
Preconditioning Parallel Multisplittings for Solving Linear Systems of

Equations

Chiou-Ming Huang

Dianne P. O’Leary

Department of Computer Science

University of Maryland

College Park, MD 20742.

April 13, 1992

Abstract

We consider the practical implementation of Krylov

subspace methods (conjugate gradients, GMRES, etc.)

for parallel computers in the case where the precondi-

tioning matrix is a multisplitting. The algorithm can be

efficiently implemented by dividing the work into tasks

that generate search directions and a single task that

minimizes over the result ing subspace. Each task is as-

signed to a subset of processors. It is not necessary for

the minimization task to send information to the direc-

tion generating tasks, and this leads to high utilization

with a minimum of synchronization. We study the con-

vergence properties 01 various t“orms oi

1 Introduction

The preconditioned algorithms in the

family (conjugate gradients, GMRES,

the algorlthm.

h’ry[ov subspace

CGSTAB, etc.)

are standard tools in the numerical solution of large

systems of linear equations

Ax=b

on high performance computers. The choice of precon-

ditioners is still a topic of research, since there is no

general rule for choosing a preconditioned that will en-

sure rapid convergence.

In many cases the matrix A has a natural splitting as

A = M – N, where linear systems involving the matrix

M can be solved easily. A splitting of A induces an

iterative method

Permission to copy without fee all or part of this material is

granted provided that the copies are not made or distributed for

direct commercial advantage, the ACM copyright notice and the

title of the publication and ita date appear, and notice is given

that copying is by permission of the Association for Computing

Machinery. To copy otherwise, or to republish, requires a fee

and/or specific permission.
ICS ‘92-7 /92/D. C., USA

o 1992 ACM 0-89791 -485 -61921000710478 . ..$1 .50

Mzk+l = Nxk + b, (1)

initialized by a choice of X“ , and the iteration is conver-

gent for each choice of the initial guess X“ if and only

if the spectral radius p of the matrix &f-1 N satisfies

p(M-lN) < 1. Common splittings include M equal

to the main diagonal of A (the Jacobi partition), M

equal to the diagonal and lower triangular elements of

A (the Gauss-Seidel partition), and block variants of

these. In some cases the splitting is induced by the

structure of the problem (e.g., domain decomposition

methods for elliptic partial differential equations). In

many inst antes, a matrix has several possible conver-

gent splittings, each with advantages and disadvantages.

O’Leary and White [15] provided a framework for

studying multiple splittings of matrices. If a matrix can

be partitioned in several ways,

A= Mi– Ni, i=i,..., p, (2)

then a mtdtisplatting of A is defined by

(3)

i=l

where the matrices Di are diagonal matrices that sum to

the identity matrix. Multisplittings induce the iterative

method
P-z~k+l _

Dii~i~l, (4)

i=l

where

Mix(i)‘k+l = NiX~i) + b. (5)

This can be written in the equivalent form

where

G=~DiM,-l.

i=l

478

(7)

Thus the convergence of the multisplitting is dependent

on the condition p(l?) <1.

Part of the motivation behind multisplittings is that

the work for each individual splitting can be assigned

to a subset of processors and communication is required

only to combine the results using the diagonal weight-

ing factors. If any element of lli is zero, then the corre-

sponding component of i~i~l need not be computed, so

the multisplitting framework can be used to partition

variables among processors.

The parallel implementation of multisplittings hss

been investigated in many papers (e.g., [16,1 l]), and it

is natural to try to accelerate the convergence of the it-

eration using Krylov subspace-based methods [9]. The

Krylov subspace K(A, q, j) of dimension j is the span

of the vectors {q, Aq, Ai-lq}, where q is a vector

in %?.n. The Krylov subspace methods that we dis-

cuss form iterates yk that minimize some error function

(e.g., IIAz - bllz) over the Krylov subspace K(A, b, k).

