
A Generaked Conjugate Gradlent Algorithm
for Solving a Class of Quadratlc Programmlng Problems

Dianne Prod O’Leary*

Computer Science Department

and Institute of Physical Science and Technology

University of Maryland

College Park, Maylund

Submitted by Robert J. Plemmons

ABSTRACT

In this paper we apply matrix splitting techniques and a conjugate gradient
algorithm to the problem of minimizing a convex quadratic form subject to upper and
lower bounds on the variables. This method exploits spa+ structure in the matrix
of the quadratic form. Choices of the splitting operator are discussed, and conver-
gence results are established. We present the results of numerical experiments
showing the effectiveness of the algorithm on free boundary problems for elliptic
partial differential equations, and we give comparisons with other algorithms.

0. INTRODUCTION

The techniques developed in [4] will here be applied to a constrained
optimization problem:

min $=Ax-r=b,
x

where A is a symmetric non positive definite matrix. This quadratic

programming problem often arises in a form such that the matrix A is large
and has a nonrandom sparsity pattern. The applications considered here arise
from the finite difference discretization of free boundary problems for
elliptic partial differential equations. Problems of this form include models of

*This work was supported in part by the Fannie and John Hertz Foundation, the National
Science Foundation under Grant MCS76-0&595, the Energy and Research and Development
Administration Contract EY-76S-Q34326 PA #30, and the National Science Foundation Grant
MCS75-13497.

LINEAR ALGEBRA ANZIZZSAPPLZCATZONS 34:371-399(1989) 371

8 Elsevier North HoIland, Inc., 1980
52 Vanderbilt Ave., New York, NY 10017 0024-3795/80/060371+30$01.75

372 DIANNE PROST O’LEARY

water flow through a porous dam [2], the journal bearing [7], and torsion
applied to a bar [3].

We describe in Sec. 1 a conjugate gradient algorithm due to Polyak [19]
which is suitable for this problem and develop a modification which can
exploit spar&y structure in the matrix A. In Sec. 2, we give alternatives for

the scaling operator for the conjugate gradient iteration, First some matrix
theory is developed for eigenvalues of submatrices, and then these results are
used to establish bounds on the rates of convergence of the methods

proposed. In Sec. 3 numerical experiments are presented which explore the
effectiveness of the conjugate gradient method with matrix splittings and
compare it with other algorithms. In Sec. 4 we summarize our results.

We will use the following notational conventions. Capital letters will

denote matrices, and lowercase letters denote vectors or scalars. Compo-
nents of vectors will be indexed by lowercase letters as subscripts, while
subvectors will have capital indices. Superscripts will denote iteration num-

bers.

1. CONJUGATE GRADIENT ALGORITHMS FOR QUADRATIC
PROGRAMMING

The quadratic programming problem

min ;xTAr-xTb,
r

(1)
c<x<d,

with A an n x n symmetric and positive definite matrix and b, c, and d given

n-vectors, often arises in the context of discretization of elliptic partial

differential equations. A solution to this problem always exists, and it is

necessarily unique.
An equivalent formulation of the quadratic programming problem can be

established through the Kuhn-Tucker optimal@ conditions (See [13, Chapter
7-j). For an arbitrary x, let Y be defined by

y=Ax-b. (2)

Then x solves (1) if and only if for j = 1,2,. . . , n,

yi > 0 if xi=ci,

Yj (9 if xi=di,

yi =o if ci<xi<dj.

GENERALIZED CONJUGATE GRADIENT ALGORITHM 373

An important special case of the quadratic programming problem is the

linear complementarity problem, in which c = 0 and d = CO. The optimality

conditions then reduce to

rTy=O (complementarity condition),

x>o, y>o (nonnegativity condition).

The algorithm upon which we will build is an iterative method due to
Polyak [19]. The Polyak algorithm maintains feasibility of the vector iterates

xc’) (i.e., c < rck)< d) while iterating toward the proper sign conditions on y.
Given an initial feasible x (O) the Polyak algorithm performs a series of nested ,
iterations. In the outer iteration we choose a subset Z of the indices

{I,2,..., n} for which the variables xi are at their upper or lower bounds and

the optimality conditions are satisfied; specifically,

Z= {i: xi=ci and y,>O} u {i: xi=d, and yi<O}. (3)

The vector of x variables whose indices belong to this set will be denoted x1,

and all other x variables will be denoted by x,. Corresponding to this choice
of the index set I, we partition and rearrange the y and b vectors into I/I and

y,, and b, and b, respectively, and the matrix A is rearranged symmetrically.
With this notation, (2) is equivalent to

The values of variables xr will be kept fixed during the inner iteration, which
will try to force all variables y, to be zero by solving

A,,x,= b,-A,,+

A,, is positive definite and symmetric because it is a principal submatrix of

A, so the conjugate gradient method [14] can be applied to this linear
system. We could solve this system exactly if we did not have upper and
lower bounds on the variables, but because we want to keep these bounds
satisfied, we modify the conjugate gradient iteration. If any step in the
iteration would cause some variable xS with s EJ to attain or to violate one of
its bounds, the step is shortened if necessary to the point where x, attains the
bound, s is added to the set Z (the index set of the unchanging variables), and
the inner iteration is restarted with a new partitioning of the matrices and

374 DIANNE PROST O’LEARY

vectors. Once we complete the conjugate gradient iteration, we know that
y,= 0 and c, Q x, < d,, since the inner iteration solved (4) without violating
any constraint on x,. We then begin a new outer iteration, choosing, as in
(3), an index set Z corresponding to the current values of the variables x. If
the new index set is the same as the one for the preceding cycle, then the
optimality conditions are satisfied, and the algorithm halts with the solution.
Otherwise a new inner iteration begins.

