IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS, VOL. SMC-12, NO. 1, JANUARY /FEBRUARY 1982 91

These results indicate that shadow detection is difficult prior to
segment noise cleaning, but may be possible for the nonnoise
segments. Shadows can be used to verify the recognition of
segments belonging to buildings and roads; the former should
have shadows if they are appropriately oriented, but the latter
should not.

VIL

The approach used here is quite straightforward. It proceeds in
an essentially bottom-up fashion, with no provision for feedback
between levels, and it makes no use of higher-level information,
e.g., that buildings are alongside roads, or that roads form a
connected network. Its relative success in spite of these restric-
tions illustrates the possibility of achieving reasonable perfor-
mance with a simple bottom-up approach.

The programs described in this correspondence made use of a
number of empirically chosen constants. In some cases, these
simply represented liberal thresholds defined by round numbers
(e.g., 9, 0.2, 8, 5 percent, and the rate of linear falloff in Section
IIff; two-thirds and 155° in Section III-A; 25° and 10 percent in
Section III-B; etc.) In other cases, they were based on informa-
tion about scale (i.e., the sizes (in pixels) of the buildings and
roads that were to be detected; cf. the four-pixel strip width used
in Section II) or grayscale (i.e., their contrasts; cf. the ten gray
level range in Section III-A), and would have to be adjusted for
different types of imagery. In any case these parameters worked
well for all five of the examples on which the program was tested
[8], two of which are given here, as well as for two other examples
taken from an aerial photograph of a different part of the
country.

These programs were not designed to be computationally effi-
cient; their running time was 10-20 min on a time-shared Univac
1108. It is evident, however, that the method used here could be
implemented very efficiently using suitable parallel hardware,
since the processing of segments is largely local.

Many specific improvements in the approach are possible at
each of its stages. The process of fitting straight line segments to
connected components of edge pixels is somewhat order-depen-
dent, and tends to produce overshoots; it might be better to use a
Hough-like approach to detect clusters of collinear edge pixels.
Rather than making a succession of decisions about segments,
pairs of segments, and groups of segments, it might be better to
design a hierarchical relaxation scheme in which segments are
assigned probabilities of being parts of roads, buildings, etc., and
iteratively adjusting the probabilities based on their compatibili-
ties with those of related segments. Of course, one should not
expect that the probability adjustments in this relaxation scheme
could be based on a simple algebraic formula; more likely, they
would be computed by a probabilistic “decision tree” associated
with each segment. An approach to defining quantitative compa-
tibilities for pairs of segments that continue one another or are
antiparallel is investigated in [9]-[10]. These modifications of the
approach should yield improved performance and still further
improvement should be obtained using higher-level information
and a more flexible control structure. However, much work will
have to be done before human-level performance at tasks of this
type can be achieved.

CONCLUDING REMARKS
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Image Smoothing and Segmentation by Cost
Minimization

K. A. NARAYANAN, DIANNE P. O’LEARY, anD AZRIEL
ROSENFELD, FELLOW, IEEE

Abstract—Many types of images are composed of regions in which the
gray level is approximately constant. Such images can be smoothed and
segmented by constructing piecewise constant functions whose constant
parts correspond to the regions. The desired function must be (piecewise)
smooth and must also be close to the original image; thus we can regard it
as minimizing a two-part cost measure, in which one component measures
roughness and the other measures distance, e.g., from the original image.
The functions obtained by minimizing the cost with respect to various
measures of this type are compared. The method of steepest descent is
used for cost minimization. The relationship of this approach to other
methods of image smoothing, including relaxation methods, is also dis-
cussed.

I. INTRODUCTION

In 1971 Martelli and Montanari [1] formulated the problem of
digital image smoothing as a problem of minimizing a two-part
cost measure summed over the image, where one component of
the cost measures “roughness” (e.g., squared gradient magnitude)
and the other measures discrepancy from the original noisy image
(e.g., squared difference). They applied this idea to smoothing an
array of local slope values obtained from a fingerprint image,
rather than to smoothing image gray level. More recently, Weszka
and Rosenfeld [2] discussed the role of roughness and dis-
crepancy measures in image segmentation by thresholding, and
studied methods:of choosing thresholds so as to minimize the
roughness of the thresholded image.