If preconditioning is used, then the subspace becomes

K(M-lA, M - lb, k), and in the case of multisplittings

this can be written as K(B, Gb, k),

The natural parallel implementation of a multisplit-

ting preconditioned for a Krylov subspace method is to

divide the algorithm into p + 1 tasks and assign a set

of processors to each task. Each of the p rnultisplitting

tasks computes one of the vectors $(i). The remain-

ing task combines these vectors, generates a new baais

vector to expand the Krylov subspace, minimizes the er-

ror function over that subspace, and sends the updated

vector back to the multisplitting tasks. There is a great

deal of parallelism within each task, but to improve par-

allel utilization, it is possible to let the multispl,ittings

run m iterations at a time before generating the next

Krylov vector.

Using this form of the algorithm, it can be difficult to

achieve very high utilization, since the work is bimodal:

either some of the p multisplitting tasks are active or the

Krylov task is active, but not both. Synchronization

can be a significant bottleneck: the Krylov minimiza-

tion cannot be performed until each of the multisplit-

ting tasks has reported, and the multisplitting tasks are

idle while the minimization is being performed. The

assignment of tasks to processors must be done quite

carefully in order to balance the work in each phase and

minimize waiting time.

In this paper we consider an alternate algorithm.

Again there are p+ 1 tasks, p for the multisplitting and

one for the minimization, and each task is assigned to

a subset of processors. But in this algorithm, the mul-

tisplittings report individually to the minimization task

and do not need to wait for a response. This reduces

waiting time at the cost of some additional complication

in the minimization, and it will be shown that the sub-

space over which the error function is minimized equals

the Krylov subspace used in the standard algorithm.

Although no synchronization signals are sent from the

minimization task to the multisplittings, the minimiz -

tion task can be implemented in a way that makes the

algorithm deterministic rather than chaotic.

This approach provides additional flexibility as well.

We can generate a larger dimensional space for mini-

mization by using each of the multisplitting vectors in

the minimization, and we can add other promising vec-

tors to the subspace. This creates a subspace that in-

cludes the standard Kr ylov subspace.

In 32 we define the parallel tasks in the algorithm.

Section 3 is devoted to determining the properties of

the subspace over which the minimization is performed

and establishing a convergence rate for the symmetric

posit ive definite case. The parallel complexity is con-

sidered in $4.

2 Algorithm KMS: Krylov Mul-

tisplitting

In this section we first present the algorithm in a gen-

eral way, without restrictions on the choice of multisplit-

ting. Some implementation notes and specific examples

of multisplittings follow.

Task. is the minimization task, and the multisplitting

tsaks are denoted by Task~, i = 1, ..., p.

Algorithm KMS: A parallel multisplitting-

preconditioning of a Krylov subspace minimiza-

tion

Cobegin Tasko, Taskl ,..., TaskP. Send the

initial guess &o to each task and the conver-

gence tolerance e to Tasko. Coend,

● Algorithm for multisplitting Taski, i = 1, p:

For k = 0,1,..., until receiving a halt

signal from Tasko,

Receive the latest multisplit ting

iterate, Xk and call it Z“.

Forj=l, ... ,m

Determine .# by solv-

ing ikf~ zj = N#-1 +

b.

Send the search direc-
tion Azk+l,~ = ~j _

~j-l
t; Task. for

minimization.

endfor

Form z~+l = ll~zm, and

participate with

the other multisplitting

tasks in forming i~+l by

summing the z~+l, i =

1 ,..., p. (See Note 1.)

479

endfor

● Algorithm for minimization Task..

Initialize r = b and S to be the null ma-

trix.

While IIrll > c Ilbll,

Receive any available new direc-

tions Az from tasks 1,..., p and

use them to forms columns for

the matrix S

Set z to be the minimizer of the

error function over the subspace

S spanned by the columns of S,

and set the residual r = b – Ax.

(A more complete description is

given in S2.1.)

end

Send halt signal to Taskl ,...,TaskP.