Now we will state the Polyak algorithm more precisely.

Znitiulizaticm

l Choose an x(O) such that c < x(O) < d, and set k-0.

l Set Z={1,2,..., n}. This definition ensures that the first halting test in
the outer iteration will work properly.

Outer Zteration

l Let k=k+l, a?)=~@-~), y@)=Ax@)-b, and Z,_,=Z,
l Define I, = {i: xik) =ci and yjk) >0} u {i: xjk) =d, and yjk) <O}.
l If I, = Zk_ i, halt. The optimal solution has been found. Otherwise, set

Z = I, and begin the inner iteration.

Inner Iteration

(a) Partition and rearrange the matrix system as

with A,, s X s, symmetric, and positive definite. We initialize the conjugate
gradient iteration to solve Eq. (4). The sequence {z(s)} will be our approxi-
mations to the solution vector x,. The vectors $9) will be search directions,
and vectors r(Q) will be residuals for Eq. (4). Set 4 = 0 and

$0’ = 7 (“)=bJ-A,Iz$k)-A,Jz(o).

(b) Calculate the new iterate and residual. We compute two step param-
eters: acg is the conjugate gradient step in the direction p(q), and a_ is the
largest step in that direction which does not violate any bounds on the

GENERALIZED CONJUGATE GRADIENT- ALGORITHM

variables:

(r(q), p(q)) _ (r(9), r(Q))
ucg= (#9), A&9)) - ($9), 449))

375

I c.-_2!9)

a = min min J-L-
df+

max
j=1,2 ,...,s 49) ‘j=$?...s (9)

pjP)<O pjq’>o
pi

I

The step taken is the smaller of these two positive numbers:

The vector y could also be updated at this stage to correspond to the current
values xjk) and z(q+l).

(c) Test for termination of the inner iteration:

(i) If r (q+l) =o set %fk) =x(9+1)

(ii) If {i: z/9+1;

and restart the outer iteration.
=ci or di} =$, proceed with (d).

(iii) Otherwise, set zfk) =z(q’+‘) and Z= {i: xik)=ci or d,}. If Z= {1,2,..., n},
then restart the outer iteration. Otherwise restart the inner iteration.

(d) Calculate the new search direction p(Q+l), A,+-onjugate to the old
ones:

b9= - tAJJP
(9), r(9+l)) = (r(9+l), r(9+l))

(pc9), A,gc9))
(T(9), T(9)) ’

p(9+‘)= r(9+l) + b$9’

Replace q by q + 1 and go to (b).

The initialization of z(O), p(O), r(O), and 4 in step (a) of the inner iteration,
plus steps (b) and (d) with a4 = acg and (c) replaced by

(c’) If r (9+l)=O, aen halt e& .q=z(Q+l)

constitute the standard conjugate gradient algorithm for solving the linear
system (4). The first iteration is equivalent to a steepest descent step for

376 DIANNE PROST O’LEARY

minimizing the quadratic form, and successive steps use as the search
direction the component of the gradient which is A,conjugate to all
previous search directions.

For a clear exposition of properties of the conjugate gradient algorithm
and its use in optimization, see [16]. We need only a few of its properties
here. Under exact arithmetic the conjugate gradient method for solving
positive definite linear systems terminates in a finite number of iterations.
Moreover, {E(x(‘))} is a monotonically decreasing sequence, where

E(x)= +(x-x*, A(x-x*)),

x* is the solution to the system Ax* = b, and the iterates x(I) are obtained via
the conjugate gradient algorithm [8]. We now show that the quadratic
programming algorithm also has finite termination.

THEOREM 1. Polyak ‘s algorithm terminates in a finite number of itera-
tions.

Proof. Each inner iteration terminates because either the chosen system
is solved by conjugate gradients, or the size of the system is reduced (possibly
several times) and the reduced system is solved by conjugate gradients. Let
a$ denote the solution to (4) for a particular choice of the set I and the values
x1. We want to show that E(x), the conjugate gradient descent function for
solving Ax * = b, is a descent function within the inner iteration. Now

= f (x;AI,xI + 2x;AlIx, - Bx;b,)

+;(x;A,,x,-2x;b,+x*=b)

= ;(x, -x;, A,,(x, -x;))

+ f (x;AIIxl - 2x;b, + x*Tb - x;~A,,x;).

