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Unconstrained Optimization: Alternatives to Newton’s method

Reference: N&S Chapters 11 and 12.

The plan:

Recall that Newton’s method is very fast (if it converges) but it requires the
gradient and the Hessian matrix to be evaluated at each iteration.

Next we develop some alternatives to Newton’s method:

• Some alternatives that avoid calculation of the Hessian:

– Quasi-Newton methods

– finite-difference Newton methods

• Algorithms that avoid calculation of the Hessian and storage of any matrix:

– steepest descent

– nonlinear conjugate gradient methods

– limited-memory Quasi-Newton methods

– truncated Newton methods

• Technology that helps in the calculation of the Hessian: automated
differentiation.

• Methods that require no derivatives

– finite difference methods

– Nelder&Meade simplex

– pattern search

Methods that require only first derivatives

If the Hessian is unavailable...

Notation:

• H = Hessian matrix.

• B is its approximation.
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• C is the approximation to H−1.

Problem: Solve
min
x

f(x)

when g(x) can be computed, but not H(x).

Two options:

• Estimate H(x) using finite differences: discrete Newton. This can work
well.

• Approximate H(x) using Quasi-Newton methods. (Also called variable
metric.)

No Hessian Method 1: Quasi-Newton Method

Quasi-Newton methods could be the basis for a full course; there is a textbook
by Dennis and Schnabel. We’ll just hit the high points.

Reference: SIAM Rev 21 1979 443-459.
Broyden’s chapter in Murray’s book.

The idea behind Quasi-Newton methods

The Newton step:
p = −H−1g

(H and g evaluated at x(k).)

The Quasi-Newton step: accumulate an approximation

B(k) ≈ H(x(k))

using free information!

What information comes free?

At step k, we know g(x(k)) and we compute g(x(k+1)) where
x(k+1) = x(k) + s(k).

H(x(k)) satisfies

H(k)s(k) = lim
h→0

g(x(k) + hs(k))− g(x(k))
h

,
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In fact, if f is quadratic, then

H(k)s(k) = g(x(k) + s(k))− g(x(k))

We’ll ask the same property of our approximation B(k+1) and call this the secant
equation:

B(k+1)s(k) = g(k+1) − g(k) .

So we know how we want B(k+1) to behave in the direction g(k+1) − g(k), and
we have no new information in any other direction, so we could require

B(k+1)v = B(k)v, if vT s(k) = 0 .

There is a unique matrix B(k+1) that satisfies the secant equation and the
no-change conditions. It is called Broyden’s good method:

B(k+1) = B(k) − (B(k)s(k) − y(k))
s(k)T

s(k)T s(k)

where

s(k) = x(k+1) − x(k) ,

y(k) = g(k+1) − g(k) .

Unquiz: Verify that Broyden’s good method satisfies the secant equation and the
no-change conditions. []

Notes: For Broyden’s good method,

• B(k+1) is formed from B(k) by adding a rank-one matrix.

• B(k+1) is not necessarily symmetric, even if B(k) is. This is undesirable
since we know H is symmetric.

In order to regain symmetry, we need to sacrifice the no-change conditions.
Instead, we formulate the problem in a least change sense:

min
B(k+1)

‖B(k+1) − B(k)‖

subject to the secant condition

B(k+1)s(k) = y(k) .
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The solution (again) depends on the choice of norm.

A refinement to this idea: We can impose other constraints, too.

• Perhaps we know that H is sparse, and we want B to have the same
structure.

• We might want to keep B(k+1) positive definite.

Some history

An alphabet soup of algorithms:

• DFP: Davidon 1959, Fletcher-Powell 1963

• BFGS: Broyden, Fletcher, Goldfarb, Shanno 1970

• Broyden’s good method and Broyden’s bad

• ...

An example: DFP

Still one of the most popular because it has many desirable properties.

The choice of norm in the minimization problem:

‖W1/2(B(k+1) − B(k))W1/2‖F

where W−1 is a symmetric positive definite matrix satisfying the secant
condition. (In fact, the solution is independent of the choice of such W .)

The resulting update formula: We accumulate an approximation C to H−1 rather
than to H.

C(k+1) = C(k) − C(k)y(k)y(k)T C(k)

y(k)T C(k)y(k)
+

s(k)s(k)T

y(k)T s(k)

An example: BFGS

The most popular method, and the one discussed in the text.

The choice of norm in the minimization problem is

‖W1/2(C(k+1) − C(k))W1/2‖F
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where W is a symmetric positive definite matrix satisfying the secant condition.
(In fact, the solution is independent of the choice of such W .)