This correspondence investigates the use of roughness plus
discrepancy cost measures in gray level smoothing. A steepest
descent method is used to minimize the cost. When applied to an
image that is approximately piecewise constant, this tends to
yield a piecewise constant result, thus defining a segmentation of
the image. The relationship of this approach to other iterative
methods of image smoothing and segmentation, in particular
relaxation methods, is also discussed. The approach turns out to
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be computationally expensive, but it is of interest because of its
conceptual significance.

II. THE MINIMIZATION PROCESS

Let F(x, y) be the given (noisy) image. We want to find an
image G(x, y) that minimizes

c=3 3[R+ a(F-G)]

where R? is a roughness measure computed for a neighborhood
of each point in G, and a is a factor which determines the relative
weight given to roughness and discrepancy. The sum is computed
pointwise over the entire image.

The minimization technique used in this correspondence is the
method of stcepest descent. We construct a sequence of images
F=F9 FO F® ... by adjusting the current F*) at each
point in a direction that reduces

ch =y 2 [(R(M)Z + a( FO — F(A))Z]

subject to the restriction that the values of F'*’ remain within the
allowed gray level range. Specifically, let g*(x, y) = —39C*/
dF*)(x, y); then we set

Fth= ”(x, y) - F“"(x,y) + N“g“‘)(x, ,V)

where X*) is chosen to minimize C***" and insure that F***!
remains within the range.

Note that 3C* /3F* ) (x, y) =22 ., RO IRNM /IF M) (x, y)
— 2a( F® — F™™))(x, y), where the sum has only a few nonzero
terms, since R'*! depends on F*)(x, y) only at a few points near
(x,y). In Section III, we give the OR/0F terms for several
roughness measures R, and in Section IV we discuss the results of
the process when these roughness measures are used and when
discrepancy is measured between F© and F'*). In Section V we
discuss other ways of measuring discrepancy and their possible
advantages.

III. ROUGHNESS MEASURES

The following roughness measures R were used in our experi-
ments (superscript (k) omitted).
a) The Digital Laplacian:

R (x,y)=4F(x,y) —[F(x—1,p) + F(x,y— 1)
+F(x+1,p)+ F(x,y+ 1]
In this case it can be verified that

| E)%%Ri(u,v)

E——BF—(A—,T)_ =20F(x,y) —8[F(x—1,»)
+F(x,y— 1)+ F(x+1,y)
+F(x,y+ D] +2[F(x—1,y—1)
+F(x—1lLy+ 1)+ F(x+1,y—1)
+F(x+1,y+1)]
+[F(x—2,p)+ F(x,y —2)
+[F(x+2,y)+ F(x,y+2)].

Equivalently, it is equal to

x+1 v+1
2 2 R(u,0)[3R (4, 0)/F(x, y)]
u=x—1lvev=y—1I

b) The Digital Gradient Magnitude:

Ro(x.v) =[(F(x,y) = F(x = 1, 1)) -
+ (F(x,y) = F(x,y — l))z] "

Here

d RiL(u,v . ,
122 au:0) &S ORE(u, v)

T )22 2 9k

aF(X’.V) u=x v=y aF(X, y)
=4F(x,y) — [F(x—1,y)
+F(x,y— 1+ F(x+1,y)
+F(x,y+ 1)

¢) The “Cornerity” Measure | 3]:
1 1
Re(x,y) =gUx. p)V(x,p) = 76 Wix, )

where

Ux,y)=F(x—1,y— D)+ F(x—1,y)+ F(x—1,y+1)
+F(x+1,y—1)+ F(x+1,y)
+F(x+ 1, y+1)=2[F(x,y — 1)+ F(x,y)
+F(x,y+1)]

Vix,y)=F(x—1,y=-1)+F(x,y— 1)+ F(x+1,y—1)
+F(x—1.y+ D)+ F(x,y+ 1)+ F(x+1,p+1)
—2[F(x—=1,p) + F(x,p) + F(x + 1, )]

W(x,y)=F(x—1,y+ 1)+ F(x+1,y—1)
—F(x—1,y—1)—=F(x+1,y+1).