The first term, (x1 -xi, AIJ(zf - x;))/2, is the conjugate gradient descent
function for solving the linear system (4), and the rest of the expression for
E(x) is constant within the inner iteration, so E(x) has been shown to be a
descent function for any inner iteration between restarts. But any restart of
the conjugate gradient algorithm will preserve the descent property, so E(x)

GENERALIZED CONJUGATE GRADIENT ALGORITHM 377

is a descent function for the entire algorithm. The conjugate iteration will
take at least one step at each inner iteration, so the value of the descent
function strictly decreases. Thus no linear system can repeat once it has been
solved in an inner iteration, and since there are finitely many linear systems
(corresponding to a choice of index set and the choice of either upper or
lower bound for each variable in it), the algorithm must terminate. n

Diamond’s algorithm [lo] is a special case of Polyak’s for problems with
c = 0, d = co, and A an M-matrix. In that case, the chosen system for the
inner iteration can always be solved without violating the constraints on x,,
and it can be shown that the subsets Z are nested:

I k+lCzk*

Diamond chooses to solve the linear problems in the inner iteration by an
iterative method other than conjugate gradients.

The performance of the Polyak or the Diamond algorithm can be greatly
enhanced by improving the convergence rate of the inner iterations. This can
be accomplished by using the scaled conjugate gradient algorithm with
matrix splittings described in [4]. In this algorithm, we base our search
direction p on @‘r rather than on r, where M-i ’ is an approximation to
the matrix A ,;I. One precaution must be taken, however. A problem may
arise if, in beginning the inner iteration, some x, is at its bound for SEZ.
Suppose, for example, that xs = cs and rs >O. (A negative value for rs would
imply that s E 1.) Then for the normal conjugate gradient iteration, p(O) = r(O),
so pL”) > 0 and the step increases x,, since the step parameter a, is positive.
Thus the bound on X, remains satisfied. If we apply the scaled algorithm,
however, (M’- ‘do)), may be negative, and the algorithm would not be able to
take a step without violating the constraint that x, > es. We avoid this
problem by performing one initial steepest descent step (p(O) =r(‘)) at tbe
beginning of each inner iteration and then proceeding with the scaled
algorithm.

The resulting algorithm is as follows:

Znitiulizaticm

- Choose an X(O) such that c < r(O) < d, and set k-0.
- Set Z={l,2;**,n}.

Outer Zteration

. Let k=k+ 1, X(r) ~~(~-l), Y(k) z&k) -b, md I,_, =I.

l Define Zk={i:xjk)=ci and yjC)>O}~{i:x$k)=d, and yik)<O}.
l If I, = Zk_ 1, halt. The optimal solution has been found. Otherwise, set

Z=Z, and begin the inner iteration.

378 DIANNE PROST O’LEARY

inner iteration

(a) Partition and rearrange the matrix system as

with A,J s X s, symmetric, and positive definite. We initialize the iteration to
solve Eq. (4). Set

$p’ ,;r(k)
I ’

do’ =b, -A,,xjk) -A&').

(b) Calculate the new iterate and residual. We calculate two step
parameters: acg is the conjugate gradient, or, equivalently for this step, the
steepest descent parameter, and a_ is the largest step which does not
violate any of the bounds:

acg= (
(r(O), r(O))

do’, AIldo') ’

c.-z!O’
a A-J-

dpf"
max = min min

j=1,2 ,...,s T,@) +1Fyt,s- * TP)

rp<o
I

rp > 0
I 1

The step taken is the smaller of these two positive numbers:

(i) If r 0) =0 set xtk) =z@) and restart the outer iteration.
(ii) If {i: z/i;= ci or dr} = +, proceed with (c).
(iii) Otherwise, set xfk) =z(‘) and I= {i: xik) =c, or d,}. If I= {1,2; * *, n},
then restart the outer iteration. Otherwise repartition x, b, and A as in (a),

GENERALIZED CONJUGATE GRADIENT ALGORITHM 379

set
z(U=zW

J ’

T(l)=b,-A,,r~k)-z(‘),

and continue with (c).

(c) Initialize the scaled conjugate gradient algorithm. Choose E to scale
the matrix A,, , set q= 1, and let

p(i)=~-lr(n<

(d) Calculate the new iterate and residual:

aCg= (

(r(Q), p’9 (,(9),3-l&9))

p(9), A,,p’q’) = (p(4), A,,p’Q’) ’

a = min
cj -49)

min -
d, -z;S)

mar i=l,Z,...,s pi”’
p14) <o

pi’9’

,.(9+1) 49)_a9A,,p(9).

(e) Test for termination of the inner iteration:

(i) If r (9+1),(), set XfkL-2(9+u and restart the outer iteration.
(ii) If {i: 49+1j =ci or di} =+, proceed with (f),
(iii) Otherwise, set xjk)=z(9+i) and Z={i: xik)=ci or di}. If 1={1,2,...,n}
then restart the outer iteration. Otherwise restart the inner iteration.