Note that this method is in some sense dual to DFP.

The resulting update formula:

B(k+1) = B(k) − B(k)s(k)s(k)T B(k)

s(k)T B(k)s(k)
+

y(k)y(k)T

y(k)T s(k)

Use of Quasi-Newton methods

The algorithm looks very similar to Newton’s method:

Until x(k) is a good enough solution,

Compute a search direction p(k) from p(k) = −C(k)g(k) (or solve

B(k)p(k) = −g(k)).
Set x(k+1) = x(k) + αkp(k), where αk satisfies the Goldstein-Armijo
or Wolfe linesearch conditions.
Form the updated matrix C(k+1) (or B(k+1)).
Increment k.

Initialization: Now need to initialize B(0) (or C(0)) as well as x(0). Take B(0) = I
or some better guess.

Unanswered questions

• Near a stationary point, H−1 does not exist. How do we keep C from
deteriorating?

• What happens if H is indefinite?

• How do we check optimality?

The first two questions concern stability of the algorithm.

Answering concerns about stability

Our dilemma:

• Updating C can be hazardous when H is close to singular.
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• Updating B leaves the problem of solving a linear system at each iteration
to determine the search direction.

An alternative: Update a factorization of B. This makes it easy to enforce
symmetry and positive definiteness.

Example: BFGS This algorithm updates the approximate Hessian B. There are
two economical alternatives for solving the necessary linear systems

1. Updating the inverse.

B(k+1) = B(k) − B(k)s(k)s(k)T B(k)

s(k)T B(k)s(k)
+

y(k)y(k)T

y(k)T s(k)

so, by the Sherman-Morrison-Woodbury formula (N&S p643) for
computing inverses of matrices updated by a rank-2 correction, we can
obtain

B(k+1)−1 = B(k)−1 +
y(k)T (B(k)−1y(k) + s(k))

(y(k)T s(k))2
s(k)s(k)T

−s(k)y(k)T B(k)−1 + B(k)−1y(k)s(k)T

(y(k)T s(k))
.

2. Updating a factorization. If we have a Cholesky factorization of B(k) as

B(k) = L(k)D(k)L(k)T , then we want B(k+1) = L(k+1)D(k+1)L(k+1)T
. This

can be formed by formulas analogous to the Sherman-Morrison-Woodbury
formula, and we can use the ideas in the previous set of notes to modify it
to preserve positive definiteness. The algorithms are O(n2). Details are
given, for example, in a paper by Gill, Golub, Murray, and Saunders, Math.
Comp. 28 (1974) pp.505-535, and in some textbooks.

Answering concerns about convergence

It is an unfortunate fact that software packages do not check the second-order
optimality conditions. They just return a point at which the gradient is
approximately zero and they can find no descent direction or direction of
negative curvature.

Desirable properties
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1. ‖H(k) − B(k)‖ should decrease as k increases. At least we would like this
for quadratics.

This makes the method more Newton-like as the iteration proceeds and
prevents false convergence.

For non-quadratics, we usually settle for bounded deterioration:

‖H(x∗)− B(k+1)‖ ≤ ‖H(x∗)− B(k)‖+ κ

k∑
j=1

‖p(j)‖

where κ is some constant. This property helps in the proof of local
convergence.

2. The update should not fail:

• no division by zero.

• change should be nonnegligible.

Unquiz: Show that the DFP update can be written as

C(k+1) = C(k)M(k)

for some matrix M(k). []

This property holds for all of the Quasi-Newton formulas, and therefore if
B(k) ever becomes singular, all future Bs remain singular. This is very bad:
we have a direction a so that aT C(k) = 0, so aT C(k+1) = 0 and we never
search in the direction a.

In practice, we reset B to I every 2n iterations to avoid problems.

Note: When we have linear equality constraints, this singular behavior can
be used to our advantage, to avoid walking off a constraint.

3. The algorithm should behave well on quadratic functions.

Newton on quadratics: terminates in 1 step.
Most Quasi-Newton formulas have n- or n + 1-step termination.

Example: Huang’s family of updates, also called the Broyden class, is
defined near the bottom of p. 355 of N&S. It includes DFP and BFGS.
Members of Huang’s family have B(n+1) = H. (Intermediate Bs differ for
the different methods, though.)
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4. We should have hereditary positive definiteness. Many algorithms have this
property.

