(Possible score: 4 points.)

1. Let $\textbf{\textit{U}} \boldsymbol{\Sigma} \, \textbf{\textit{V}}^T$ be the singular value decomposition of the $n \times n$ matrix \boldsymbol{A} . Tell me as much as you can about U, Σ , and V.

Answer:

- The three matrices all have dimensions $n \times n$.
- Σ is diagonal, and the entries σ_i along the diagonal are nonnegative with $\sigma_1 \geq \sigma_2 \geq ... \geq \sigma_n$.
- ullet The 2-norm of each column of U and V is one.
- Let u_i be the *i*th column of U. Then $u_i^T u_j = 0$ if $i \neq j$. The same property holds for the columns of V.
- $UU^T = U^T U = I$, so $U^{-1} = U^T$.
- $VV^T = V^T V = I$, so $V^{-1} = V^T$.
- 2. Complete the following formula:

$$A = \sum_{i=1}^{n} \sigma_i \dots$$

Answer:

$$oldsymbol{A} = \sum_{i=1}^n \sigma_i oldsymbol{u}_i oldsymbol{v}_i^T.$$