(f) Calculate the new search direction, AJrorthogonal to the old ones:

b9= -
(A,,p’$ @‘r(Q) I_ (T

(9+05-lr(9+l))

(~'~"9 A,,pc9') - (r(9),~-17(9)) ’

P
(9+1),~-17(9+l)+b9p(9).

Replace q by q + 1 and go to (d).

380 DIANNE PROST O’LEARY

Initialization of z(i), r(l), and q, plus steps (c), (d), and (t) with uQ=ucg
and (e) replaced by

(e’) If T (‘J+r)=O then halt with x,=z(9+i) 9

constitute the scaled conjugate gradient algorithm for solving the linear
system (4). [See 41.

Since E(r) is a descent function for both the original conjugate gradient
algorithm and the scaled version [4], the convergence proof given above for
Polyak’s algorithm applies to the modified version, too.

One further refinement is possible in the computation. We do not need
to solve the linear systems in the inner iteration to a high level of accuracy,
since the sole purpose of this step is to determine the next index set I we
wish to consider. We need only guarantee that no system will repeat. Thus
we can work with a large error tolerance and test whether]]r(‘r+‘)]] <e, in
step (e), rather than whether T (q+ ‘) = 0. This tolerance is refined before
termination in the solution of the final linear system. Using an initial
tolerance equal to the square root of the final one of 10e6 reduced the
number of operations in the computation by a factor close to two in
numerical experiments.

Thus far we have developed a finite algorithm to solve the quadratic
programming problem with upper and lower bounds. The algorithm never
changes the matrix A and in fact only needs to use A to form products with
arbitrary vectors. Thus the algorithm is suitable for sparse matrices A.

2. THE CHOICE OF THE SCALING MAT&X 2

A remaining issue is the choice of the matrix L% We need a scaling matrix
fi such that the computation of fi-’ r can be performed easily and so that
the convergence of the conjugate gradient algorithm is accelerated signifi-
cantly. The convergence rate for the conjugate gradient method applied to
the linear system is bounded as follows:

E(x@)) < (l-&)E(x+-‘)) (5)

where K is the ratio of the largest and smallest eigenvalues of the matrix
%?‘/2A,,@1/2, and E is the descent function for Eq. (4) [8].

We consider in this section two classes of scaling matrices. The first class
is determined by the knowledge of good scaling matrices for the full operator
A, and the second class is formed by applying alternate iterative methods to
the quadratic programming problem.

GENERALIZED CONJUGATE GRADIENT ALGORITHM 381

2.1. Methods Based on a Scaling of the Matrix A
Suppose that M is a positive definite scaling matrix for A and that P is the

permutation matrix corresponding to the current partitioning and rearrange-
ment of the linear system:

There are two simple methods which could be used to obtain a matrix fi
which scales A,,.

METHOD 1. Partition and rearrange the matrix M in a manner corre-
sponding to the current rearrangement of A:

PMPT =
(1

MI, M_5

M,, ’ MI1

and use M,, as the scaling matrix i%

METHOD 2. If a Cholesky factorization of M is available, partition and
rearrange the factors LLT as

PLLT= (PLPT)(PLT) =
(::: :::)(2 2)

and use L,,LF, as &?.

In actual computation, the matrices and vectors need not be physically
rearranged. A vector of logical variables can indicate membership in Z or]
and can be used to ignore the appropriate matrix or vector elements.

In special cases a single factorization of M = LLT, where L is lower
triangular, suffices for Method 1. Consider a tridiagonal matrix of the form

M=

Ml
M2

M*

>

nxn

382 DIANNE PROST O’LEARY

where each submatrix is tridiagonal and Toeplitz:

r
ml

m2

m2

ml m2

Then i@ has the form

SXS

where M(has the same form as the matrix M,, but different dimension. To
factor M or i%it suffices to factor the largest matrix M, in M into LILT. Then
each block Mr (or %&) is a leading principal submatrix of M,, and its factors
are the leading principal submatrices of L and L* of dimension aI (or /3,).

We now wish to show that whenever E is obtained from a matrix M by
one of the two methods above, then the convergence bound (5) for the
conjugate gradient method applied to a linear system involving the matrix
A,, using the scaling matrix i% is at least as good as that for the conju-
gate gradient method applied to a linear system involving the full matrix A
with scaling M. To do this, we compare the eigenvalues of M-IA,, with
those of M -‘A and thus get a bound on K in expression (5). For any positive
definite scaling matrix M we have the following results:

LEMMA 1. Let the scaling matrix M be obtained using Method 1 above.
Then it is positive definite. Suppose the dimemicm of 2 is n - 1, and let

&>&2>**. >X,>O be root-s of det(A-AM)=> and
x,>x,>*-* >X,_,>O be roots of det(AII-XM)=O.

ThenX,>~,>A,>x,>~** >A,_,>X,_,>X,.

GENERALIZED CONJUGATE GRADIENT ALGORITHM 383

Proof. a is positive definite, since it is a principal submatrix of a
positive definite matrix. For the proof of the interlacing of the eigenvalues,
see Wilkinson [Zl, p. 3401. n

LEMMA 2. Let the scaling matrix E be obtained using Method 2 above.
Then the results of Lemma 1 hold for it.