Note 1. The best algorithm to use for formation of the

vector sum in the multisplitting tasks depends on the

parallel architecture and on the particular multisplit-

ting. If each element of the weighting matrices D; is

either 1 or O, then the “summation” is simply a merging

of subvectors and is performed by sending local values

to all other tasks that depend on them and receiving

relevant subvectors from other tasks. If the weighting

matrices have elements strictly between O and 1 so that

averaging is needed} then the summation is performed

using standard algorithms [3] in logarithmic time us-

ing hypercube connections or linear time using a mesh-

connected set of processors. ❑

Note 2. An alternate algorithm sends just the “outer”

iteration direction i#+l – k~ to Task. instead of sending

all of the direction vectors from each “inner” iteration

of each multisplitting task. Whether this is a good idea

depends on the relative speed of computation vs. com-

munication for Task.. Ideally, we want to feed direc-

tions to Task. as fast as they can be processed. Since

the amount of work in Tasko grows with the number

of columns in s, this may mean that Task. initially

accepts every column it receives, but later may discard

some early columns or accept only a subset of the new

columns generated by the multisplitting processors. In

this way it may behave more like a restarted GMRES

algorithm, for instance. ❑

Note 3. The number of “inner” iterations m could

be variable, determined adaptively depending on the

convergence properties of the multisplitting and on the

computing environment [2]. ❑

Note 4. An iterative method can be used to solve
Mizj = Nizj-l + b. Given a splitting Mi = Fi – Gi, we

perform s “inner” iterations with this splitting in order

to approximate the solution. The resulting iterate is

z~+l = (J’-lG)Sz~ -I- Xj~~(F-lG)@l(Nz~ + b), (8)

k= 0,1, Two stage (or inner/outer) methods based

on such splittings have been studied, for example, by

Frommer and Szyld [7] and Golub and Overton [8]. ❑

Note 5. The algorithm bears some relation to the s-

step conjugate gradient method of Chronopoulos and

Gear [5] that forms a series of matrix-vector products

before ort hogonalizing against the previous directions.

In our case, we take s to be the full number of iterations,

and we allow extra basis vectors in the minimization.

Note 6. Our algorithm is also related to one given

by Axelsson and Vassilevski [2]), who propose using a

variable preconditioned, perhaps changing the number

of iterations m or the exact form of the operator from

iteration to iteration. There are some important differ-

ences:

1,

2.

3.

2.1

Our minimization subspace can be somewhat

richer, including the subvectors for the multisplit-

tings; they use only the vectors x~+l – #.

In their algorithm, the direction-generating tasks

must wait for an updated vector from the mini-

mization task before proceeding. We will show in

the next section that the same subspace can be gen-

erated without such waits.

Their computation of the orthogonal basis for mini-

mization is more direct, as is typical of most Krylov

subspace algorithm implementations, and can be

done with somewhat more simplicity. ❑

The minimization task

To illustrate the implementation of the

algorithm, we will use the error function

an example. Other error functions (e.g.,

gradient function IIz – z“ll~ where llwll~

minimization

\lAz – bllz as

the conjugate

= WTAW and

Z* is the true solution to the problem) o; preconditioned

forms of these functions yield similar procedures.

Mathematically, the minimizer of the error function

IIAz – b[lz over the subspace spanned by the 1 columns

of a matrix S is 5 = Scr, where a is determined as the

solution of the linear system

ST ATASCX = STATb.

Attempting to solve this system directly will lead to

numerical difficulties, since the columns of S may con-

t ain some (near) linear dependencies, so a more reliable

numerical approach is to factor the matrix AS using a

rank revealing QR factorization [4], The matrix AS is

factored as QR, where the columns of the n x 1 matrix Q

480

are orthogonal (i.e., QTQ = 1), R is an I x 1 upper trian-

gular matrix (n ~ 1), and the columns of AS have been

rearranged in the course of the factorization so that the

columns causing linear dependencies are pushed i,o the

right. We pick a maximal leading principal submatrix

R1 of R of dimension ~ <1 that corresponds to ii well

conditioned subset of basis vectors, and solve a reduced

system. For the QR factorization we determine the first

~ components of a from the reduced system

RlcxI = Q~b. (9)

where QI consists of the first ~ columns of Q, and we.
set the last I — / components of a to be zero.

