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ABSTRACT

The development of the Lanczos algorithm for finding eigenvalues of large sparse
symmetric matrices was followed by that of block forms of the algorithm. In this
paper, similar extensions are carried out for a relative of the Lanczos method, the
conjugate gradient algorithm. The resulting block algorithms are useful for simulta-
neously solving multiple linear systems or for solving a single linear system in which
the matrix has several separated eigenvalues or is not easily accessed on a computer.
We develop a block biconjugate gradient algorithm for general matrices, and develop
block conjugate gradient, minimum residual, and minimum error algorithms for
symmetric semidefinite matrices. Bounds on the rate of convergence of the block
conjugate gradient algorithm are presented, and issues related to computational
implementation are discussed. Variants of the block conjugate gradient algorithm
applicable to symmetric indefinite matrices are also developed.

1. INTRODUCTION

Conjugate direction algorithms are important tools in computational
linear algebra. The basic idea behind these methods is to accumulate
information about the behavior of a symmetric matrix A of dimension n
along A-conjugate directions p;, j=1,2,...,n. The unique features of con-
jugate direction algorithms make them the ideal and, in some cases, the only
useful methods available for solving certain systems of linear equations and
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eigenvalue problems involving large sparse matrices. Storage requirements
are a modest multiple of n, and operations counts for each iteration are
linearly related to n plus the number of nonzero elements in the matrix A.
The methods are useful iterative algorithms but also have a finite termination
property. Because of these desirable features, generalizations of these algo-
rithms have also been extensively studied as solution techniques for nonlin-
ear problems.

Conjugate direction algorithms were proposed by Fox, Huskey, and
Wilkinson [8] for the solution of systems of linear equations on computers.
Hestenes and Stiefel [14] developed a family of algorithms for positive
definite matrices A in which the direction p; is related to the residual of the
system of linear equations after j—1 steps. These are termed conjugate
gradient algorithms, and they are by far the most widely used of the
conjugate direction algorithms. Karush {17], Kaniel [16], Daniel [6], and
others studied the convergence rate of conjugate gradient algorithms consid-
ered as iterative methods, and further contributions were made by Stewart
[33] and Axelsson [2]. Rutishauser [31] and Reid [28] discussed alternate
computational forms of conjugate gradient algorithms, and much attention
has been devoted to acceleration techniques, for example in [1, 2, 3, 4, 6, 13,
22]. Paige and Saunders [27], Fletcher [7], and Chandra [3] considered the
stable extension of conjugate gradient techniques to symmetric indefinite
matrices.

There has been a parallel development of conjugate direction algorithms
for the solution of linear eigenvalue problems. Lanczos [18] proposed an
algorithm in 1950. Paige [24] and Kaniel [16] established bounds on the
convergence rate, and Paige [24-26] and Kahan and Parlett [15] discussed
stable and efficient implementation of the algorithm to determine a few of
the extreme eigenvalues of a matrix. Cullum and Donath [5] and Golub and
Underwood [10, 34] extended the method to block form, in which several
directions are used at once as blocks Z; of dimension nXs. Computational
modifications of this algorithm were investigated by Lewis [20].

For matrices which have certain eigenvalue distributions, the block
Lanczos algorithm is often a dramatic improvement over the standard
Lanczos algorithm. The idea of developing a block conjugate gradient
algorithm which would share this virtue has undoubtably occurred to many
researchers, and the statement of a block conjugate direction algorithm
appears in a paper by Stewart [32].

The purpose of the present work is to present various forms of block
biconjugate and conjugate gradient algorithms, investigate the convergence
rate of some of them, and provide numerical experience with these methods.
These algorithms can be useful in three classes of problems:

(1) If there are s systems to be solved, the block conjugate gradient
algorithm will solve them in at most [n/s] iterations and may involve less
work than applying the conjugate gradient algorithm s times.
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(2) If the matrix has several extreme eigenvalues widely separated from
the others, the block conjugate gradient algorithm may converge signifi-
cantly faster than the conjugate gradient algorithm.

(3) If the matrix A is stored on a secondary storage device or needs to be
regenerated at every use, the block algorithm can be significantly more
efficient, since it forms the product of A with several vectors at once.

These statements will be made more precise in Secs. 3 and 4.

In Sec. 2 we present the block biconjugate gradient algorithm with a
preconditioning operator. This algorithm is defined for a general n X n matrix
A without the assumption of symmetry. We discuss the properties of the
algorithm and the role of scaling and orthogonalization in a computationally
practical algorithm. All of the algorithms in this paper can be derived from
this one. In Sec. 3 we specialize this algorithm in several forms for a
symmetric matrix A, obtaining various block conjugate gradient algorithms.
We discuss properties and variants of the algorithms. In Sec. 4 we give
bounds on the convergence rate of the block conjugate gradient algorithm.
The relation of these algorithms to the block Lanczos method and some
extensions to symmetric indefinite systems are discussed in Sec. 5, and some
implementation issues are mentioned in Sec. 6.

For simplicity, we state our results for matrices with real elements,
although the generalization to complex matrices, and in many cases to
general linear operators over Hilbert spaces, will be clear.

Throughout the paper, uppercase letters denote matrices. A superscript
on a matrix, vector, or scalar denotes an iteration number. Columns of a
matrix are indexed by subscript; elements of a matrix have row and column
indices as subscripts. Thus, for example x{y’;) is the element of the matrix X®
in the ith row and jth column, and xi(") is the jth column. The letters a, 8, v,
g, 1, v, p, and w denote s X s matrices, and iteration numbers for these are
indicated by subscript. The letter o denotes singular values, while A denotes
eigenvalues, and a subscript “max” or “min” denotes largest or smallest
respectively.