Proof. The main diagonal elements of the factor L,, are a subset of the
main diagonal elements of L, which are all nonzero, since LLT is positive
definite. Thus L,,LT, is positive definite, too. To prove that the eigenvalues
interlace, note that

By the Courant-Fischer characterization of eigenvalues,

A 0+1 =~max{~TL-lAL-‘~:(I~I(=l, Px=O}
0X” r

=rjainmax{yrAy:)]LTy]/=l,Py=O}, a=O,l,..., n-l,
OX" Y

where P is any matrix of the indicated dimension.
Suppose that A,, is obtained from A by deleting the k-th row and

column. Then

x a+1= min
P

max { ~~Ljj’A,~Ljj~x~: 1) x, 1) = 1, Px, =0}
ax”--l XJ

= min max{y~AI,y,:]jL&y,ll=l, PyJ=O)
pmXn-l YJ

=pmax{yTAy:yk
0X” Y

=O, (L=y)k=o, I]L=y)]=l,Py=o},

where ek is the kth unit vector. Therefore, A,,, < A,+r.
The corresponding max-min characterization of eigenvalues can be used

in an analogous argument to prove that X, b A,, r. n

LEMMA 3. Zf E is obtained by either Method 1 or Method 2, then if A,
and A, are respectively the largest and smallest roots of det(A -AM)
= 0, and xl and x, are respectively the largest and smuUe.st roots of

384 DIANNE PROST O’LEARY

WA,, - A%?) = 0, where the matrices g and A,, have dimension s, the n
X,>A, andh,dA,.

Proof. This result follows by induction using the results of Lemmas 1
and 2. n

Lemma 3 gives us the following result:

THEOREM 2. The convergence bound for the conjugate gradient algo-
rithm applied to the subproblems is at least as good as that of the conjugate
gradient method applied to the original matrix.

Thus, if we have a matrix M for which linear systems Md = r can be
solved easily, and M scales A well in the sense that the roots of det(A -XM)
do not have a wide range, then we have a good scaling operator for the
subproblems in the scaled conjugate gradient algorithm for quadratic pro-
gramming.

The simplest scaling matrix M is the diagonal portion of A (ma =

all* mrf =o, l,j=l,2 ,..., n, I+/). It has been shown by Forsythe and Straus
[12] that if A is two-cyclic, then among all diagonal matrices, this choice
minimizes K in (5) and thus maximiz es the estimated convergence rate. Even
for a general matrix A, it is often advantageous to scale the problem in this
way.

From the form of the matrix M in Method 2, we can see that the matrices
fi for Methods 1 and 2 differ by at most a rank n-s matrix, where s is the
dimension of G, and the eigenvalues of the matrix obtained by Method 1 are
greater than or equal to the eigenvalues of the matrix obtained by Method 2.

2.2. Methods tied on Iterative Algorithms
It has been shown (for example, [l]) that suitable iterative techniques for

solving linear or nonlinear systems can be accelerated by application of the
conjugate gradient algorithm. We can extend this idea to our problem.
Define fi-$6) by #) _ - z, where Z is the vector obtained by applying a
double sweep of modified symmetric successive overrelaxation (SSOR) to the
linear system (4) using 2 (i), the current conjugate gradient iterate, as the
initial guess. The SSOR iteration is modified so that no variable violates the
constraints. More precisely, let

h ‘b, -A,1xn

A,, = (qx,.

GENERALIZED CONJUGATE GRADIENT ALGORITHM 385

We apply the SSOR iteration to the system

For i-1,2 ,..., s, let

(
j-l

Zf =q + w fi - x a& - 2 apzp)/ “ii’ l-1 1-i

if zf<ci,

if .zf >d,,

otherwise,

and for i=s,s- 1,. ..,l, let

if z; <Ci,

if z;>di,

otherwise,

where w is a parameter such that 0 < w < 2. Then the result of one iteration

of modified SSOR is Z. The nonsymmetric version of this iteration (using
forward sweeps only) has been discussed by Cottle and Coheen [5] for
problems with A an M-matrix.

For the modified SSOR iteration, the scaling operator G- ’ has no simple
form. The matrix is neither symmetric nor positive definite, and it changes
from iteration to iteration in the conjugate gradient algorithm. Thus, none of
the conjugate gradient convergence theory applies. Nonetheless, it has
performed well in experiments on elliptic partial differential equations,
whereas the unmodified SSOR scaling was not effective.

386 DIANNE PROST O’LEARY

As mentioned in Sec. 1, for the special case in which c = 0, d = co, and A
is an M-matrix, the linear systems can always be solved without violating the
constraints on xJ. In this case, we can simply set

zi=zf and Zi=zF

without degrading the convergence of the iteration, reducing the matrix 3-i
to

where A,J =D(Z-L-LT), L is strictly lower triangular, and D is diagonal. As
long as A, is normalized so that its diagonal elements are equal, this matrix
is symmetric and positive definite, and the conjugate gradient convergence
theory applies.

