
AMSC 607 / CMSC 764 Advanced Numerical Optimization
Fall 2006

UNIT 4: Special Topics
PART 2: Large-Scale Problems

Dianne P. O’Leary
c©2006

Large-Scale Optimization Problems

The plan:

• Reminders of what you already know about this

• The ubiquitous subproblem: the linear system in Newton’s method

• Solving linear systems

– Sparse iterative methods: preconditioning

– Sparse direct methods

• Handling sparsity in linear programming

– Sparsity in the Simplex algorithm

– Sparsity in IPMs for LP

Warning: These notes are a bit sketchy. So ask questions if they don’t make
sense!

Reminders of what you already know about this

We’ll consider a problem with n variables to be large scale if we cannot afford to
store a matrix of size n× n unless we can take advantage of its sparsity.

Large-Scale unconstrained optimization

We have already studied a lot of algorithms for handling large-scale
unconstrained optimization problems:

• nonlinear conjugate gradient algorithm.

• truncated Newton.

• sparse quasi-Newton.

The ubiquitous subproblem

1

Note that whether we solve constrained or unconstrained problems, whenever we
employ Newton’s method, we obtain a system of linear equations to solve.

So we need to exploit sparsity in the matrix of this equation.

Solving linear systems

Sparse iterative methods: preconditioning

We already know a pretty good way to solve sparse linear equations: the (linear)
conjugate gradient algorithm.

The conjugate gradient method for linear systems

Suppose we want to solve the linear system

Ax = b

where A is a symmetric positive definite matrix.

Recall that we only need the matrix in forming matrix-vector products; in
contrast to direct methods, we never modify the matrix.

1. Let x(0) be an initial guess.
Let r(0) = b−Ax(0) and p(0) =Mr(0).

2. For k = 0, 1, 2, . . . , until convergence,

(a) Compute the search parameter αk and the new iterate and residual

αk =
r(k)TMr(k)

p(k)TAp(k)

x(k+1) = x(k) + αkp
(k) ,

r(k+1) = r(k) − αkAp
(k) ,

(b) Compute the new search direction

βk =
r(k+1)T

Mr(k+1)

r(k)TMr(k)
,

p(k+1) = Mr(k+1) + βkp
(k) ,

2

End For.

How much work?

So the work-per-iteration is quite low for cg:
O(n), if matrix-vector product by A and by M is O(n).

But we must ensure that we don’t take a lot of steps.

In particular, if n is large, then knowing that cg terminates with the exact
solution in n steps is no help at all.

We need a good approximation in a very small number of iterations.

How can we achieve this?

Choosing preconditioners

• For fast iterations, we want to be able to apply M very quickly .

• To make the number of iterations small, we want M to be an approximate
inverse of A.

An approximate inverse is effective if the eigenvalues of MA fall into a small
number of small clusters

In practice, we often aim for
MA = I + (a matrix of small rank) + (a matrix of small norm).

Some common choices of M−1

• M−1 = the diagonal of A.

• M−1 = a banded piece of A.

• M−1 = an incomplete factorization of A, leaving out inconvenient
elements.

3

• M−1 = a related matrix; e.g., if A is a discretization of a differential
operator, M might be a discretization of a related operator that is easier to
solve.

• M might be the matrix B from our favorite stationary iterative method
(SIM).

A spectrum

We see that there is an entire spectrum of methods here, ranging from

• M = I, giving a purely iterative method, to

• M = A−1, giving a direct method.

We need to choose an efficient alternative from this range of options.

Before we leave iterative methods ...

What if A fails to be symmetric and positive definite?

There are still preconditioned iterative methods, relatives of cg, that can be
applied. Two examples:

• Symmlq of Paige and Saunders, if A is symmetric but not positive definite.

• Gmres if A is not symmetric.

References:

• Anne Greenbaum, Iterative Methods for Solving Linear Systems, SIAM
Press, 1997.

• R. Barrett et al, Templates for the Solution of Linear Systems, SIAM,
1995, with implementations at Netlib.