We use the Euclidean vector and matrix norms: |[x||?=x"x and || X||=
Omax(X) = Anax(X"X)]"/2. The span of the columns of a set of matrices
{XW,x® . X®} will be denoted by sp{X™®,X®,...,X®}, and the trace
of an n X n matrix A by trffA}=27_,a,.

2. THE BLOCK BICONJUGATE GRADIENT ALGORITHM

In this section we present a basic algorithm and its properties. The
computationally practical algorithms in the following sections all arise from
special cases of this one. An alternate approach to these algorithms, proceed-
ing from the block Lanczos algorithm, is discussed in Sec. 5.
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We consider the following algorithm, which is a direct generalization of
the biconjugate gradient algorithm given, for example, in Lanczos [19] and
Fletcher [7]. We call it the block biconjugate gradient algorithm,
abbreviated by B-BCG.

AvrcorrraMm B-BCG. Given matrices M and A, both of dimension n X n,
full rank matrices v, and ¥, of dimension s X s, k=0,1,..., and matrices R
and R of dimension nXs and rank s, we define P®=MR© y, and
PO=MTRO%  and iterate for k=0,1,...:

RE+D=R®_Aphgy, (1a)
R*+D=R®_ATph g, (1b)
pr+D=(MR*+D 4+ POIB )y, (2a)
f(k+1)=(MTE(k+1)+f(k)Ek)7k+l, (2b)
where
o= (P (")TAP("))_IY,‘TR_ (MTMR k), (3a)
&= (P(k)TA Tf(k))— 1,YkTR(k)TMTR_(k), (3b)
Bk=.Yk—l(ﬁ(k)TMR(k))'1E(k+l)TMR(k+1)’ (4a)
[?k____Yk—-I(R(k)TMTﬁ'(k))"IR(k+l)TMTE(k+1). (4b)

The matrices R, E, P, and P have dimension n X s, while the parameters «,
@, B, and B are s X s matrices.

The algorithm is terminated when one of the matrices &, &, B, or B
fails to exist or is singular. This algorithm reduces to the standard bicon-
jugate gradient algorithm when s=1, M=1, and v, =%=1 for k=0,1,....
To use the block algorithm to solve a linear system of equations

AX*=B,

where B is a given n X s matrix and X* is to be determined, we choose an
initial guess X© for the solution matrix, set R ©=B—AX©, and update the
X iterates as

k+1) k k
XD = x®) 4 pRg
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Then the matrices R™® are the successive residuals of the equations; i.e.,

RW=B—AX®  k=0,1,....

In a similar way, the algorithm can be used to simultaneously solve a system
ATX*=B.

The iterates R®, R®, X®, and X® are invariant with respect to the
choice of nonsingular matrices v, and ¥;, and these parameter matrices are
used to decrease roundoff in computational implementations of the algo-
rithm. On the other hand, various choices of the matrix M yield different
algorithms, and can change the rate of convergence of the sequence {X®}
to X*.

Some algebraic properties of the algorithm are established in the follow-
ing two lemmas. This development parallels that of Fletcher [7] for the
standard biconjugate gradient algorithm.

LemMma 1. For j<k, the iterates satisfy the biconjugacy conditions
R ®TyRW = ROTMTR =0 (5)
and
PRTAPN = pITA TP () =, (6)
Proof. We use induction to establish the results. The trivial case is
obvious, so we assume the properties hold for k and prove them for k + 1.
Using Eq. (1b) and Eq. (2a) with j substituted for k+ 1, we have
R*+DTyR( = R WTMRG — TP BTAMR
=R TR ~ EkTI;(")TA(P(’)y,_l — pi- I)Bi—l)
For j <k, the right hand side is zero by the induction hypotheses. For j=k, it
is zero by the induction hypothesis and the definition of a;. An exactly
analogous argument, using Eqgs. (la) and (2b) and the definition of &,
establishes the second part of Eq. (5).
The first part of Eq. (6) is established using Eq. (2b) and Eq. (la) with {
substituted for k:

PG+DTAP() = 7kT+ lﬁ(k+ DTpAPD + ?kT+ ) EkTﬁ(k) TAPW

=~ 7, R *+DIpRG+D - R(f))ai—l + 3L BIPRTAPD,
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For j<k, we have already established that the first term is zero, and the
second term is zero by the induction hypothesis. For j=k, we have, using
the definitions of a; and S,,
PRrOTAPW = _ 3T R+ DTYR(K+DG -1 4 5T BT (RMTA P
= — .?kT+lﬁ~(k+ l)TMR(k+ l)ak—l
+ 37, (R*+ DTN TR G+ D) T(ROTA TR ()~ Ty TP TAPW)
= ,'Y—kT+1ﬁ(k+l)TMR(k+l)(_ ak_1+ ak_l)=0'

The second part of Eq. (6) is established by an analogous argument, using
Egs. (2a) and (1b), and the definitions of a; and B;. ]

LemMA 2. Some further properties of the algorithm are as follows:

R(k)TMTA Tf(k) = .Yk—TP(k)TA Tf(k)’ (78.)
RWOTMAP® = 77 TP WTAP®), (7b)
RWTPO=0,  j<k,  (8)
R®OTPO=0, <k, (8b)
R(k)TMTE(k) = R(k)TF(k)ﬂ(— 1’ (93.)
ROTMR® = R WTpy-1, (9b)

Proof. We will establish (7a), (8a), and (9a). The other results follow
similarly.
From Eq. (2a), with k substituted for k+ 1, and from Eq. (6),
RWIMTATP W) = (- TpRT_ gT  pk=1T) 4 T (k)
=y TPRTATP ),

and thus (7a) is established.
Equation (8a) is established by observing that repeated use of the
definition of P yields
1;(”=MT(E(”Y',-"‘E(’”)Y,--lE,-—l‘?ﬁ - + RO B, - 1—,1_151._171),
(10)
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and so, by Eq. (5), R ®Tp =0 for j<k.
Using Eq. (2b) with k substituted for k+1, and Eq. (8a), we have

R(k)TMTE(k)_;_ R(k)T(f(k)Yk—l_ f(k—l)[g;_l) = R(k)Tf(k)Yk—- l’

which is Eq. (%a). ' ' ]

These algebraic properties can now give us some insight into the use of
the algorithm to solve the equation AX*= B.