3. ALTERNATE ALGORITHMS AND NUMERICAL RESULTS

Standard algorithms for the general quadratic programming problem
involve complementary pivoting and inversion or factorization of sub-
matrices of A [9, 11, 13, 15, 181. These algorithms may not be practical for
large, sparse, structured matrices. For example, free boundary problems in
elliptic partial differential equations often give rise to irreducible M-matrices,
and A-’ may be totally full even though A is highly sparse. Successful
algorithms for this special application of quadratic programming have often
involved some modification of the SOR algorithm. Cea and Glowinski [3]
propose a block form of the modified SOR iteration discussed in Sec. 2.2.
Cryer [q obtained good results with the specialization of this algorithm to
the linear complementarity problem. Cottle, Golub, and Sacher [6] propose
an SOR algorithm for the complementarity problem which uses Sacher’s
algorithm [20] for subproblems involving linear complementarity problems
with tridiagonal matrices. Cottle and Goheen [S] extend this algorithm to the
quadratic programming problem and survey several alternate methods.

We now present a summary of the results of numerical experiments on
three groups of problems. We compare the performance of the algorithm
proposed in this paper with that of Cottle and Goheen’s SOR algorithm
mentioned in Section 2.2, since in experiments reported in [S], it ranked
among the most effective algorithms.

EUPLE 1. The first problem is the linear complementarity problem
with the matrix A corresponding to the Laplacian S-point finite difference

GENERALIZED CONJUGATE GRADIENT ALGOFUTHM 367

operator:

A=

T=

-Z
T

-1
4

-Z

-1

-1

-I T

f

m*xm2

,

1

,

,n

* -1
-1 4. RXtTI

The conjugate gradient algorithm was run with scaling matrices equal to the
tridiagonal portion of A, a partial LLT factorization, and the SSOR operator.
(These algorithms are denoted in the tables and figures by CC + T, CG + LLT,
and CG+ SSOR respectively.) The LLT factorization was chosen to be one
for which L has the same spar&y pattern as the lower triangular portion of
A. The algorithm is due to Meijerink and van der Vorst and is defined in
[17J The scaling was performed using Methods 1 and 2 for the tidiagonal
and LLT matrices, but there was no significant difference between the
performance of the two methods. Table 1 shows the results of numerical
experiments with randomly generated vectors b. We present the average
number of inner iterations over five examples for the various algorithms and
for m = 16 and m=23 (n =256 and 529 variables respectively). For the
algorithms with parameter o, results shown are the average over u = 1.1, 1.3,
1.5, 1.7, and 1.9. In all cases, the initial guess x(O) was 0, and l = 10 -3 for all
but the last iterations, with a final criterion of e= 10 -‘.

TABLE 1
NUMBER OF ITERATIONS FOR EXAMPLE 1

n

Tridiagonal
scaling,

Method 2
(CG + T)

CG with

Partial
LLT Scaling,

Method 2
(CC + LL=) SOR

256 I 67 35 36 94
529 67 60 56 >212

388 DIANNE PROST O’LZARY

The conjugate gradient algorithms required 5-7 outer iterations for
n = 256 and 6- 8 for n = 529, independent of scaling. The average number of
active variables per outer iteration was s = 196 for n = 256 and s =435 for
n = 529. The number of restarts varied between 0 and 3.

There is, of course, a varying amount of work per iteration depending on
which scaling is used. The tridiagonal scaling from Method 2, for example,
requires approximately 3s operations (multiplications and additions), while

DOT-DASHED SOR N-529
Df3SHED SCM? N-256
DOTTED CG+SSDR N-529
SOLID CG+SSOR N-=256

0

d
I 1 1 r 1 I I 1 r f

1.0 1.1 1.2 1.5 1.4 1.5 1.6 1.7 1.6 1.9 2.0

u

FIG. 1. Algorithm performance on Example 1 varying w.

GENERALIZED CONJUGATE GRADIENT ALGORITHM 389

SSOR requires the equivalent of two matrix-vector multiplications involving

the matrix A,, (s Xs). The SOR algorithm as described by Cottle and
Goheen requires a matrix-vector multiplication by the entire matrix A
(nXn) at every iteration, regardless of how many variables are at their
bounds.

It can be shown that K for the matrix A and for the matrix M-IA with
tridiagonal scaling is O(m2). Using the optimal value of w, SOR is expected

to converge in O(m) iterations when applied to a linear system involving the

0

3
DOT-DFISHED SOR
Dt=tSHED CG+T

0 . DOTTED CG+LL (TRRNSI

: SOLID CG+SSOR

0

ii-

i-

0

FIG. 2. Algorithm performance on Example 2, C=5.

390 DIANNE PROST O’LEARY

matrix A. The number of iterations for the quadratic programming algorithm
is underestimated by the linear theory.