This measure, like others studied in [4], is high when both the
gradient magnitude and the rate of change of gradient direction
are high—in other words, at strong edges which are turning
sharply. Note that the gradient and Laplacian magnitudes are
high at strong edges even if they are not turning.

For this measure we have

1 az ERE'(H'U) Ykl v+l OR (u D)
B 2 2 R((u,o);
2 8F(x,.v) u=x—1ov=y—1 ?)F(x,y)
x+1 ytl
= 2 2 Re(u,v)
u=x lv=y—1
1 V(u,0) 1
9 U(u, v)_——aF(x,y) + 9 V(u,v)
aU(u,v) 1 L OW(u,v)
oF(x,y) 8 W(u'b)aF(x,y)

(The closed form in terms of the values of F in the neighborhood
of (x, y) is quite complicated and will not be given here.) The
advantage of this measure is that, unlike the Laplacian and
gradient, it does not penalize straight or gently curved edges in
the image: this seems more appropriate if we are trying to
approximate the image by a set of constant regions of simple
shapes.

IV. RESULTS

In this section we present the results obtained when the rough-
ness measures of Section III are used, and when discrepancy is
measured between F'“ and F*), as in Section II. The initial
images are shown in Fig. 1: the first is an infrared image of a
tank, and the second is a portion of a Landsat image of the
Monterey, CA area to which approximately*Gaussian noise has
been added.

Fig. 2(a)-(c) shows results for the tank image using the rough-
ness measures R, , R, and R, respectively. In Fig. 2(a) and (b)
results are shown for a = 0.1,1,5,10 after 10 itcrations, and in
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Fig. 2. Results for tank images using discrepancy from original image in cost.
(a) Roughness measure R;. (b) Roughness measure R . (¢) Roughness
measure R..

Fig. 2(c) for 1,10,20,30 after 30 iterations. For the first two
measures, low values of « (ie., giving little weight to the dis-
crepancy) yield blurred results. On the other hand, high values of
a for the first two measures, and all values for the third measure,
yield results in which the noise cleaning is very slight.

The difference in performance between the first two measures
and the third measure is not hard to understand. When roughness
is measured by the squared magnitude of the gradient or Lapla-
cian, a piecewise constant image does not have very low cost,
since these measures are high at the edges. When the cornerity
measure is used, on the other hand, a piecewise constant image
will have low cost provided the edges bounding the pieces are not

sharply curved. (Note that this conforms to the intuitive concept
of “piecewise constant” as “composed of constant pieces of
appreciable sizes and simple shapes”.) Thus when little weight is
given to discrepancy, the gradient and Laplacian measures can
only be reduced by blurring the image, whereas the cornerity
measure can be reduced even while retaining sharp contrasts in
the image. Note also that it takes more iterations for the cornerity
results to converge, since its derivative varies over a wide range,
and only a few points are corrected at each iteration.'

The results obtained in this section are not very satisfactory;
they are not nearly as good, for example, as the results obtained
in [5], [6] using relaxation methods. One reason for this seems to
be that in the relaxation approach, we are specifying that there
are two classes—i.e., we are trying to obtain a piecewise constant
function that takes on two values. In the next section we consider
possible ways of incorporating the knowledge that there are two
classes into the smoothing process.

