
SOLUTION TO
AMSC 607 /CMSC 764 Final Exam , Fall 2010

1.

1

Yes

Is  f  quadratic?

Are first and second
derivatives available,
with enough room 
to store them?

Are first derivatives
explicitly available, or
available using 
automatic differentiation?

Is  f  differentiable?

No

No

No

Use Cholesky factorization or conjugate gradients.

Use Newton’s method, with safeguards.

Use sparse Quasi-Newton, 
truncated Newton, or 
nonlinear conjugate 
gradients.

Use (sparse) Quasi-Newton, truncated Newton,
or nonlinear conjugate gradients, with finite
difference approximation of the gradient.

Use pattern search.

No

Use Quasi-Newton or 
truncated Newton.

Yes

Yes

Yes

Is  there enough room to store a matrix?

Yes No

2. The Lagrangian is

L(x,y, z,w) = e(x1−5)+6x4
2+x1x2+x2

3+x2
4+3x2+5+yT (Ax−b)−z(1−x2

1−x2
2)−wTx.

To get the first order necessary conditions, we take the partial derivatives and
add sign conditions and complementarity for Lagrange multipliers corresponding
to inequality constraints:
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
e(x1−5) + x2

24x3
2 + x1 + 3
2x3

2x4

 + ATy− z


−2x1

−2x2

0
0

−w = 0,

Ax− b = 0,

1− x2
1 − x2

2 ≥ 0,

x ≥ 0,

z ≥ 0,

w ≥ 0,

z(1− x2
1 − x2

2) = 0,

wTx = 0.

3. We can solve the 1st equation for x and the 3rd for z:

x = D−1(a−Ez),
z = F−1(c−By).

Substituting these expressions into the 2nd equation gives

AD−1(a−Ez) + Qy = b,

so
AD−1(a−EF−1(c−By)) + Qy = b.

Therefore, we can determine y by solving the linear system

(Q + AD−1EF−1B)y = b−AD−1(a−EF−1c).

We need extra information to guarantee that this linear system has a solution
and that the solution is unique, but that was not part of the problem.

4. Nocedal and Wright, plus the class notes, are a good reference for this.
(There may be a few sign errors in this code, and a few typos in the right-hand
sides.)

Input: A, b, c; tolerance ε; feasible starting point (x,y, z) close to the central
path. (So Ax = b and AT y + z = c.)

Define parameter η = .99 and e = [1, . . . , 1]T (n× 1).

while |bTy− cTx| > ε

• The predictor (affine) step:

Let D−1 = X−1Z and find ∆ya from the normal equations

AD2AT ∆ya = −AZ−1r,
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where
r = −Xz.

This is solved using a Cholesky decomposition, which is reused in the cor-
rector step below.

• Compute
∆za = −AT ∆ya

and
∆xa = Z−1(r−X∆za).

(Exploit the diagonal structure of the matrices to keep the cost low.)

• Determine the steplengths αa
p and αa

d from

αa
p = min(1, min

i:∆xa
i <0

(−xi/∆xa
i )),

αa
d = min(1, min

i:∆za
i <0

(−zi/∆za
i )).

• Set
µa = (x + αa

p∆xa)T (z + αa
d∆za)/n,

where n is the length of x, and compute

σ =
(

µa

µ

)3

,

where µ = xT z/n.

• The centering/corrector step: Find ∆yc from the normal equations

AD2AT ∆yc = −AZ−1r,

where
r = σµe−Xz−∆Xa∆za,

using the previous Cholesky decomposition.

• Compute
∆zc = −AT ∆yc

and
∆xc = Z−1(r−X∆zc).

• Determine the step lengths αc
p and αc

d from

αc
p = min(1, η min

i:∆xc
i <0

(−xi/∆xc
i )),

αc
d = min(1, η min

i:∆zc
i <0

(−zi/∆zc
i )).
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• Take a step:

x = x + αc
p∆xc,

y = y + αd
p∆yc,

z = z + αd
p∆zc,

end while

5a. A polynomial complexity bound assures us that the algorithm won’t take a
very large number of iterations (e.g., exponential in the size of the problem).

5b. The main ingredients include:

• Use of a self-concordant barrier function, the log function. This ensures
that iterates do not leave the feasible region but that the barrier does not
grow so fast near the boundary that Newton’s method gets lost when close
to the solution.

• Use of a continuation method. (He uses η as the parameter.) This ensures
that we can start close enough to the solution to the next problem to be
in the region of fast convergence for Newton’s method.

• A quantitative theorem on convergence of Newton’s method, bounding
the size of the Newton step in terms of the size of the previous step. This,
plus the fact that the error can be bounded by the size of the Newton
step, gives us a measure of how near the solution we are.

• A careful choice of “close enough” (in the “Putting it all together” section)
that enables us to say that if we start close to a point on the central path,
and we take a Newton step, we will be close to a point on the central path
that is measurably closer to the solution to our problem.

• A computable bound on how large η needs to be in order for us to be
within ε of the optimal value of cTx.

The conclusion is that the algorithm takes O(
√

n log(n/ε)) iterations.

5c. The work of Fiacco and McCormick on barrier methods for solving con-
strained optimization problems included most of the important ideas behind
the very successful interior point methods (IPMs) used today, but in some sense
they were too soon, missing the very large problems that motivate the use of
IPMs, the complexity proof, and the linear algebra knowledge that makes the
algorithms work reliably.
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