The task of finding a in a numerically stable way can

also be accomplished using a rank revealing URV de-

composition [18]. Here, R is again a triangular matrix,

and U and V are orthogonal. For the URV deconnposi-

tion, the reduced system becomes

RI& = U~b. (lo)

where UI consists of the first ~ columns of U, and Q is

determined by multiplying VT by the vector & padded

with zeroes.

Note that the QR or URV decompositions need not

be recomputed every time a new column is received. Ei-

ther factorization can be updated in a very efficient way

using the factorization computed previously. In both

cases it is possible to discard the rank deficient columns

and work only with the well-conditioned submatrix. De-

tails of updating a rank-revealing QR or URV decom-

position that stores a rectangular Q or U will be given

in [13].

The implement ation of the minimization algorithm is

somewhat dependent on the choice of splitting and com-

puter architecture. As an illustration of the splitting

dependence, if each element of the weighting miitrices

Di is either 1 or O, then the direction vectors are sparse,

and savings can be achieved by taking advantage of this

structure in forming the product of A with the vectors.

There is a great deal of parallelism in the matrix updat-

ing and solution of the linear system, and this should

be exploited on a given architecture.

The approach that we have just described keeps the

size of the subspace small. However, it is desirable to

use the most recent directions if the underlying itera-

tion is convergent. Therefore an alternate apprc)ach is

to find an orthogonal basis for S, form A times the or-

thogonal basis vectors, and solve the resulting system

by QR. The orthogonalization of the basis vectors re-

quires additional work, but it ensures that the matrix

AS is at least as well-conditioned as A is, and ensures

that a new basis vector is generated for each direction

vector (although it may be effectively random if the di-

rection vectors are highly dependent). Therefore, the

experiments discussed later are based on the following

procedure. When a new vector v is received:

1. Update the QR decomposition of the vectors span-

ning the subspace S to include v. The last column

qh of Q is our new basis vector.

2. Form Aq~.

3. Update the QR decomposition Qa R. of AQ to in-

clude Aqk. A rank-revealing QR algorithm is used,

so that if necessary, the subspace can be truncated

to maintain a well-conditioned matrix R..

4. Form the minimizer in the subspace by solving

R.a = Q;b.

5. Form the new iterate x~ = Q&.

2.2 Multisplitting Examples

To better illustrate the division of labor in the multi-

splitting tasks, we give several specific examples.

Example 1. Discretization of elliptic partial differen-

tial equations may lead to symmetric positive definite

matrices of the form

‘=(:’ :2)

where systems of the form h41.z = d and M2Z = d are

easy to solve. Setting

leads to the very effective “block” Jacobi iteration (see

[9]). Since we solve MIZI = dl and Mzza = dz inde-

pendently, it is apparent that we can partition the work

into two tasks, with each task updating a disjoint piece

of the vector of unknowns. If we solve the linear sys-

tems involving Ml and M2 directly, then we would set

m = 1 and have the two tasks exchange information

after each update. We show in $3 that the resulting

subspace for minimization includes the Krylov subspace

K(M-lA, M-l b,k). ❑

Example 2. The structure in Example 1 can be ex-

ploited in a different way: it is not necessary to solve

M.z~+l = r~ exactly. Our goal is to efficiently provide

a good subspace for minimization. Thus, if M has a

splitting =

M=
(

M1l

M,,)
(11)

= (F1J-(G1J ’12)
= F–G (13)

where F is nonsingular, then the two tasks can iterate

using the splittings Ml = diag(Fl, O), Alz = diag(O, F.J.

