The Phantom of the Opera ${ }_{\text {tions }}$

Replacement for the pointer

Stokes Theorem The Stokes Theorem (also called the Green's Theorem, or, in 3-D, the Divergence Theorem) relates an integral over the interior of a region to an integral over the boundary of the region. We can use it to estimate the area of the phantom. The resulting formula for the area is

$$
\frac{1}{2} \int_{0}^{2 \pi} \boldsymbol{z}(\theta)^{T} \boldsymbol{x}(\theta) \mathrm{d} \theta
$$

where $\boldsymbol{x}(\theta)$ is a point on the boundary and

$$
z(\theta)=\left[\begin{array}{r}
\frac{d x_{2}(\theta)}{d \theta} \\
-\frac{d x_{1}(\theta)}{d \theta}
\end{array}\right] .
$$

In other words, the area is

$$
\frac{1}{2} \int_{0}^{2 \pi}\left[x_{1}(\theta) \frac{d x_{2}(\theta)}{d \theta}-x_{2}(\theta) \frac{d x_{1}(\theta)}{d \theta}\right] \mathrm{d} \theta
$$