Example: Symmetric rank-1 update (N&S p. 351) Let B(k) = RT R be
nonsingular. Then

B(k+1) = B(k) +
(y(k) − B(k)s(k))(y(k) − B(k)s(k))T

(y(k) − B(k)s(k))T s(k)

= RT

(
I +

(ȳ− s̄)(ȳ− s̄)T

(y(k) − B(k)s(k))T s(k)

)
R

≡ RT WR

where ȳ = R−T y(k) and s̄ = Rs(k).

How do we know that this is positive definite if B(k) is?

The matrix W has an eigenvalue

1 +
(ȳ− s̄)T (ȳ− s̄)

(y(k) − B(k)s(k))T s(k)

with eigenvector ȳ− s̄. Its other n− 1 eigenvalues are all ones, with
eigenvectors perpendicular to ȳ− s̄.

Now B(k+1) is positive definite if and only if W is, so we need that
plum-colored eigenvalue to be positive. This is true, for example, if the
denominator is positive, which means that

(y(k) − B(k)s(k))T s(k) = (y(k) + g(k))T s(k) = g(k+1)T
s(k) > 0 .

And this is true if we overshoot on each line search. []

Example: There is a proof of hereditary positive definiteness for BFGS,
when the line search is accurate enough, in N&S, p.354. []

Important theoretical property

Dixon 1971: All algorithms in the Huang family (including DFP and BFGS)
produce identical iterates on quadratics when started at the same point with the
same H, using exact line search and assuming that H remains nonsingular.

Practical significance....
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Convergence rate

All of these methods have an n-, 2n-, or (n + 2)-step quadratic convergence rate
if the line search is exact. An n-step quadratic convergence rate, for example,
means that

lim
k→∞

‖x(k+n) − x∗‖
‖x(k) − x∗‖2

< ∞ .

Weakening the line search to a Wolfe or Goldstein-Armijo search generally gives
superlinear convergence. See N&S p. 356 for a typical result for the Huang
family.

No Hessian Method 2: Finite-difference Newton Method

Finite-difference Newton methods (N&S 11.4.1)

One of our major time-sinks in using Newton’s method is to evaluate the Hessian
matrix, with entries

hij =
∂gi

∂xj
.

One way to avoid these evaluations is to approximate the entries:

hij ≈
gi(x + τej)− gi(x)

τ

where τ is a small number and ej is the jth unit vector.

Cost: n extra gradient evaluations per iteration. Sometimes this is less than the
cost of the Hessian evaluation, but sometimes it is more.

Practical matters:

• How to choose τ .

– If τ is large, the approximation is poor and we have large truncation
error.

– If τ is small, then there is cancellation error in forming the numerator
of the approximation, so we have large round-off error.

Usually we try to balance the two errors by choosing τ to make them
approximately equal.

• If the problem is poorly scaled, we may need a different τ for each j.
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Convergence rate

There are theorems that say that if we choose τ carefully enough, we can get
superlinear convergence.

Methods that require only first derivatives and store no matrices

Sometimes problems are too big to allow n2 storage space for the Hessian matrix.

Some alternatives:

• steepest descent

• nonlinear conjugate gradient

• limited memory Quasi-Newton

• truncated Newton

Low-storage Method 1: Steepest Descent N&S 11.2

Back to that foggy mountain

If we walk in the direction of steepest descent until we stop going downhill, we
clearly are guaranteed to get to a local minimizer.

The trouble is that the algorithm is terribly slow. See the examples in N&S.

If we apply steepest descent to a quadratic function of n variables, then after
many steps, the algorithm takes alternate steps approximating two directions:
those corresponding to the eigenvectors of the smallest and the largest
eigenvalues of the Hessian matrix.

The convergence rate on quadratics is linear:

f(x(k+1))− f(x∗) ≤
(

κ− 1
κ + 1

)2

(f(x(k))− f(x∗))

where κ is the ratio of the largest to the smallest eigenvalue of H.

See N&S p.342 for proof.

If steepest descent is applied to non-quadratic functions, using a good line
search, then convergence is local and linear.
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Advantages of steepest descent:

• No need to evaluate the 2nd derivative or to solve a linear system.

• Low storage: no matrices.

Disadvantages of steepest descent:

• Very slow.

• Very, very slow.

Use nonlinear conjugate gradients instead. Same advantages but better
convergence.

Low-storage Method 2: Nonlinear conjugate gradient methods (N&S 12.4)

Linear conjugate gradients

The conjugate gradient method (Hestenes&Stiefel, 1952) is a method for solving
linear systems of equations Ax = b when A is symmetric and positive definite.

