x ≤
η̂

η
‖nη(x)‖x + (

η̂

η
− 1)‖gx(x)‖x.

Equation 2 tells us that ‖gx(x)‖x =
√

n. Suppose

• ‖nη(x)‖x ≤ 1/9.

• η̂
η = 1 + 1/(8

√
n).

Then

‖nη̂(x)‖x ≤
(

1 +
1

8
√

n

)
∗ 1

9
+

1
8
√

n

√
n =

1
9

(
1 +

1
8
√

n

)
+

1
8
≡ γ.

Now use Equation 3: if w = x + n(x), then

‖n(w)‖w ≤
(

‖n(x)‖x

1− ‖n(x)‖x

)2

.

We write this for η̂:

‖nη̂(w)‖w ≤
(

‖nη̂(x)‖x

1− ‖nη̂(x)‖x

)2

≤
(

γ

1− γ

)2

Unquiz:

≤ 1
9
.

Thus, w is also close to the central path, and we can continue the process, again
increasing η by 1 + 1/(8

√
n).

Now we can calculate how many steps it takes to increase η from some initial
value η0 to some target value η∗:(

1 +
1

8
√

n

)k

η0 ≥ η∗
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when

k log
8
√

n + 1
8
√

n
≥ log(η∗/η0),

or

k ≥ log(η∗/η0)

log 8
√

n+1
8
√

n

.

It suffices to take k = d10
√

n log(η∗/η0)e. (This can be verified by direct
computation for n ≥ 1.)

How big does η∗ need to be?

Renegar’s goal is to find a feasible point x whose objective function value cT x is
close to optimal. Let xopt be a solution to the LP and let vopt = cT xopt.

Step 1: Get a bound for ‖cx‖x, where cx = H(x)−1c, and x is any feasible point.

Since Bx(x, 1) ⊂ Df , x− tcx ∈ Df if 0 ≤ t < 1/‖cx‖x. We note that

cT (x− tcx) = cT x− tcT cx

= cT x− tcT
x H(x)−1cx

= cT x− t‖cx‖2
x,

so
t‖cx‖2

x = cT x− cT (x− tcx) ≤ cT x− vopt.

Taking a limit as t → 1/‖cx‖x gives

‖cx‖x ≤ cT x− vopt.

Step 2: Notice that

cT w− vopt = cT x− vopt + 〈cx,w− x〉x,

so if x ∈ Df ,

cT w− vopt

cT x− vopt
= 1 +

〈cx,w− x〉x
cT x− vopt

≤ 1 +
〈cx,w− x〉x

‖cx‖x

≤ 1 +
‖cx‖x‖w− x‖x

‖cx‖x

= 1 + ‖w− x‖x.

Step 3: On the central path, Xs = (1/η)e, so the duality gap is n/η. We need
one further fact about the central path (equation 2.12 in Renegar), and I wish I
knew a short proof for it:

cT x(η)− vopt ≤
n

η
.
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But maybe I do. Let y(η) and z(η) be the dual variables corresponding to x(η).
Then

AT y(η) + z(η) = c,

so
x(η)T AT y(η) + x(η)T z(η) = x(η)T c,

or
y(η)T b +

n

η
= x(η)T c.

Also recall:

• The duality gap at the optimal solution is zero, so yT
optb = xT

optc,

• yopt is the maximizer among all dual feasible points.

Therefore
x(η)T c− xT

optc = y(η)T b− yT
optb +

n

η
≤ n

η
.

and we have our fact.

Step 4: From Step 2 we now see that

cT w− vopt ≤ (cT x(η)− vopt)(1 + ‖w− x(η)‖x(η))

≤ n

η
(1 + ‖w− x(η)‖x(η)).

Now use Equation 4 and the fact that ‖n(x)‖x ≤ 1/9:

‖w− x(η)‖x ≤
3‖n(x)‖2

x

(1− ‖n(x)‖x)3
≤ 3/81

(1− 1/9)3
≡ C.

Therefore,

cT w− vopt ≤
n(1 + C)

η
< ε

when η > n(1 + C)/ε.

Conclusion: The algorithm takes O(
√

n log(n/ε)) iterations.

What algorithm?

Unquiz: Write the resulting algorithm: given a point close enough to the central
path, take a Newton step, increase η as defined above, repeat until convergence.

The most onerous requirement: Finding an initial point close enough to the
central path!
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