Tueorem 1.  The columns of the matrix R® are orthogonal to
sp{ MTRO(MTAT)M'RO,...,(MTAT)*'M'R @},

and thus, if the algorithm does not terminate before k=[n/s] steps,
R® =0. Similarly, the columns of R™ are orthogonal to
sp{ MR ®,(MA)MR©, ... (MA)*"'MR®}, and R® =0.

Proof. From Eq. (10), under the assumption that all of the parameter
matrices are nonsingular, it is clear that

sp{P©,...,P®}=sp{MTRO,... . MTR®}, (11)
By the definition of R®,
A®esp{R*~H,ATP 4},
Using these two facts, a simple induction argument shows that
sp(MTRO,.... MTRE D) =sp{ MTRO, ..., (M'AT MTRO®),

and this, plus the biconjugacy condition (5), establishes the first conclusion.
If the parameter matrices exist, then the dimension of the kth of these
subspaces is ks, and thus at k steps, R ® must be orthogonal to every nonzero
n-vector, and therefore must be zero. The result for R® is established in a
similar way. a

The block (or standard) biconjugate gradient algorithm breaks down in
theory if R®™MR® or PMTAP® is singular (zero) for some k<k. In
practice, failure also occurs if any of these matrices is ill conditioned. In that
case, any roundoff errors in the computation may be magnified greatly, and
the parameter matrices will be calculated inaccurately. In hopes of postpon-
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ing this catastrophe, precautions can be taken; for example, B and B can be
normalized so that all columns of R® and R have the same size.

Failure is inevitable if at any stage one of the matrices P® or P® fails to
have full rank. This can be monitored by choosing matrices v, and ¥, which
orthonormalize the columns of P® and P®. A QR algorithm or a modified
Gram-Schmidt algonthm _might be performed on the matrices MR® +
p* =18, and MTR®+ P*~DB | and the resulting orthonormal matrices
used as P ® and P® respectively. When this orthogonalization procedure
produces a matrix of less than full rank, we must restart the block bicon-
jugate gradient algorithm.

3. SOME BLOCK CONJUGATE GRADIENT ALGORITHMS
FOR SYMMETRIC POSITIVE DEFINITE MATRICES

As mentioned in the previous section, the block biconjugate gradient
algorithm breaks down if one of the parameter matrices becomes singular or
undefined before the matrix R®=0. For matrices A and M which are
symmetric and positive definite, however, there are block algorithms which
cannot fail. With special choices of the matrix R® and reduction of the
blocksize if linear dependence arises, we can develop algorithms which
always terminate successfully with a zero residual matrix. Two choices of the
initial matrix R® give particularly useful algorithms.

If R9=R, the B-BCG algorithm reduces to a block conjugate gradient
(B-CG) algonthm

ArcoriThM B-CG VERsioN 1 (Hestenes and Stiefel form). Given X©,
let RO=B—AX©, define P(°)=MR(°)-yo,and for k=0,1,..., update the
iterates, residuals, and directions:

Xk+D) = x (k) 4 PR,
R(k+l)=R(k)—AP(k)ak,
PE+U=(MR** D+ PRB Iy,
where
o = (POTAP®) 1 TROTMR B
B = v, {(RWTMR W) "I R+ DTMR (k+1),
A version of the B-CG algorithm similar to this one has been developed

independently by Richard R. Underwood, working from the block Lanczos
algorithm rather than block biconjugate gradients.
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Notice that as long as the matrices P® and R® retain full rank, the
algorithm is well defined. By Eq. (11) of the previous section, for each value
of k, the ranks of these two matrices are equal. Thus we can monitor the
stability of the algorithm by calculating the matrices v, through an ortho-
gonalization procedure. If the columns of P lose their independence, we
delete the zero or redundant column j of P® and the corresponding columns
of X® and R™, and continue the algorithm with s —1 vectors. The vectors
x,(k) and r,(") can be updated separately, and the resulting sequences retain all
of the properties necessary to guarantee convergence.

Properties of the B-CG algorithm are derived as special cases of the
results in the previous section, and are summarized in the following theorem,
which also presents a minimization property which is a simple consequence
of these results.

THEOREM 2. For the block conjugate gradient algorithm,

ROTMRN =0,  js*k,
POTAPN=0, sk,
R®Tpi =, j#=k,
RMOTMAPR) = Yo Tp(k)TAP(k),
RM®TMRH = RWTp(R)y -1,
R® is orthogonal to sp{ MR©,(MA)MR©,...,(MA)*"'MR®}, and thus X®
minimizes tr[(X — X*)TA(X — X*)] over all X such that X—X0© €
sp{MR©,...,(MA)*~'MR®}.

A second algorithm is obtained if we make the choice R®=AMR ©, We
call this the block minimum residual (B-MR) algorithm.