Figure 1 shows the variation in average number of iterations for different
values of the parameter w in the SOR algorithm and for conjugate gradients

with SSOR scaling. So far there is no theory to predict the optimal value of w

for the SOR quadratic programming algorithm, and a user has little guide in

DOT-DASHED CWT
DRSHED CG+LL [TRANS)
DOTTED SOR
SOLID CG+SSDR

0

d
I 1 1 1 r 1 1 I 1

0.0 100.0 mo.0 300.0 4M.0 SW.0 600.0 nn.0 mo.0 gal.0

N

FIG. 3. Algorithm performance on Example 2, C = 9.

GENERALIZED CONJUGATE GRADIENT ALGORITHM 391

making his choice. The conjugate gradient algorithm can be seen to be much
less sensitive to the choice of w.

EXAMPLE 2. This is a model for studying the effects of torsion applied to
a rectangular bar. Cea and Glowinski [3] present the model for a cross

DOT-DFISHED CWLL (TRANSI
DASHED CG+T
DOTTED SOR
SOLID CG+SSOR

FIG. 4. Algorithm pedormance on Example 2, C= 13.

392 DIANNE PROST O’LEARY

section of the bar as follows:

u=o on r,

14x9 y)l < Wx, Y, r)V

where C is a positive constant related to the magnitude of the torsion,

DOT-DF1SHED SOR N-900
DRSHED SOR N-5529
DOTTED CG+SSOR N-900
SOLID CG+SSOR N-S29

0

d
1 I I r I I I I r 1

1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0

FIG. 5. Algorithm performance on Example 2 varying U, C=5.

GENERALIZED CONJUGATE GRADIENT ALGORITHM 393

D(x, y, I’) is the distance between the point (x, y) and I’, the boundary of
the region 9, and u is the stress function. After discretization, this is a
quadratic programming problem. The distances form the upper and lower

bounds, the matrix A is taken to be the Iaplacian S-point operator, and b has
every component equal to C. Figures 2-4 show the results of experiments
with m = 1623, and 30 (n = 256,529, and 900 respectively) and C= 5,9, and
13. The initial guess and the convergence tolerance were as in Example 1.
Increasing values of C correspond to more variables at their bounds in the

DOT-DASHED SOR N-900
DASHED SOR N-529
DOTTED CG+SSOR N-900
SOLID CG+SSOR N-529

4------l-
1 I

-
I I r 1 ,

1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0

w

FIG. 6. Algorithm performance on Example 2 varying W, C-9.

DOT-DASHED SOR N-900
DfISHM SOR N-529
DOTTED CG+SSOR N-900
SOLID CG+SSOR N-529

I I 1 I

1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.6 1.9 2.0

w

FIG. 7. Algorithm performance on Example 2 varying o, C== 13.

TABLE 2
AVERAGE NUMBER OF VAFtIABLES NOT AT TI1EIR BOUNDS DUBING THE CXWJUGATE

GRADIENT ITFaBATION FOR EXAMPLE 2

S s/n
n c-5 c-9 c=13 1 c=5 c=9 c=13

256 185 138 109 .72 .54 .43
529 399 277 234 .75 .52 .44

900 662 473 393 .74 .53 A4

GENERALIZED CONJUGATE GRADIENT ALGORITHM 395

final solution (approximately 30% for C= 5, 69% for C=9, and 80% for
C= 13). The constraints for this problem are much tighter than those for
Example 1, and the second SSOR scaling for conjugate gradients is not
effective here.

Figures 5-7 show the variation in convergence for various values of w for
the SOR algorithm and the conjugate gradient algorithm with SSOR scaling.
The results are similar to those of Example 1, but in this problem, where so
many variables are at their bounds in the optimal solution, it is even more

DOTTED SOR
SOLID CC+SSOR

q-_
I I I I I I r I ,

1.0 1.1 1.2 1.3 1.4 1.5 I.6 1.7 1.8 1.9 2.0

u

FIG. 8. Algorithm performance on Example 3 varying o, N-529.

396 DIANNE PROST O’LEARY

important to take advantage of the reduction in work achieved by partition-
ing the system instead of working with the entire set of variables at each
iteration. The average number of active variables is given in Table 2, and the

number of outer iterations varied from 4 to 8 for n = 256, and from 5 to 11
for n=966.

The typical pattern for examples using conjugate gradients with SSOR
scaling is that many restarts take place at the beginning until a reasonable set
Z is identified. Throughout this period then, the algorithm is equivalent to
SSOR used alone with some variables kept fixed. Once I has stablized, few
restarts occur, so the fast convergence of the conjugate gradient algorithm
can be exploited with great effectiveness. One of the advantages of this
algorithm is that the transition from SSOR to conjugate gradients with SSOR

scaling is is made automatically.

EJCAMPLE 3. The matrix A of Examples 1 and 2 is a 2-cyclic matrix, and

theory tells us the optimal o for the SOR iteration for a linear system. The
matrix in this example is not 2-cyclic. It is the discrete Laplac:lan g-point

operator

A=

20 -4
-4 20

T,=

I -4 -1
-1 -4

T, =
. . .

. . .