We use these two-stage methods to produce a vector

481

space for minimization. This raises the question about

how many of these “inner” iterations we should perform.

On the one hand, we should reduce the communication

overhead between Taskl and Taskz. On the other hand,

even if we solve linear system Mz = d exactly we do

not necessary increase the convergence rate. Hence the

answer to this question really depends on the problem

to be solved and the computing environment. ❑

Example 3. Splittings with more than p = 2 pieces

arise naturally in discretizations of partial differential

equations, using either domain decomposition or multi-

colorings.

In domain decomposition [17] the variables are parti-

tioned into possibly overlapping subsets corresponding

to sub domains for which solution is easy. The operators

Mi correspond to a partial differential equation over the

sub domain.

A similar partitioning can be used to handle prob-

lems in which the discretization has been locally rejned.

Variables can be partitioned into pieces of roughly equal

size corresponding to ‘(coarse” grid points and refined

points, and a multisplitting can be constructed from

this partitioning.

In muha’colorings, the variables are partitioned into

groups (colors) so that the matrices ilfi are block diag-

onal. The simplest example is the well-known red-black

ordering for the 5-point operator, but p,=titionings with

p >2 have also been developed [1,12]. ❑

3 Convergence

3.1 Properties of

Subspace

Analysis

the Multisplitting

In this section, we characterize the subspace spanned by

the vectors generated by the multisplitting tasks. We

do this by deriving expressions for the iterates and their

differences. Without loss of generality, we assume that

&o = ().

The following theorem shows that the subspace over

which we minimize includes the standard Krylov sub-

space used by preconditioned algorithms. This is the

key to applying standard convergence results.

Theorem 3.1 Given ~k (2° = O)j the m steps of the

multwphtting iteration generate iterates

,&+l = Bxk + b, (14)

where
Q

i=l

and

(15)

Thus, the directions

span the Kry[ov subspace K(B, ~, k).

Corollary 3.1 Afler K outev iterations with to = O,

the directions {AZ~Ii } generated by the multisplitting

tasks span the Kry!ov subspaces

k-l

K(M;lNi, Mt~l(b– A~B@,rn),

j=o

for-i = 1,..., P and k = 1,..., K.

Corollary 3.2 If m = 1 (i, e., each multzsp[itting task

performs a single iteration between communications)

then the directions {Azf’i} generated by the muitisp!it-

ting span the space Mi-lAK(B, b, K) in union with the

span of{ Mz~lb}, i = 1,p.

Corollary 3.3 If m = 1 and s steps of splittings M{ =

Fi – Gi are used as in (8), then after K outer itera-

tions with X“ = O, the directions {A#} span the Krylov

subspace K(H, b, K), where

P

H = ~D@ (F;lGi)S)M,~lA (17)

i= 1

and

~ = $jl@ (F;lGi)’)M,~lb. (18)

i=l

3.2 Convergence Bounds

Now we have tools to analyze the rate of convergence

of Algorithm KMS. The subspace over which we mini-

mize contains the standard Krylov subspace, and thus

standard results for the convergence of algorithms such

as preconditioned conjugate gradient or preconditioned

GMRES [9] are applicable. For example, if M and A

are symmetric and positive definite, and if we minimize

the :rror function IIx – z“ 11A over the Krylov subspace

K(M-lA, W–16, k), then the error is bounded as

where K is the condition number of ~-1A, the ratio of

its largest to smallest eigenvalue.

For the multisplitting algorithm,

Akl = ~Dim~l(M:lN.)jM-’ a~i) (20)

i=l j=o

482

and

fi-lA = ~Di ‘jjM,:lNJ~(l – M~lA’i)

i= 1 j=O

= ‘&i(l- (AC’N.)’”);!

i= 1

= I–B.

Here are the conditions that natur#ly lead to symmetric

positive definite preconditioners M.