V. SPECIFYING TwO CLASSES

One way of specifying that two classes are desired is to
measure discrepancy not from the original image, but from a
thresholded version of that image. Since such a version is two-val-
ued, this introduces a tendency toward a two-valued solution.
Fig. 3 shows results for the tank image when discrepancy is
measured from F'? thresholded at its mean rather than from F®
itself. In Fig. 3(a) and (b), « = 0.1,1,5,10 and there were 10
iterations, while in Fig. 3(c), a = 1, 10,20, 30, and there were 30
iterations. These results appear to be much more strongly two-
valued, but they are rather noisy. (Fig. 3(a), using the Laplacian
roughness measure, is the least noisy, presumably because the
Laplacian is very sensitive to noise.) This is probably because the
thresholded image itself (Fig. 4) is noisy, and the discrepancy
measure penalizes any attempt to remove this noise. In general, it
will not be possible to avoid noise in the thresholded image; in
fact, if it were easy to threshold so as to produce a nonnoisy
result, the smoothing process would not be necessary, since the
thresholded image would be smooth.

An alternative approach which makes use of thresholding is to
define the cost function to favor values that are far away from the
threshold, rather than penalizing discrepancy from the thresholded
image. In other words, our cost function now depends on rough-
ness and on closeness to the threshold, rather than on roughness
and discrepancy. Since we are no longer using discrepancy, the
noisiness of the thresholded image no longer causes a problem.
For threshold 7, the new cost function is

cro EEZ[(R‘“Z — a(t— FH)Y.

Results using ¢ equal to the mean of F© are shown in Figs. 5-7
for both images. In Figs. 5 and 6 « = 0.1, 1,5, 10, and there were
10 iterations; in Fig. 7 a = 1, 10,20, 30, and there were 30 itera-
tions. The results are still somewhat noisy, but there is more
smoothing than in Fig. 3, and the images still tend toward values
at the extremes of the gray level range, especially for large a.

The first few iterations produce the greatest changes, and the
image then remains relatively stable, even though the process has
not completely converged. Figs. 8 and 9 show R, and R results
after 30 iterations for « = 1 and 5, corresponding to the second
and third parts of Figs. 5(a) and 6(a), and Fig. 10 shows R,
results after 80 iterations for a« = 20 and 30, corresponding to the
third and fourth parts of Fig. 7(a). Fig. 11 shows R, results for
a = 10 after iterations 2, 4, 6, and 8.

'The process converges when C'A*D = %) je  when all the components
of the gradient are zero. In our experiments, however, we stopped after a
relatively small number of iterations, by which time the cost had become
significantly lower than at the start of the process. An example illustrating how
the cost changes during the first few iterations will be given in the next section.
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(a)

(a)

(b)

Fig. 5. Results using closeness to gray level mean in cost for roughness
measure R .

(b)

(¢)

cost.

Fig. 4. Tank image thresholded at its mean.

(b)

Fig. 6. Analogous to Fig. 5 for roughness measure R;.
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(a)

(b)

Fig. 7.

Analogous to Fig. 5 for roughness measure R .

VI. COMPARISON WITH RELAXATION RESULTS

A “relaxation” method of image smoothing based on iterative
local probability adjustment was investigated by Faugeras and
Berthod in [5]. Initially, the probability that each point is white is
taken to be proportional to its gray level, ie, if B and W
represent the ends of the gray level range, the white probability of
Fis p = (F — B)/(W — B), while its black probability is 1 — p.
The local inconsistency of the probability assignment p(x, y) can
be measured by the distance between p(x, y) and q(x, y), where
q(x, ) is a function of the neighboring probabilities (see [5] for
the details). The ambiguity of p(x, y) can be locally measured by
p(1 — p), which is a maximum for p = 0.5. Faugeras’ relaxation
process uses a variant of steepest descent to iteratively adjust the
p’s so as to minimize a linear combination of inconsistency and
ambiguity, summed over all x and y. Note that the inconsistency
term corresponds to the first part of our cost function, since it is
high when the neighboring values are very different; and the
ambiguity term corresponds to the second part, since it is mini-
mized when the values are far from the middle of the range. Thus
Faugeras’ process, as applied to the smoothing problem, is analo-
gous to the approach used here, but using cost function compo-
nents derived from white and black probability estimates rather
than from the gray levels themselves. In [6] Faugeras points out
that (for the case of L classes) minimizing 2, p,(1 —p,) =1 —
3, p} and minimizing 3,(p, — ¢;)* have opposite effects, since
minimizing 3,(p, — ¢,)° tends to minimize 3, p? and =, 4. He
therefore proposes as an alternative simply minimizing — 2, p,;¢;;
this tends to make 3(p, — ¢;)* small without minimizing 3p?
and 3¢, and yields good results without the need for a Sp,(1 —
p,;) component.