I
. . -

,

-1
1 -4, mxm

All other features of this example were the same as in Example 1. Figure 8

GENERALIZED CONJUGATE GRADIENT ALGORITHM 397

shows the results of applying the conjugate gradient algorithm with SSOR
scaling and the SOR algorithm to a matrix of dimension n =529 with five
random vectors b. The results are similar to Example 1, with SOR showing
sensitivity to o while the number of iterations for conjugate gradients with
SSOR scaling is relatively constant. The number of variables not at their
bounds in the final solution varied from 513 to 463 for the five problems, the
number of outer iterations was 7 for all of the conjugate gradient runs, and
the number of restarts varied between 2 and 8.

4. DISCUSSION AND CONCLUSIONS

We have presented a conjugate gradient algorithm with matrix splittings
which is suitable for certain quadratic programming problems. The perfor-
mance of the method on special classes of problems might be enhanced by
preprocessing or by modifications to the inner iteration.

For applications with A an M-matrix, the preprocessing scheme of Cottle
and Goheen [5] could be used before beginning our algorithm in order to
identify some of the variables which will be at their bounds in the optimal
solution. These variables could then be held fixed throughout the conjugate
gradient iteration.

Other algorithms could be substituted for the conjugate gradient itera-
tion, as long as there is a descent function for the inner iteration which
guarantees that no subproblem will repeat. The conjugate gradient algorithm
is quite versatile, however, and has rapid convergence when used with a
suitable scaling matrix. Such scalings may be chosen to be portions of the
matrix A (for example, the diagonal or band part of the matrix) or an
operator arising from application of an iterative method for solving linear
systems. Operators for related physical problems may also be used effec-
tively. For example, a fast direct method for solving Laplace’s equation over
a regular region might be used as a scaling for a problem with a matrix
corresponding to Laplace’s equation over a region which does not permit
separation of variables.

The conjugate gradient algorithm with matrix splittings has been demon-
strated to have finite termination and to be effective for free boundary
problems for elliptic partial differential equations. The method, however,
requires only that the matrix A be positive definite and thus has broader
applications. Test results suggest that the algorithm is effective whether or
not the constraints are tight.

Part of this wk was completed whik Z ~0s a o%ctoml student of Dr.
Gene H. Golub at Stanford University. Z am deeply gmteful to him for his

398 DIANNE PROST O’LEARY

inspiration, guidance, and continual encouragement. This research was begun
at his suggestion, and he has given valuable advice improving the work and
its presentation. Special thanks go to Mr. Lee Zukowski, who helped with the
figures, and to Mr. Franklin Luk for his careful reading of the manuscript.

REFERENCES

1

2

3

4

5

6

7

8

9

10

11

12

13

0. Axelsson, Solution of linear systems of equations: iterative methods, in Spazse
Matir Techniques (V. A. Barker, Ed.), Springer, New York, 1977, pp. l-11.
C. Baiocchi, V. Comincioli, E. Magenes, and G. A. Pozzi, Free boundary
problems in the theory of fluid flow through porous media, Ann. Mat. Pum.
A&. 97:1-82 (1973).
J. Cea and R. Glowinski, Sur des methodes d’optimisation par relaxation,
R.A.I.R.O. R-3 :5-32 (1953).
Paul Concus, Gene H. Golub, and Dianne P. O’Leary, A generalized conjugate
gradient method for the numerical solution of elliptic partial differential equa-
tions, in Spurse Mat& Compufutiuns (James R. Bunch and Donald J. Rose, Eds.),
Academic, New York, 1976, pp. 309-332.
Richard W. Cottle and Mark S. Goheen, A special class of large quadratic
programs, Report SOL 787, Stanford Univ. Systems Optimization Lab. Stanford,
Calif., 1976.
Richard W. Cottle, Gene H. Golub, and Richard Sacher, On the solution of
large, structured linear complementarity problems: the block partitional case,
Appl. Math. Optimization 4:347-363 (1978).
C. W. Cryer, The method of Christopherson for solving free boundary problems
for infinite journal bearings by means of finite differences, Math. Camp. 25:435-
443 (1971).
J. W. Daniel, The conjugate gradient method for linear and nonlinear operator
equations, SLAM J. Numer. Anal. 4:10-26 (1967).
G. B. Dantzig and R. W. Cottle, Complementary pivot theory of mathematical
programming, in Mathematics of the Decision sciences, Part 1 (G. B. Dantzig
and A. F. Veinott, Jr., Eds.), Amer. Math. Sot., Providence, RI., 1968, pp.
115- 136.
Martin A. Diamond, The solution of a quadratic progamming problem using
fast methods to solve systems of linear equations, Internat. J Systems !&A
5:131- 136 (1974).
R. Fletcher and M. P. Jackson, Mi nimization of a quadratic function of many
variables subject only to lower and upper bounds, J. Inst. Maths. AppZics.
14: 159- 174 (1974).
G. E. Forsythe and E. G. Straus, “On best conditioned matrices”, Proc. Am.
Math. Sot. 340-345 (1955).
G. Hadley, Nonlinear and Dynumic Programming. Addison-Wesley, Reading,
Mass., 1964.