Arcorrram B-MR. Given X©, let R¥=B— AX© and PO = MR,
and for k=0, 1,..., update the iterates, residuals, and directions:

k+1_.xk k
k+1) _ k k
R( + )—R( )—AP( )aky

P+l — (MR("'”) + P(k)ﬂk)7k+1’
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where

o, =(POTAMAP®) ~ 1y TROTMAMR ®),

Bi=vi (RPMTMAMR®) 'R+ DIMAMR *+ D),

The properties of this algorithm are summarized below.
Tueorem 3. For the block minimum residual algorithm,

ROTMAMRW=0,  j#k,
PRTAMAPH = 0, ik,
ROTYAPD =, j#k,
ROTMAMAP® =, TPRTAMAP®),
ROTMAMR® = ROTMAP(Ry~ 1,

and X® minimizes tr[(X — X*)TAMA (X — X*)] over all X such that X — X©
€sp{MRY,...,(MA)*" MR},

Since [(X® — X*)TAMA(X® — X*)]= RWTMR®, the name block mini-
mum residual algorithm is appropriate.

Other algorithms in this family can be derived for M=1 by setting R®
equal to a polynomial in SA times R ®, where § is a symmetric matrix which
commutes with A. Numerically, such algorithms often do not perform as well
as the standard conjugate gradient algorithm because the use of powers of
the matrix in inner products can introduce instability if SA is poorly
conditioned. Thus the conjugate gradient algorithm is more popular, and in
the rest of this section we consider alternate forms of the block conjugate
gradient algorithm only. Alternate forms of the other algorithms would in
many cases be derived analogously.

Rutishauser [31] developed a three term recurrence relation form of the
conjugate gradient algorithm. This form is not as efficient computationally,
because it takes more storage and more operations per iteration, but it is
interesting theoretically because it clarifies the relation between the con-
jugate gradient algorithm and other second order algorithms such as the
Chebyshev semiiterative or the Richardson second order method. All of
these second order algorithms can be written in the form

PR D = g0 g (=AM 4 (50— 6D gy
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where m,_, and w,,, are scalar parameters which vary from method to
method, and n_,;=0. The R-matrices in the block conjugate gradient algo-
rithm satisfy a similar relation. To see this, without loss of generality, take
v, = I and, following Reid [28], notice that the definition of P® implies
AP® = AMR® + AP*-Dp .
Using this and the definition of R **, we get
(—R*+*V4 R®) g ' =AP® = AMR® + AP*-VpB, .

Substituting for AP*~ D in this expression, using the definition of R™, and
simplifying yields

RE*V=R®+[ - AMR® + (RO - R* ) Jwps,
where n,_, = 0a; " Bi_, and wy ;= &;. Thus,
TIk_l=wk_l(R(k_l)TMR(k—l))_IB(k)TMR(k).

We eliminate the matrices P® from the definition of w, through some
algebraic manipulation. From the definition of P®),

RWTMAMR® =(p® — p-Dg, _ l)TA(pac) ~P*=0g, )
= pTAp(k) 4 :BkT— lp(k— DTA plk— I)Bk_ .
Thus
(R(k)TMR(k)) -IR(k)TMAMR(k) = ak—l + (R(k— l)TMR(k—-l)) - IP(k—l)TAP(k— 1)Bk_ '
=wih+ o B =wh e

This gives us an alternate form of the block conjugate gradient algorithm.

ArcoritaM B-CG Version 2 (Rutishauser form). Given X@, define
:il ®=B—AXD, 5_,=0, and for k=0,1,..., update the iterates and residu-

s

XD = X0 4 [ MR® —(XB = X*D)n, o,

R+ R ¢ [ “AMB(k)"‘(R(k)—R(k_l))")k—l]wkH:
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where
o =(R®TMR®) T 'ROTMAMR®) —n, _ |
nk___wk—+1l(R(k)TMR(k))—lR(k+ l)TMR(k+1), k>0.

The form of this algorithm suggests investigating alternate choices of the
parameters 7, and , in order to obtain block forms of other second order
methods, but this idea will not be pursued here.

Using this three term recurrence form of the B-CG algorithm, a special
form of the algorithm could be derived, as in Reid [29], which is useful for
problems of the form

A= AIT A3 s M_l=(A1 0 )’
Ay A, 0 Ay

where A, and A, are square nonsingular matrices. This algorithm uses a
special initial guess in order to reduce the computational work to less than
half that for the other versions of the algorithms. The algorithms of Chandra
[3] and Hageman, Luk, and Young [12] for this problem can be extended
similarly.

In some problems, computational savings can be achieved by a change of
variables. If, for example, it is expensive to form A times a vector, but there
is a matrix M such that forming M and AM times a vector is efficient, an
appropriate change of variables is Y= M ~'X. In terms of these variables, the
conjugate gradient algorithm is given as follows:

AvrcoriTaM B-CG VERrsion 3 (Change of variables form). Given Y@, let
RO=B—AMY© and P@=R®y,, and for k=0,1,..., update the trans-
formed variables, the residual, and the directions:

Y+ =y 4 P(k)ak,

R**V=R® _ AMP®q,,

PU+D= (RE+D 4 POIB )y, ,
where

o= (P(")TMAMP(")) - l‘YkTR (TpR ),

Bk o ,Yk-— I(R(k)TMR(k))‘1R(k+l)TMR(k+ l).

Upon termination, compute X **9 = My *+1),
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In the case of a single vector, this algorithm and applications are
discussed, for example, in [1] and [23].

Other versions of the block conjugate gradient algorithms are discussed
in Sec. 5.