There are many ways to understand it, but for us, we think of it as minimizing
the function

f(x) =
1
2
xT Ax− xT b

which has gradient g(x) = Ax− b. So a minimizer of f is a solution to our linear
system.

We could use steepest descent, but we want something faster.

See the notes on the linear algorithm to understand how conjugate gradient
combines the concepts of descent and conjugate directions.

Summary of the linear conjugate gradient algorithm

Given x(0), form −g(x(0)) = b− Ax(0) = p(0).

For k = 0, 1, . . ., until convergence,

Use a line search to determine x(k+1) = x(k) + α(k)p(k).

Set p(k+1) = −g(x(k+1)) + β(k+1)p(k).
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Linear conjugate gradients in more detail

Purpose: To solve Ax = b when A is symmetric and positive definite. The only
access to A is through a function call that returns the product of A with any
given vector.

Given x(0), form r(0) = b− Ax(0) and s(0) = −g(x(0)) (Note that r is the
negative gradient of f(x) = 1/2 xT Ax− xT b, and I am using s for the search
direction to avoid confusion later). For k = 0, 1, . . ., until convergence,

Let z(k) = As(k).
Let the step length be α(k) = (r(k)T s(k))/(s(k)T z(k)).
Let x(k+1) = x(k) + α(k)s(k).
Update the negative gradient r(k+1) = r(k) − α(k)z(k).

Let β(k+1) = (r(k+1)T
r(k+1))/(r(k)T r(k)).

Let the new search direction be s(k+1) = r(k+1) + β(k+1)s(k).

The nonlinear conjugate gradient algorithm

Given x(0), form p(0) = −g(x(0)).

For k = 0, 1, . . ., until convergence,

Use a line search to determine x(k+1) = x(k) + α(k)p(k).

Set p(k+1) = −g(x(k+1)) + β(k+1)p(k).

The parameter α is determined by a line search.

The parameter β has many definitions that are equivalent for the linear problem
but different when we minimize nonlinear functions:

β(k+1) = g(k+1)T g(k+1)

g(k)T g(k) Fletcher-Reeves

β(k+1) = y(k)T g(k+1)

g(k)T g(k) Polak-Ribiére

β(k+1) = y(k)T g(k+1)

y(k)T p(k) Hestenes-Stiefel

Good theorems have been proven about convergence of Fletcher- Reeves, but
Polak-Ribiére is generally better performing.
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Note that this method stores no matrix. We only need to remember a few
vectors at a time, so it can be used for problems in which there are thousands or
millions of variables.

The convergence rate is linear, unless the function has special properties, but
generally faster than steepest descent: for quadratics, the rate is

f(x(k+1))− f(x∗) ≤
(√

κ− 1√
κ + 1

)2

(f(x(k))− f(x∗))

where κ is the ratio of the largest to the smallest eigenvalue of H.

An important property of conjugate gradients:

If we run cg on a quadratic function, then it generates the same iterates as the
Huang family of Quasi-Newton algorithms.

Low-storage Method 3: Limited-memory Quasi-Newton methods (N&S 12.5)

Consider as an example the DFP formula

C(k+1) = C(k) − C(k)y(k)y(k)T C(k)

y(k)T C(k)y(k)
+

s(k)s(k)T

y(k)T s(k)

We’ve thought of this as a matrix stored in memory. Let’s develop a different
view.

How do we use this matrix? All we need to do is to multiply vectors, such as the
gradient g(k), by it.

Suppose we know C(0), which is perhaps a diagonal matrix that takes only n
storage locations, so we can easily multiply any vector by C(0).

Also suppose that we have stored the vectors s(j) and y(j), j = 0, . . . , k − 1.

Consider these formulas:

C(1)z = C(0)z− y(0)T C(0)z

y(0)T C(0)y(0)
C(0)y(0)+

s(0)T z

y(0)T s(0)
s(0) .

C(2)z = C(1)z− y(1)T C(1)z

y(1)T C(1)y(1)
C(1)y(1)+

s(1)T z

y(1)T s(1)
s(1) .

To compute our search direction C(k)g we start by forming C(0)g and C(0)y(j),
j = 0, . . . , k − 1.
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Next, we form C(1)g and C(1)y(j), j = 1, . . . , k − 1, using the multiplication
formula above (in red) applied to each vector.

Next, we form C(2)g and C(2)y(j), j = 2, . . . , k − 1, using the multiplication
formula above (in plum) applied to each vector.

