The Phantom of the Operations

Replacement for the pointer

Stokes Theorem The Stokes Theorem (also called the Green's Theorem, or, in 3-D, the Divergence Theorem) relates an integral over the interior of a region to an integral over the boundary of the region. We can use it to estimate the area of the phantom. The resulting formula for the area is

$$\frac{1}{2} \int_0^{2\pi} \boldsymbol{z}(\theta)^T \boldsymbol{x}(\theta) \mathrm{d}\theta$$

where $\boldsymbol{x}(\theta)$ is a point on the boundary and

$$m{z}(heta) = \left[egin{array}{c} rac{dx_2(heta)}{d heta} \ -rac{dx_1(heta)}{d heta} \end{array}
ight] \,.$$

In other words, the area is

$$\frac{1}{2} \int_0^{2\pi} \left[x_1(\theta) \frac{dx_2(\theta)}{d\theta} - x_2(\theta) \frac{dx_1(\theta)}{d\theta} \right] \mathrm{d}\theta \,.$$