Theorem 3.2 If m = 1, ij A and M; are symmetric

and positive definite, if Mi – .Ni is a convergent splitting

of A, if Di = CYiI, where ~i is a positive scala:r (i =

1 , P). and if we minimize 11x – X*]IA over the .Krylou

subspace generated by the KMS algorithm then the bound

(19) applies, where K is the condition number of 1 – B,

In the nonsymrnetric case, we obtain bounds such as

the standard GMRES result [6].

Theorem 3.3 Suppose that we minimize the norm of

the residual over the Krylov subspace generated by the

KMS algorithm, and that the preconditioned B satisjies

(i) (v, ABv)2 ~ lilllvll~, all v;

(ii) IIABv112 ~ 6211v112, all v, for some positive con-

stant 61, tj.

Then the multisplitting algorithm converges monotoni-

cally and the residual norms satisfy the bound

Ilrkllz s /-~117’k-1112, = 1,2,. !..(21)

4 Parallel Implementation

Our first observation is that the nature of the multi-

splitting tasks is fundamentally different from that of

the minimization task. The multisplitting will gener-

ally be working with sparse matrices Mi and A:, while

the matrix AS for the minimization task may be dense.

Thus, the use of a heterogeneous parallel computer may

be possible, using, for example, a hypercube for the mul-

tisplitting and a systolic array (or Connection Ma~chine)

for the minimization process.

The implementation of the multisplitting is quite

problem dependent, but the minimization task is some-

what easier to characterize. The main work is the up-

dating of a matrix using a QR or URV decompc,sition.

Parallel versions of these algorithms have been discussed

in [14,18].

Huang [10] has performed a detailed analysis of the

KMS algorithm using a 2 x 2 block partitioning of the

SSOR splitting on a model problem, Laplace’s equation

on a rectangle with Dirichlet boundary conditions. For

convenience, assume the matrix A is N2 x N2 and that

the two-dimensional mesh of multisplitting processors

consists of 2s xs processors. We assign $ unknowns to

each processor. The computation and communication

time for each “outer” iteration (s inner iterations) is

N
s*o(g +sfk+Nw)+/3+—T+ $’,

s

where the time for a typical floating point operation is

1, /3M is the startup time for communication within the

multisplitting processors, TM is the per-word transmis-

sion time for these processors, and ~ and r are the cor-

responding times for communication between the mul-

tisplitting and the minimization task. After k direc-

t ions are generated, the time for the minimization is

O(%.) on t processors.

5 Conclusions

We have presented a non-traditional implementation of

Krylov subspace methods.

If only the vectors A& are used for minimization,

then this algorithm is equivalent to preconditioned con-

jugate gradients or GMRES; if additional vectors are

used, then the minimization is performed over a larger

subspace that includes the standard Krylov subspace.

This algorithm has more flexibility than standard im-

plementations and many advantages for parallel compu-

tat ion:

1.

2.

3.

4.

5.

483

Additional vectors can be added to the subspace if

the Krylov generators are not working fast enough

to keep the minimization task busy.

Vectors can be dropped if they do not provide a

sufficient decrease.

We have the option of creating several vectors from

any particular basis vector by partitioning it into

subvectors and creating a vector from each of these

padded with zeroes. This might improve the con-

vergence if the preconditioned is locally good but

normalization between pieces of the vector is not

SO good.

The minimization task can reinitialize the direction

generators at any time by sending the updated x

vector. If the minimization has been performed us-

ing only the Ai vectors, then this has no effect on

the computation, but if other directions have been

added, then convergence can be accelerated with-

out significant synchronization penalty.

There are natural extensions of these ideas to non-

linear problems [10].

6 Acknowledgements

In the special case of p = 1 (i.e., a single splitting),

the idea should be attributed to Gene Golub, who fre-

quently asks the question, ‘(But why do you need an

orthogonal basis?”