4. CONVERGENCE ANALYSIS OF THE BLOCK CONJUGATE
GRADIENT ALGORITHM

In this section we establish results on the rate of convergence of the
block conjugate gradient algorithm for positive definite matrices. The tools
used are certain properties of Chebyshev polynomials and the fact that, of all
algorithms which form

s
P =x0+ X P, (MA)MAE),  i=12,...,s, (12)
j=1

where &, () is a polynomial of degree less than or equal to k—1 and
0= x,(o)— x*, the B-CG algorithm is optimal in the sense of minimizing a
certam measure of the error.

For simplicity in the presentation, we work with the unscaled algorithm
(M=1) first, and then generalize the results. First we summarize the facts
we need concerning Chebyshev polynomials.

LEmMma 3. Let
(N = (d2+d %)/Jk(d2+d)

where 0<d,<d, and 9, {(x)=cos(karccosx) for —1< X <1 is the kth
Chebyshev polynomial of the first kind. Then

(a) For 0<A<d,, we have 0<¢;(A\)< 1.
(b) For d; <A <d,, we have

el 2

where k=d,/d,.

Proof. (a): It is well known that the polynomials ¥, (x) and J;(x) have
all of their roots within the interval —1'<x<1, and obviously, J;(1)=1.
Also, ¥, (x) is a positive monotone increasing function for 1 <x < co. Now

+d; -
A) =, (x) / Jk( d ) where x= ———dz;;(ild 2A s
1
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so ¢ (A) is monotone decreasing for x> 1. The range 0 <A <d, corresponds

to (dy+d,)/(dy—d,) >x > 1, and ¢4(0)=1. Thus the first conclusion follows.
(b): It is also well known that |5, (x)| < 1 for —1<x < 1. The calculation

below is standard. We define ¢ such that cosht=(d,+d;)/(dy—d;). Then

d,+d
F| =2—L | = cos(karccoscosh )
do—d,

= cos( karccos cosit)
t\k —t\k
=coskit=coshkt= _(ﬂ_+2_(e_l,
where e'=(1+ V1 )/(1= V1 ). Therefore

k k
26J,(d2+d1) =(1+ V™! ) +(1— Vi1 )
\dy—d, 1- V™! 1+ V!
k
>(1+ Vi1 )
Ve
and the result follows. B

LEmMa 4. Forx>land k>1,
Ti(%)/ Tiema(x) < 22
Proof. This follows directly from the well-known recurrences

Tolx)=1, (%)==,

Tiev1(x)=2x

LA
.
=
N
f
R
1
o
=
%)
:-/

k>1. n

Let us establish some notation. We denote the eigensystem of A by the
n X n matrices U and A, where

AU= UA, UTU=I, A=diag(}\1,}\2,...,}\,,),

and 0<A; <A, <--- <A,. The columns of U are the eigenvectors. We
partition the matrix A into
A= A, O
0 A)



CONJUGATE GRADIENT ALGORITHM 307

where A, =diag(A,,...,A;_;) and A, =diag(A,,...,A,). Recall from Theorem 2
that the block conjugate gradient algorithm minimizes el * VA *? over all
choices of polynomials ¥, in Eq. (12). We denote by E® the nX(s—1)
matrix formed by deleting the last column of the matrix E, where E=
(0,60, ... 6]

The vectors g,, m=1,2,...,s—1, defined in the following lemma will
play a central role in our derivation of a convergence bound for the block
conjugate gradient algorithm. They are the same vectors as those used by
Underwood [34] to obtain a bound for the convergence rate for the block
Lanczos algorithm for finding the eigenvalues of a matrix.

Lemma 5. Let F be a matrix defined so that the columns of

F,) (s=1)X(s—1)

UF= U( F2 (n—s+1)x(s—1)

are an orthonormal basis for sp{AEY), and suppose that o, (F;)>0.
Define

A=ul! =(Fp..., 7
- F2F1~1 = rl""’rs—-l)’

F=F,F 1
Then:

(a) || F||>=tan%d, where §=arccoso,,(F,).
(b) For each m=1,2,...,s—1 there is a vector g,, Esp{AEY,...,A'E®)}
such that

Bm=U,t+ 2 Ointhis (13)
fm=g
where

), i=s,s+1,...,n.
Proof. (a): By definition,
FTUTUF=F[F,+ F[F,=I

Therefore, we have

Fy"FIFF'=F TR ~1
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and thus

(| FoFy 2|17 = —l=tan®4.

nin(Fy)
(b): Notice that the columns of R are also in sp{ AE®}, and let

&n =Tl A)T,
where &, is the polynomial of degree k—1 defined by
A HA—2A A A2\,
P(A)= gk—l(—}\n—_T Te-1 R

Notice that the numbers «,'7,, are elements in the matrix F.

In the following theorem we let k denote the spread of the eigenvalues A,
through A,

k=A,/A,.

We now state and prove a special case of the main result of this section,

THEOREM 5. After k steps of the unscaled block conjugate gradient
algorithm, the error in component s is bounded as

2k
~1
e§">TAe§’<)<(l—'————— V") -
1+ V!

Note. This result requires the hypothesis of Lemma 5 that o, (F,) >0.
The result is valid for any component m using the definition E™ =
[€D,...,e9 1,69, ,,...,e?]. The precise definition of the constant ¢, is given
in the course of proving the theorem. If s=1, the theorem reduces to a
well-known result [6].