Sparse direct methods

A motivating Unquiz:

4

• Consider the Cholesky (or LU) factors of the matrix

















x x x x x x

x x 0 0 0 0
x 0 x 0 0 0
x 0 0 x 0 0
x 0 0 0 x 0
x 0 0 0 0 x

















.

• Now suppose we reorder the rows from bottom to top, and also reorder the
columns from last to first:

















x 0 0 0 0 x

0 x 0 0 0 x

0 0 x 0 0 x

0 0 0 x 0 x

0 0 0 0 x x

x x x x x x

















.

Does this have any effect on the number of nonzeros in the Cholesky
factors?

• If you could compute the QR factors of this second matrix, you would find
that they have less sparsity than the LU.

• Also note that the inverse of each of these sparse matrices is totally full.

• If we replace one column of this matrix by another (as we would in the
simplex method), the sparsity of the triangular factors can change rather
completely!

• What happens if the main diagonal entries are all of order 10−5 while the
entries in the last row are of order 1?

[]

Some basic conclusions:

• The order of the equations and unknowns is crucial to maintaining sparsity
in the factors.

• Unfortunately, if the matrix is not symmetric positive definite, then the
order is also crucial to the stability of the triangular factorization.

• Never try to store the inverse matrix on a sparse problem.

• QR is generally more dense than LU, but reordering can be done solely to
maintain sparsity, since stability is guaranteed.

5

• IPMs have the great advantage that the sparsity of the matrix stays the
same from iteration to iteration. The simplex algorithm does not have this
nice property.

Let’s think about the simplex algorithm first, and then consider a way to solve
IPMs.

Handling sparsity in linear programming

Sparsity in the Simplex algorithm

Standard programs ...

Many standard algorithms for the simplex method update the LU factors of the
basis.

They do this by a variant of the Sherman-Morrison formula, equivalent to no
pivoting for stability.

If they detect trouble (iterative refinement fails to converge), they throw away
the current factorization and recompute. This is called reinversion.

This way of doing things is popular but not what a numerical analyst would want.

More enlightened programs...

More enlightened programmers update the LU factors of the basis using pivoting,
even if this hurts sparsity some.

References:

• P. E. Gill, G. H. Golub, W. Murray, and M.A. Saunders, ”Methods for
Modifying Matrix Factorizations”, Mathematics of Computation 28 (1974)
505–535

• P. E. Gill, W. Murray, and M. H. Wright, Practical Optimization, Academic
Press, London and New York, 1981, Chapter 4.

Sparsity in IPMs for LP

6

Reference: Weichung Wang and Dianne P. O’Leary, “Adaptive Use of Iterative
Methods in Predictor-Corrector Interior Point Methods for Linear Programming,”
Numerical Algorithms 25 (2000) 387-406.

Problem: How can we effectively use iterative methods in IPMs?

The linear programming problem

minimize cTx

subject to Ax = b,

x ≥ 0,

c, x ∈ Rn

b ∈ Rm,

A ∈ Rm×n, rank m, m < n.

The Foundation of Interior Point Methods

Barrier problem

min cTx− µ
∑

lnxi, Ax = b.

Soln x(µ) converges to lp solution as µ→ 0.

Lagrangian:

f(x, y) = cTx− µ
∑

lnxi + yT (b−Ax)

Setting derivatives to zero

Ax = b

c− µX−1e−AT y = 0.

Now let z = µX−1e (> 0).

The central path (barrier trajectory) is defined by

XZe− µe = 0,

Ax− b = 0,

AT y + z − c = 0.

7

So at each iteration we want to solve the Newton system

Newton’s method:




Z 0 X

A 0 0
0 AT I









∆x
∆y
∆z



 =





µe−XZe

b−Ax
c−AT y − z



 .