Bob Plemmons made useful comments on a draft of

the manuscript.

Both authors were supported in part by the AFOSR

under Grant 87-0158. The work of O’Leary was also

supported by the General Research Board of the Univer-

sity of Maryland Graduate School, and by the Institute

for Mathematics and Its Applications at the University

of Minnesota.

References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

Loyce Adams and J. Ortega. A multi-color SOR

method for parallel computation. In Proc. 1982

Int. Conf. Parallel Processing, pages 53-56, 1982.

0. Axelsson and P. S. Vassilevski. A black box

generalized conjugate gradient solver with inner it-

erations and variable-step preconditioning. SIAM

J. Matrix Anal. Appl., 12:625-644, 1991.

Dimitri P. Bertsekas and John N, Tsitsiklis. ParaL

le! and Distributed Computation Numerical h!eih-

ods. Prentice-Hall, New Jersey, 1989.

T.F. Chan. Rank-revealing QR factorization. Lzn.

Alg. and Its Apphcs., 88/89:67-82, 1987.

A. T. Chronopoulos and C. W. Gear. On the effi-

cient implementation of preconditioned s-step con-

jugate gradient methods on multiprocessors with

memory hierarchy. Parallel Computing, 11 :37–53,

1989.

S. C. Eisenstat, H. C. Elman, and M. H. Schultz,

Variational iterative methods for nonsymmetric

systems of linear equations. SIAM J. on Numer.

Anal., 20:345-357, 1983.

Andreas Frornmer and Daniel B, Szyld. H-

Splittings and Two-Stage iterative Methods. ‘Techn-

ical Report 91-71, Department of Mathematicsj

Temple University, Philadelphia, 1991.

G. H. Golub and M. Overton. Convergence of a

two-stage Richardson iterative procedure for solv-

ing systems of linear equations, In Proceedings

of the Dundee Biennia[Conference on Numer ical

Analysis, Springer-Verlag, University of Dundee,

Scotland, June 1981.

Gene H. Golub and Charles F. Van Loan. Matri~

Computations. Johns Hopkins University Press,

Baltimore, h!arylan.d, 1983.

[10]

[11]

[12]

[13]

[14]

[15]

[16]

Chiou-Ming Huang. Preconditioning Parallel Mul-

tisplittings for Solving Systems of Equations. Tech-

nical Report Ph.D. dissertation, Computer Science

Department, University of Maryland, College Park,

August , 1992.

M. Neumann and R. J. Plemmons. Conver-

gence of parallel multisplitting iterative methods

for M-matrices. Linear Algebra and Its Applies.,

88/89:559-573, 1987.

D. P. O ‘Leary. Ordering schemes for parallel pro-

cessing of certain mesh problems. SIAM J. Sci.

Stat. Computing, 5:620-632, 1984,

D. P. O’Leary. Updating a Range-Revealing QR

or URV Decomposition. Technical Report, To ap-

pear.

D. P. O’Leary and P. Whitman. Parallel QR

factorization by Householder and modified Gram-

Schmidt algorithms. Parallel Computing, 16:99-

112, 1990.

Dianne P. O ‘Leary and R. E. White. Multi-

splittings of matrices and parallel solution of linear

systems. SIAM J. Disc. Math., 6:630–640, 1985.

Theodore S. Papatheodorou and Yiannis G. Sari-

daki. Parallel algorithm and architectures for mul-

tisplitting iterative methods. Paraiiel Computing,

12:171-182, 1989.

[17] R. Glowinski et al, editor. Proceedings of the First

International Symposium on Domain Decomposi-

tion Methods for Partial Diflerentia[Equations, des

Ponts et Chaussees, Paris, France, January 7-9,

1987. SIAM, Philadelphia, 1988.

[18] G. W. Stewart. An Updating Algorithm for Sub-

space Tracking. Technical Report 2494, Depart-

ment of Computer Science, University of Maryland,

College Park, 1990.

484