Proof. We define the errors at the kth step by

$
e =x) —xx=c0+ 3 PHA)Ae,
j=1

eV =x0 —x*=Ug,

where each 9 is a polynomial of degree k— 1. The strategy is to show that
the bound holds for a particular choice of polynomials &, in the definition
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of e®, and thus, since the block conjugate gradient algorithm chooses the

optlmal set of polynomials, the bound must hold for &}, too.
We choose the polynomial ¥, to satisfy

Lr g, = -5 R /R 15),

The other polynomials are chosen to obtain a certain linear combination of

the columns of G:

S 4= - 3, [1+9u 0N og

i=1

Then
D= [1+9,(A)A]e0+ T, 9,(A)Ac”
=[1+9,(4)A]US- il RESMUDY -2
i=1

Using Eq. (13), we conclude that

el = i [14+ P (AN &~ sil [1+@ks(}‘l)>‘l]§l(u’+ ,-és 8"u‘)

= 3 1490t~ 3 1+ BN S ag

n

- 3 (e mande- 5 (e aum e, Ju

fo=s

and thus

2

e.s*>fAes*>—2([1+@ AT 2[1+@k, Wt .i)&

=§s[1+qp AATAE + 2 ( il[“%()»)%]éf% A

=s

j=1

n s—1

=23 2 [1+ P AN][1+ T AN 458N

i=s jm]
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We now bound each term in this final expression individually. The first term
is bounded as

where we define

r£1 Y és
&= \ la én= .
gs—-l gn
We have, for the second term,
i-S 7
2
A —2A\ -
AR g (e
i °, Kn_As >\n—>\s T
= '.gs 1§1 _ }\"+>\s A”+As—2)ﬁ £]ud rf AI
”"(A"—As) ( NN

s farase/3(22)
) A

. +A
ETE| 1Al 1612 %‘E( - )

s
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Finally, the third term is bounded in absolute value by
A +A,—2A A HA,
J"( A, 1)/"33(xn~&)
+

(A,,):\sk )”g,” (| Agénll IIFII/Jk(

23 2 EE0TIN,

A, +A, )

Adding these three bounds and using Lemma 3(b), the result follows. [ ]

We now discuss the generalization of this result to the scaled version of the
algorithm. ‘

THEOREM 5. Let
UT(M'Y2AMY?) U= A=diag(A;,As,...A,)

where UTU=1 and 0<A; <Ay < - -+ <A,. Let

k=N, /A,
For m=1,2,...,s let
E™=[el,...,e® 1,6, ,....e0 ]

Suppose that 6,,(F{™)>0, where UF"™ is an orthonormal basis for the
sp{AE™} and

F(m)= Fl('n) (s—=1)x(s—1)
F§™ | (n—s+1)x(s~1)

2k
o1
e,(,f)TAe,(,’,‘)<(l————K———) ¢,
1+ V!
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where ¢, is a constant depending on m but independent of k, given by

A HA, —2A

2
¢ 46T AL+ 16( A —A : ) tan®0,, || Ayl [1£]1%

+A,—2A
* 16( _An_A:\_iT—l— ) “‘51” “Az‘gn“ tan()m

where 8, =arccos o, (F\™).

Proof. This result is most easily established by noting that the scaled
conjugate gradient algorithm can be derived by writing the unscaled algo-
rithm for the equation

M'/?AM'/?Y=M'/’B

and then transforming back to the original variables, replacing Y, R, and P
by M~'/2X, M*?R, and M ~'/?P respectively. Making the same sub-
stitutions in the previous theorem yields the desired conclusion. |

The same kind of result holds for distinguished sets of eigenvalues other
than A, through A.. Suppose A_,, and A, are chosen so that the interval
0<ALA, ,, +A,,,, contains all of the eigenvalues and there are n—s+1
eigenvalues in the interval A, <A<A_ .. Then, defining

A rmax F Agpi — 27 A rmax+ A
¢k=gk( max NN )/g‘k( max min )’

Ama.x - }‘min Amax - Amin

we note that as A ranges between 0 and A, +A ., x=QA, +A,,—
2N)/ A nax — Amin) Tanges between (A, +Anin)/ Ao~ Amin) and — A, +
Amin)/ Agax = Amin)> SO [0 (M) < 1. Thus a similar result holds with this parti-
tioning of eigenvalues.

The convergence rate for the block conjugate gradient algorithm depends
on the distribution of eigenvalues of MA and the choice of the initial matrix
X @, The first factor is of primary importance; for fast convergence, M and s
can be chosen so that the matrix MA has a narrow cluster of n—s+1
eigenvalues. In addition, it is helpful if X©® is chosen so that the space
sp{MR©,...,(MAYMR @} is rich in the solution vectors for small k. In any
case, the block method cannot be slower than the standard conjugate
gradient method, which obeys the bound

1- Ve !

2k
) S OTA O
1+ V!

eFITA 4(

with k=7, /A,.
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5. THE BLOCK LANCZOS ALGORITHM AND METHODS FOR
SYMMETRIC INDEFINITE MATRICES

In this section we discuss an interpretation of the B-CG algorithm in
terms of a similarity transformation of the matrix A. This approach yields
further insight and alternate computational algorithms. For simplicity, we
work with the unscaled version of the algorithm, generalizing to precondi-
tioning at the end of the section. Our starting point is the following
algorithm, applicable to any symmetric matrix.

ArcoriteM Brock Lanczos (Golub and Underwood [10, 34], Cullum
and Donath [5]). Choose an arbitrary nXs matrix B, choose »; so that
Z® =By, satisfies ZMTZMV =1, and let Z©@=0, Iterate for k=1,2,...:

Z0H) = (AZO = 20, — ZB-Dy Ty
where o, =Z®TAZ® and », | is chosen so that Z&+VTZ*+D =7,

It is easy to show that the matrices Z* produced by the algorithm are
mutually orthogonal: i.e.,

ZOTZ0=0  for i#j,

and, if the algorithm does not break down, after k <k=[n/ s ] steps we have
a decomposition of the matrix A as

A(Z(l),Z(z),...,Z("))

=(zZ",z®,...,Z®)

+(0,0,...,0,Z%*+ Dy 1),
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where Z*+1 =0, We abbreviate this equation as
ATH® = F® ) 4 F k)

This algorithm uses a three term recurrence relation, as does Version 2 of
B-CG, and both algorithms yield a tridiagonal decomposition. The major
difference is that the Z’s are orthonormalized while the R’s are not.