The results of ten iterations for Faugeras’ cost function —2 pgq,
using our steepest descent algorithm, are shown in Fig. 12; they
are very similar to our results (e.g., the last pictures in Fig. 5). For
comparison, results obtained using two other relaxation processes
based on probability estimation [7] are shown, for the tank image

Fig. 8. R, results after 30 iterations for a« = 1,5.

Fig. 9. R results after 30 iterations for a = 1,5.

Fig. 10. R results after 80 iterations for a = 20, 30.

Fig. 11. R, results after 2, 4, 6, and 8 iterations for a = 10.
Fig. 12. Results using Faugeras relaxation scheme.
Fig. 13. Results using Hummel-Zucker and Peleg relaxation schemes.

(eight iterations), in Fig. 13; they are somewhat cleaner but
otherwise comparable.

The relaxation approach has a straightforward generalization
to more than two classes. However, initializing the probabilities
of these classes requires some knowledge of the ideal classes (e.g.,
obtained by fitting a mixture of Gaussians to the image’s histo-
gram). Given such knowledge, cost functions could be defined
based on distance from the class means, or on closeness to the
midpoints between the classes, so that our approach could also be
applied to more than two classes.

The steepest descent procedure is computationally more expen-
sive than the probabilistic relaxation processes, since it requires
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several subiterations at each iteration in order to find the maxi-
mum feasible A(x, y): starting from a small initial A, computing
F(x, y) and the associated cost, incrementing A, and repeating
the process as long as the cost keeps decreasing. Other descent
techniques such as the conjugate gradient method would require
less computation but more storage. Other optimization methods,
such as nonlinear Gauss—Seidel iteration, might be more effec-
tive.

VIL

Image smoothing and segmentation can often be achieved by
constructing a piecewise constant function whose pieces corre-
spond to the desired regions. We have used the method of
steepest descent to construct such a function having minimum
roughness and minimum discrepancy from the original image. If
we know that there should be only two types of regions, light and
dark, we can use discrepancy from a thresholded image, or better,
closeness to the mean gray level, as a cost component in place of
discrepancy from the original image. The latter method yields
results very similar to those obtained by relaxation methods, but
without the need to introduce “probabilities” that the pixels
belong to the two types of regions. It would be of interest to
apply a similar approach based on cost function minimization to
other problems, such as edge and curve enhancement, that have
been successfully handled using relaxation methods.

CONCLUDING REMARKS

Book Reviews

In summary, we have investigated the possibility of deriving
simple piecewise constant approximations to an image by cost
function minimization, using two types of images (tank and
terrain). This approach yields results similar to those obtainable
by various other methods. It is of conceptual interest, but it does
not seem to be of great practical value because of its relatively
high computational cost.

REFERENCES

{1] A. Martelli and U. Montanari, “Optimal smoothing in picture processing:
an application to fingerprints,” in Proc. IFIP Congr., 1971, Booklet TA-2,
pp. 86-90.

[2] J.S. Weszka and A. Rosenfeld. “ Threshold evaluation techniques,” TEEE
Trans. Syst., Man, Cybern., vol. SMC-8. pp. 622-629, 1978.

[3] P. R. Beaudet, “Rotationally invariant image operators,” in Proc. 4th Int.
Joint Conf. on Puttern Recognition, 1976, pp. 579-583.