We continue for k steps. What have we accomplished? Recall that C(0) is

usually chosen to be simple, like a diagonal matrix. Therefore, instead of taking
n2 storage locations for C(k), we only need (2k + 1)n. We also need some
temporary storage space to compute the k + 2 matrix-vector products, but you
can rearrange the order of computations to reduce this.

The idea behind limited memory quasi-Newton algorithms is to continue this
process ` steps, until we don’t want to store any more vectors. Then, we start
storing the new vectors in place of the oldest ones that we remember, always
keeping the ` most recent updates and C(0).

For various more refined strategies, see reference 4 at the end of these notes.

Low-storage Method 4: Truncated Newton methods (N&S 12.3)

Also called Newton-CG.

Again we return to the way the Hessian approximation is used.

If we have the Hessian matrix, how do we use it? Newton’s method determines
the search direction by solving the linear system

Hp = −g

We usually think of solving this by factoring H and then using forward- and
back- substitution.

But if H is large, this might be too expensive, and we might choose to use an
iterative method, like linear conjugate gradients, to solve the system.

If we do, How do we use the Hessian? All we need to do is to multiply a vector
by it at each step of the algorithm.

Now Taylor series tells us that, if v is a vector of length 1, then

g(x + hv) = g(x) + hH(x)v + O(h2) ,
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so

H(x)v =
g(x + hv)− g(x)

h
+ O(h) .

Therefore, we can get an O(h) approximation of the product of the Hessian with
an arbitrary vector by taking a finite difference approximation to the change in
the gradient in that direction.

This is akin to the finite-difference Newton method, but much neater, because
we only evaluate the finite difference in directions in which we need it.

The Truncated Newton strategy

So we’ll compute an approximation to the Newton direction p = −H−1g by
solving the linear system Hp = −g using the conjugate gradient method,
computing approximate matrix-vector products by extra evaluations of the
gradient.

We hope to obtain a superlinear convergence rate, so we need, by the theorem of
the previous set of notes (or N&S p304), that

‖our direction− Newton direction‖
‖our direction‖

→ 0

as the iteration number →∞.

We ensure this by

• taking enough iterations of conjugate gradient to get a small residual to
the linear system.

• choosing h in the approximation carefully, so that the matrix- vector
products are accurate enough.

Interesting proof in the problems in N&S.

Automated differentiation

Automated differentiation (N&S 11.4.2)

The most tedious and error-prone part of nonlinear optimization: writing code for
derivatives.

An alternative: let the computer do it.

Automatic differentiation is an old idea:
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• The forward (bottom-up) algorithm was proposed in the 1970s.

• The backward (top-down) algorithm was proposed in the 1980s.

• Reliable software (Adifor, etc., by Bischof, Griewank, ...) was developed
in the 1990s.

For clarity, we’ll discuss first derivatives.

Forward mode
Example: Let f(x, y) = (sin(x/y) + x/y − exp(y)) ∗ (x/y − exp(y)).

Consider how this function would be evaluated on a computer. The operations
form a tree:

Now imagine that at each node of that tree we carry not just the function value
but also the two partial derivatives. The chain rule from calculus gives us the
means to evaluate a partial derivative for a cost proportional to that for
evaluating the function. Start at the bottom.

Costs for the gradient:

• Time = O(n) * function evaluation time.

• Space = O(n).

[]

Backward mode

Example: (See N&S for a different example.) Let w(z, y) = −y/(z ∗ z ∗ z).

For ease of notation, for a variable q, let q̄ ≡ ∂w/∂q. (This is sometimes known
as the adjoint.)

We want to compute z̄ and ȳ to obtain the gradient of w.

We accumulate these derivatives recursively, so initially we set all “barred”
quantities to zero if they are intermediate results, and the “barred” quantities for
the desired partials to 1.

insert figure here.
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Figure 1: Example: The forward mode of automatic differentiation
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Figure 2: Example: The backward mode of automatic differentiation
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Rules for the backward mode: Start at the top.

• If s = f(t), then we can add a new contribution to t̄:

∂w

∂t
= currentterms +

∂w

∂s

∂s

∂t

= currentterms +
∂w

∂s

∂f

∂t

so

t̄+ = s̄ ∗ ∂f

∂t
.

• Similarly, if s = f(t, u), then

t̄ + = s̄ ∗ ∂f

∂t
,

ū + = s̄ ∗ ∂f

∂u
.

We illustrate this for our example:

1. t1 = −y.

2. t2 = z ∗ z.

3. t3 = t2 ∗ z.

4. w = t1/t3, so

5. t̄1+ = 1/t3 and

6. t̄3+ = −t1/t23.