Ruhe [30] has observed that the block Lanczos vectors can be generated
in such a way that T is not only a block tridiagonal matrix but also a band
matrix with 2s+1 nonzero diagonals. This is done by using the natural
choice of ».,,, a right triangular matrix generated by either the QR
algorithm or a modified Gram-Schmidt procedure. He also proposes generat-
ing the Z-columns one by one and reorthogonalizing against several previous
Z-blocks to slow the growth of roundoff error. With this implementation, the
stability of the process can be monitored quite easily.

The columns of % are an orthonormal basis for the space of n-vectors,
so we can express the solution to our linear system as

X* = k) k),
where { is an n-vector, and the system itself becomes

AZEE) = B=Z My 1,
or, multiplying by goT,

Vl—l

T0§E = g®Tp= |9

0
In this form we cannot conveniently accumulate iterates X® as the Lanczos

matrices are generated, but by a further change of variables we can. Let us
define a QR decomposition of T™,

TRYET = p (k)
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where V®TY® =J and

M
Ll, 1
L2, 1 L2,2

L(k) _ LS,] .L3,2 .1‘3,3

Lk—-l,k—.'} Lk—l,k—2 Lk—l,k—l
Lk,k—2 Lk,k—l Lk,kj

Here L, is a matrix of size s Xs. Introducing new variables
Wh = FEOABT k) )Gk,
our linear system becomes

-1
vy

LEy® =] O
0
X ) = )Y Ty () = (k) (8),

On examining the details of these formulas, we discover that the factors of V
and the blocks of columns of W can be formed and discarded one by one.
This development is entirely parallel to that of Paige and Saunders for the
single-vector case, and a detailed derivation of the algorithm for s=1 is
given in [27). Note that for j <k,

ZHOT(AX® — B)= Z(i)T(Afz(k)lﬁ(k)_B)
=(TWYN — Z®TB) 1 110s =0,

and since the span of the columns of Z® is the same as that of the Krylov
sequence {B,AB,...,A* 1B}, X¥ must be the same as the iterate from the
B-CG algorithm. Thus we have a new alternate form of this algorithm.

Arcoritem B-CG VERsioN 4 (Paige and Saunders form). Given B and
XO let RO=B-AX®, XO=XO zO=0, ZO=R,, where ZWTZV =
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I, W=z, py=0, p,=20AZ®D, L ,=p,, and V,=1I,, .. For k=
1,2,..., update the Lanczos vectors

Z/k+1) <AZ(") — Z(k)pk A T),,k_”,
where | is chosen so that Z**V7Z &+ =] Update the factorization; set
Prs = Z*FDTAZ G+,
(Lk+ 1,k—1’Ek+ 1,k)= (0,93 VT,
compute Vi, and L; ; so that V&+*VTy*+= _ and
(Ek,k’ Vk—+T1) Vi = (Ly10),
and let
(Lk+ Lk Ek+ Lk+ 1) = (L_k+ 1k> Pr+ 1) VkT+ iy
(WR, 7 6+ D) = (W 0, G+ 0y yT
Update the iterates; compute ¢ to satisfy
Ly wor—ot L 11+ Ly ate =0
or, if k=1,
Lyyy=v»y g
and set
0= R0 4 Wby,
Upon termination, determine ¢, ; and X**? from
Liw ko 1¥r—1% Liv i+ D e 19541 =0,
X(k+1)=XA(k)+ W(kﬂ)#jkﬂ.

One major advantage of Version 4 over the forms previously discussed is
its behavior on indefinite matrices. All of the versions produce least squares
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solutions if the matrix A is semidefinite, but the first three may be unstable if
A is indefinite, since they rely implicitly on an LU decomposition of the
matrix T. Because the QR factorization is stable for indefinite matrices,
Version 4 can be used for any symmetric matrix as long as the Z matrices
retain rull rank.

As one final variation on the theme, we extend to block form an
algorithm due to Fridman [9] and discovered independently by Fletcher [7].
Starting from X© =0, instead of minimizing tr[(X — X*)TA(X — X*)] over all
matrices in the kth Krylov space as the B-CG algorithm does, we minimize
the norm of the error tr[(X— X*)T(X— X*)] over the space {AR©,...,
A®R©®}, Using the Z columns as a convenient basis, we can express our
iterates as

k+1
Xk+h= > Z(’)si’
i=1
where sp{ZY} =sp{AR¥} and
g=ZDTX*,

In this form, the £’s are not computable, but notice that

n
*_ y(k) = @
X*—X -.2 Z e,
j=k+1

and thus the columns of this error matrix are orthogonal to all Z® for i <k.
Using this, the fact that Z**DTX® =0, the definition of the Lanczos
vectors, and the orthogonality of the columns of Z, we see that

Ep1= ZKk+ Ty = 7 (k+1) T(X* _ X(k))
= ”kT+ 1(Az(k) - Z(k)pk — Z(k—l)yk_ T) T(X* — X(k))
=pT [ ZOTA(X* ~ X *)

= ka+ lZ(k) TR (k)’

and this gives us a minimum error (ME) algorithm.
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ArGoriTHM B-ME. Given B and X©, let RY=B—AX©® and Zz0=
AR, where ZWTZW =1, Define Z©®=0. For k=0, 1,...

k+1) _ yi(k k
X+ = x (k) 4 7( +1)€k+1’
k+1) _ p(k k+1
R¢ J=R& _ A7+ )8k+1,
where
Gi1= VkT+ lz(k) R (k),

and let
ZE+D=(AZ¢+D - zE g, — ZOr ) rrss

where g, ., =Z*+*VTAZ®*D and p, , is chosen so that Z*+2TZ&+2 =1

This algorithm also is suitable for symmetric indefinite systems, but Paige
and Saunders have reported that Version 4 of the CG algorithm is less
sensitive to roundoff than the single vector form of the B-ME algorithm. A
version of the B-ME algorithm analogous to the single vector implementation
suggested by Hestenes [13] could be derived from the B-BCG algorithm.