[4] L. Kitchen and A. Rosenfeld, “Gray level corner detection,” Comput.
Vision Lab.. Comput. Sci. Center, Univ. of Maryland, College Park, MD,
TR-887. Apr. 1980.

[S] O. Faugeras and M. Berthod, *“Scene labeling: An optimization approach,”
Puattern Recognition, vol. 12, pp. 339-347, 1980.

[6] M. Berthod and O. Faugeras, “ Using context in the global recognition of
a set of objects: An optimization approach.” in Information Processing 80,
S. H. Lavington, Ed. Amsterdam, The Nectherlands: 1980, pp. 695-698.

[7] R. Smith and A. Rosenfeld. * Thresholding using relaxation,” JEEE Trans.
Pattern Anal. Machine Intell.. vol. PAMI-3, 1981, pp. 598-606.

Modem Power System Analysis—I. J. Nagrath and D. P. Kothari (New
Delhi, India: Tata McGraw-Hill Ltd., 1980, 375 pp.). Reviewed by R. C.
Desai, Department of Electrical Engineering, M.S. University of Baroda,
Vadodara 390001, India.

Modern power systems, owing to their interconnected, complex, and
integrated natures, arc assuming the proportions of large-scale systems.
As such, the solutions of their problems have to be obtained by using the
latest computer-oriented techniques devised for large-scale systems and
the undergraduate electrical engineering students and the practicing
power-system engineers must be trained accordingly to keep them abreast
of rapid developments in the field. Most of the books written before the
last decade lack the modern approach to power-system analysis. The few
books written by power engineers during the last decade discuss only a
few aspects of modern techniques. However a person with a background
in control system cngineering is better suited to write a book on “Power
System Analysis,” with the large-scale systems approach.

Thus Professor Nagrath (coauthor of a book titled Control Systems
Engineering, published by Wiley Eastern Limited) in association with
Professor Kothari has done a very thorough job of writing this book
which satisfies the stated need by integrating the basic principles of
power-system analysis (illustrated through simple system structures) with
analysis techniques for the large-scale systems found in practice.

The book contains the following topics: Inductance, resistance and
capacitance of transmission lines, representation of power-system compo-
nents, characteristics and performance of power transmission lines, load
flow studies, optimal system operation, automatic generation and voltage
control, cconomic dispatch, symmetrical fault analysis and symmetrical
components, unsymmetrical fault analysis, and power-system stability.

This book includes digital-computer algorithms for various system
studies such as load flow, fault level analysis, stability, etc. As a special

feature it also covers the latest and practically useful topics such as unit
commitment, generation reliability, optimal thermal scheduling, optimal
hydro-thermal scheduling, and decoupled load flow.

In essence the book is highly comprehensive, well-organized, up-to-date
and (above all) lucid and easy to follow for self-study. The book is amply
illustrated with solved examples for every concept and technique employ-
ing two-, three-, or four-bus structure, as necessary and the numerous
examples given at the end of each chapter makes it a very useful text for
teaching purposes. The reviewer rates this book highly and recommends it
to students and practicing engineers in power systems. He congratulates
the authors for carrying out a splendid job.

Simulation of Control Systems—I. Troch, Ed. (Amsterdam, Netherlands
and New York: North-Holland, 1978, pp. 311). Reviewed by S. G.
T:zafestas, Control Systems Laboratory, University of Patras, Greece.

This book contains the papers presented at the International Associa-
tion for Mathematics and Computers in Simulation Symposium on
“Simulation of Control Systems with Emphasis on Modelling and Re-
dundancy,” held at the Technical University of Vienna (Sept. 27-29,
1978).

The contributed papers have been arranged according to their main
subject in three sections. A separate section involves the invited papers by
R. Tomovic, H. Rzehak, E. Pavlik, and R. Vichnevetsky. These papers
give important surveys on the control of large systems, redundancy in
hardware and software of process computers, interdependence of process
model and simulation tool, and the difficulties of computing optimal
control problems.