7. (3) → t̄2+ = t̄3 ∗ z and z̄+ = t̄3 ∗ t2.

8. (2) → z̄+ = t̄2 ∗ 2z.

9. (1) → ȳ+ = t̄1 ∗ (−1).

All operations are binary or unary, so the number of instructions to compute the
derivatives is at most 2 * the number to compute the function.

Thus the backward mode computes all of the partial derivatives in time at most
double the time for evaluating the function - independent of the number of
variables!

The drawback: The algorithm can use a lot of memory.
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Practical automatic differentiation

In practice, we use a combination of the forward mode, to keep storage low, and
the backward mode, to keep operations counts low.

Good programs make good decisions about when to use each mode.

Hessians

The automatic algorithms to compute second derivatives can take advantage of
two extra tricks:

• Exploit any sparsity. Suppose H has many zeros, because components of
the gradient do not depend on all of the variables:

Example:

H =


x x 0 0
x 0 0 x
0 0 0 x
0 x x 0


Note that the first and third columns have no nonzeros in common, and
similarly for the second and fourth.

Therefore, if we compute the partial derivative of the gradient with respect
to x1 + x3, we find all of the nonzero entries in columns 1 and 3 of the
Hessian.

Similarly, we can determine the second and fourth columns by computing
the partial with respect to x2 + x4.

Practical programs for automatic differentiation do this by allowing you to
specify that you want to compute HJ rather than H, where

J =


1 0
0 1
1 0
0 1

 .

[]

• Sometimes we can eliminate interior nodes of the computational graph in
order to save storage. The tricks to do this are the same as for doing
sparse Gauss elimination, and we won’t discuss them here.

No-derivative methods (N&S 11.4.3)

These are methods of last resort, generally used when
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• derivatives are not available.

• derivatives do not exist.

This is an area of very active research currently. We’ll consider three classes of
methods.

No-derivative Method 1: Finite difference methods

We could do finite differences on the function to get an approximate gradient,
but this is not usually a good idea, given that automatic differentiation methods
exist.

No-derivative Method 2: Simplex-based methods

(Not to be confused with the simplex method for linear programming.)

The most popular of these is the Nelder-Meade algorithm, and Matlab has an
implementation of this.

Idea:

• Suppose we have evaluated the function at the vertices of a simplex. (In
2-dimensions, this is a triangle, in 3, it is a tetrahedron, etc.)

• We would like to move one vertex of this simplex, reflecting it around its
current position, until we have enclosed the minimizer in the simplex.

• Then we would like to shrink the size of the simplex to hone in on the
minimizer.

Simplex-based algorithms have rather elaborate rules for determining when to
reflect and when to shrink, and no algorithm that behaves well in practice has a
good convergence proof.

For that reason, it looks as if they will fade in popularity, being supplanted by
pattern search methods.

No-derivative Method 3: Pattern search methods

Idea:

• Suppose we are given an initial guess x at the solution and a set of at least
n + 1 directions vi, i = 1, . . . , N , that form a positive basis for Rn: this
means that any vector can be expressed as a linear combination of these
vectors, where the coefficients in the combination are positive numbers.
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• At each step, we do a line search in each of the directions to obtain
f(x + αivi) and replace x by the point with the smallest function value.

This is a remarkably simple algorithm, but works well in practice and is provably
convergent!

Another desirable property is that it is easy to parallelize, and this is crucial to
making a no-derivative algorithm effective when n is large.

Example: Tamara Kolda software. []

Reference: Tamara G. Kolda, Robert Michael Lewis, and Virginia Torczon,
“Optimization by Direct Search: New Perspectives on Some Classical and
Modern Methods,” SIAM Review 45 (2003) 385-482.

Summary
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1

Yes

Is  f  quadratic?

Are first and second
derivatives available,
with enough room 
to store them?

Are first derivatives
explicitly available, or
available using 
automatic differentiation?

Is  f  differentiable?

No

No

No

Use Cholesky factorization or conjugate gradients.

Use Newton’s method, with safeguards.

Use sparse Quasi-Newton, 
truncated Newton, or 
nonlinear conjugate 
gradients.

Use (sparse) Quasi-Newton, truncated Newton,
or nonlinear conjugate gradients, with finite
difference approximation of the gradient.

Use pattern search.

No

Use Quasi-Newton or 
truncated Newton.

Yes

Yes

Yes

Is  there enough room to store a matrix?

Yes No

Figure 3: Choosing an optimization algorithm
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