To derive the scaled versions for the algorithms in this section, we use
the variable transformation employed in the proof of Theorem 6. Each
algorithm is applied to the problem

MY2AMY2y = M'/2B.

The resulting formulas are then rewritten in terms of the original residuals
and variables, replacing Z, R, W, and Y in the formulas by M'/2Z, M'/R,
M ~2W, and M ~/2X respectively. The final algorithms require the matrix
M but not M'/2 or M ~1/2,

6. REMARKS AND CONCLUSIONS

We have presented several block iterative algorithms for solving systems
of linear equations. Storage and operations counts for some typical im-
plementations of these algorithms and some single vector algorithms are
given in Table 1. The leading terms are of order ns plus s* for storage, and
order ns® plus s* plus the multiplication times for A and M with a vector for
operations per iteration. The amount of storage can be reduced at the cost of
increasing the operations counts somewhat.

Many questions relating to the rate of convergence of the B-CG algo-
rithms remain open. It should be possible, for example, to obtain results
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TABLE 1
STORAGE, MATRIX OPERATIONS, AND OPERATIONS COUNTS
FOR VARIOUS ALGORITHMS

Matrix operations
per iteration:
Storage n-vector multiplications
Algorithm n-vectors Total by A by M
BCG x,1,%,p,0,Ap (A p) 6n 2 —
(s=1L, M=1I)
CG Version 1 x,1,p,Ap 4n 1 —
(s=1,M=1I)
Precondi-
tioned
CG Version 1 x,1,p,Ap (MR) 4n 1 1
(s=1)
B-BCG X,R,R,P,P,AP (MR,A"P.M'R) 6ns 2s 2s
B-CG
Version 1 X,R,P,AP (MR) 4ns 1s 1s
B-CG
Version 2 X,AX,R,AR,MR,AMR 6ns 1s 1s
B-CG
Version 3 Y,R,P,AMP,MR (and MP) Sns 1s 2s
B-MR X,R,P,AP (MR),MAP(AMR) Sns 2s 2s
B-ME X,R,AZ,Z,Z,MZ 6ns 1s 1s
Overhead per Iteration
n-vector Multiply Factor Maximum

inner nXsandsXs n-vector sXs Orthogonalize number of
Algorithm products matrices  additions matrix s n-vectors iterations

BCG

(s=1,M=I) 2 4 4 — — n
CG Version 1 2 3 3 — — n
(s=1, M=1I)

Precondi-

tioned

CG Version 1 2 3 3 — — n
(s=1)

B-BCG 252 4 4s 2 @) [n/s]
B-CG

Version 1 2+ 3 3s 2 1) [n/s]
B-CG

Version 2 s+ 4 4s 2 — [n/s]
B-CG

Version 3 s2+s 3 3s 2 Q) [n/s]
B-MR £+ 3 3s 2 4)] [n/s]
B-ME 1.55* +0.55 4 4s — 1 [n/s)
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analogous to those of Axelsson [1] and Greenbaum [11] for particular
eigenvalue distributions.

Many computational questions also remain open. Only extensive com-
putational experience and roundoff error analysis will determine how the
algorithms should be implemented in order to balance reliability and
efficiency. Limited computational experience thus far indicates that the
linear independence of the direction vectors should be monitored, and
orthonormalization of them seems essential in order to avoid underflow and
overflow.

As expected, using the block conjugate gradient algorithm can result in
savings for solving multiple systems, for solving systems in which several
eigenvalues (large or small) are widely separated from the others, and for
problems in which the matrix is stored on a secondary storage device and
thus is expensive to access. For example, on a matrix of dimension n=100
with eigenvalues 1, 1.5, 2,..., 49.5, 50, and 400, the block CG algorithm
with two random B-vectors took 19 iterations to reduce the residual norms
by a factor of 10™*, whereas the conjugate gradient algorithm took a total of
45 iterations for the two problems, and the partial (s-step) conjugate gradient
method described by Luenberger [21, p. 187], designed for such eigenvalue
distributions, took 207. Matrices with separated low eigenvalues show the
same trends: a similar experiment with three vectors and a matrix of
dimension 200 with eigenvalues 1,2 and 400,401,...,596,597 required 5
iterations of the block conjugate gradient algorithm, 25 iterations of the
conjugate gradient algorithm, and 39 iterations of the partial conjugate
gradient algorithm. Thus, in both cases the block algorithm took the smallest
number of matrix multiplications and also the smallest number of accesses to
the matrix.

Richard R. Underwood will present further results on computation and
implementation of the block conjugate gradient algorithm in a later report.

I am grateful to Richard Underwood for providing notes from a talk he
presented on the block conjugate gradient algorithm and for his very helpful
comments on a draft of the manuscript. I am also grateful to Olof Widlund
and G. W. Stewart for suggesting that it should be possible to strengthen an
earlier version of the result given in Theorem 5.
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