Eliminating ∆z gives the KKT (Karush-Kuhn-Tucker) system:

[

X−1Z AT

A 0

] [

∆x
−∆y

]

=

[

µX−1e− c+AT y

b−Ax

]

=

[

s1
s2

]

And eliminating ∆x gives the normal equations,

(AD2AT)∆y = s2 −AD
2s1.

with D2 = Z−1X.

• Normal eqns matrix is positive definite and symmetric, smaller (m×m),
and more dense.

• KKT matrix is symmetric indefinite and more sparse.

Previous Use of Iterative Methods

Several for KKT system.

For normal equations:

• Gill, Murray, Saunders, Tomlin, Wright 1986

• Goldfarb and Mehrotra 1988

• Karmarkar and Ramakrishnan 1991

• Mehrotra 1992

• Carpenter and Shanno 1993

• Nash and Sofer 1993

• Portugal, Resende, Veiga, and Júdice 1994

• Mehrotra and Wang 1995

8

Limited success.

• Approximate solutions allowed early in the Newton iterations but can fail
when iterates are near the boundary.

• D changes quite rapidly and becomes highly ill-conditioned in the final
iterations.

Characteristics of Direct Methods

Assume that the columns of A have been permuted to improve sparsity in the
Cholesky factor of AD2AT .

• Direct methods rely on sparse Cholesky factorization of AD2AT as LPLT ,
where L is a unit lower triangular matrix and P is a diagonal matrix.

• Iterative refinement used as necessary.

• Dense columns handled separately.

Disadvantages:

• Failure of iterative refinement if AD2AT is very ill-conditioned.

• Fill-in.

• Form and refactor AD2AT each Newton iteration.

Characteristics of Iterative Methods

For definiteness, preconditioned conjugate gradient method.

Work per PCG iteration:

• one product of AD2AT with a vector,

• one solution of a linear system involving preconditioner,

• several vector operations.

Advantages:

• somewhat better stability,

9

• low storage,

• accuracy requirements in the beginning phase quite low.

Crucial issue: find an effective preconditioner.

The Preconditioners

1 : Cholesky factorization.

2 : QR decomposition. (mathematically identical)

3 : Cholesky factorization of sparse part.

A = [AS , AD], ASD
2
SA

T
S = LSPSL

T
S

Preconditioned matrix is the identity plus a rank k

4 : Incomplete factorization.

5 : Updated Cholesky factorization.

AD̂2AT = AD2AT +A∆DAT

= LPLT +

n
∑

i=1

∆diiaia
T
i

The Interior Point Algorithm

Initialize k ← 1; µ0 > 0; x0, y0, z0 > 0.

while (not convergent)

10

Solve the normal equations using a direct or iterative solver.

Update the variables:

xk+1 ← xk + αp∆x;

yk+1 ← yk + αd∆y;

zk+1 ← zk + αd∆z.

Choose µk+1 < µk.

Set k ← k + 1.

end while

The Preconditioned CG Solver

Determine the preconditioner:

if (prev cost > .8 × drct cost) or (drct cost < pred cost)
then

Form the matrix AD2AT .
Factor AD2AT to get the preconditioner.

else

Perform updt nmbr rank-one updates to get the new
preconditioner.

end if

Solve the linear system:

if (the diagonal of the preconditioner is singular)

then use the direct method.

else Iterate the PCG method:

pcg itn ← 0
while (not convergent)

Execute a PCG iteration.
if (pcg itn > max pcg itn) then

Factor AD2AT to reinitialize the
preconditioner.
Restart the PCG iteration.

end if

11

end while

end if

Determining the Preconditioner

Determine whether to update the current preconditioner or refactor.

Base the decision on the cost of the preceding iteration, including the cost of
updates.

prev cost = (updt cost× updt nmbr)

+ (pcgi cost× pcgi nmbr) + (overhead),

• If previous cost was high, we reinitialize the preconditioner.

prev cost > .8× drct cost.

• If previous cost was not high, base the decision on a prediction of the cost
of the current iteration:

Fit a straight line to the number of iterations required to determine two
preceding search directions.

pred cost = (updt cost× updt nmbr)

+ (pcgi cost× predi nmbr).

The Adaptive Updating Strategy

Update the Cholesky factors using the updt nbmr largest outer product matrices
as determined by |∆dii|.

Change the number of Cholesky updates adaptively over the course of the
algorithm in order to improve efficiency.

The PCG Convergence Test

We start from an initial guess of zero, and iterate until the computed residual
norm is less than εpcg times the norm of the right-hand side.

εpcg =

{

10−8, if relgap > 10−2;

10−8 × (relgap)
1

2 , otherwise,

12

2 20 40 60 80 100 118
0

16
21

40

60

80

100

120

140

160

169

180
Problem: pds−10

Outer iteration

N
um

be
r

of
 P

C
G

 it
er

at
io

ns

Reinit. preconditioner
Updt. preconditioner
Max PCG itnallowed
lrg/sml

Figure 1: Number of PCG iterations for the adaptive algorithm

Numerical Results

We modified the code OB1-R to adaptively choose the linear system solver, and
we performed numerical experiments comparing the results of this modified
version of OB1-R to the standard OB1-R code of Lustig, Marsten, and Shanno.

Computational Results for the Larger Test Problems from
NETLIB.

13

1 11 20 31 40 60 80 100 119
0

50

100
114

143

200

250

300

350

400
Problem: pds−10

Outer iteration

T
im

e
(s

ec
on

ds
)

Use direct solver
Estimated direct solver cost
With reinitialized preconditioner
With updated preconditioner

Figure 2: Timing performance for the adaptive algorithm

14

Iter. Time
Problem OB1-R Adp Diff
80bau3b 78 46.15 48.32 -2
d2q06c 55 257.13 253.25 4
d6cube 77-78 113.90 100.52 13
degen3 30 66.22 65.57 1
dfl001 98 19844.37 16644.35 3200

fit2d 54 46.80 47.85 -1
greenbea 52 52.03 54.30 -2
greenbeb 74 69.15 72.12 -3
maros-r7 29 1952.93 1414.20 539
pilot 77 485.08 441.42 44

pilot87 82 1948.82 1584.77 364
stocfor3 87 142.22 157.28 -15
truss 30 19.55 22.22 -3
wood1p 18 12.95 13.77 -1
woodw 37 25.30 27.65 -2

The Network Problems.

LP size & nonzeros Density
Problem Row/Node Col/Arc Nzros AAT L

NET0102 999 2000 3999 .00 .08
NET0104 1000 4000 8000 .01 .23
NET0108 1000 8000 16000 .02 .41
NET0116 1000 16000 32000 .03 .56

NET0408 4000 8000 16000 .00 .07
NET0416 4000 16000 32000 .00 .22

Iter. Time
Problem OB1-R Adp Diff
NET0102 43 - 40 34.02 32.58 1
NET0104 41 - 41 171.23 135.52 36
NET0108 43 - 43 461.05 335.58 125
NET0116 58 - 59 1005.77 718.75 287

NET0408 43 - 42 2099.43 1371.17 728
NET0416 53 - 53 16674.13 9265.85 7408

Some advantages of this algorithm

15

• Decisions have been automated:

– direct or iterative solver,

– reinitialize or update the preconditioner,

– how many updates to apply.

• Performance of interior point algorithms on large sparse problems has been
enhanced.

• Our preconditioning strategy is based on recomputing or updating the
previous preconditioner.

• Open questions:

– effective termination criteria for the iterative method.

– a block implementation of the matrix updating and downdating to
reduce overhead.

– the end game.

Final Words

• For more information about iterative methods for solving linear systems,
take AMSC/CMSC 666.

• For more information about direct methods for sparse linear systems, take
AMSC 600 / CMSC 760.

• The Wang-O’Leary idea of tuning the algorithm to the architecture has
been used (independently) in other contexts:

– FFTW (Matteo Frigo and Steven G. Johnson)

– Atlas dense linear system software (Jack Dongarra)

16

