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Abstract—Several types of iterative methods can be used to segment the pixels in an image into light and dark
regions ; these include “relaxation” methods of probability adjustment and steepest-descent methods of cost
function minimization. Conventionally, these methods operate on the image at a single resolution. This paper
investigates the possibility of using these approaches at two (or more) resolutions in order to reduce their
computational cost—e.g. first obtain an approximate solution by iterating at low resolution, then refine the

solution using a few iterations at high resolution.
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1. INTRODUCTION

Several types of iterative methods can be used to
segment the pixels in an image into light and dark
regions. One approach is to initially give each pixel a
“light” probability, proportional to its gray level, and
then use a “relaxation” algorithm to adjust these
probabilities.""! Another approach views the process as
minimization of a cost function derived from the
probabilities, related to both their rate of change and
their entropy, and this minimization problem can be
treated by steepest-descent methods.'* Alternatively,
without introducing “probabilities™ at all, one can
define a cost function related to both the roughness of
the image and its deviation from “white” or “black”,
and minimize this function using steepest-descent.””

All of these methods conventionally operate on the
image at a single resolution, with the new pixel values
at each iteration dependent on the previous values of
the pixel and its neighbors. It has been suggested'*-*'
that there might be advantages to implementing such
methods at two or more resolutions, in analogy with
multigrid methods in numerical analysis.'” For ex-
ample, one might first iterate at low resolution to
derive an approximate solution, then interpolate on
this solution to obtain an initial estimate at high
resolution, and finally iterate (a few times) at high
resolution to obtain a more accurate solution.

The multiresolution approach has the possible
advantage of using relatively global (= low-
resolution) information in the iteration process, and
in any case, it has the advantage ol reduced com-
putational cost. In this paper, we show that two-
resolution methods yield results similar to those
obtained at a single resolution, with substantial sav-
ings in computational cost.

*To whom correspondence should be addressed.
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Section 2 describes the experiments. The details of
the algorithms used are given in the Appendix.

2. EXPERIMENTS

Our experiments made use of the two images shown
in Fig. 1: an infrared image of a tank and a small
portion of a Landsat scene. Two resolutions were
used: 64 x 64 (the full resolution of the images)and 16
% 16.

For each of the iterative algorithms that were used,
the general procedure was as follows:

(a) construct the coarse image (by 4 x 4 block
averaging);

(b) perform 5-10 iterations on the coarse image;

(c) use bilinear interpolation to extend the resulting
values to the fine image and combine these values with
the original values in the fine image by averaging;

(d) perform -4 iterations on the fine image.

The results were compared with results obtained by
performing up to 10 iterations directly on the fine
image. Note that the coarse image has only 1/16 as
many pixels as the fine image ; thus, the cost of 5 to 10
iterations on the former is less than the cost of one
iteration on the latter.

The first group of experiments used a steepest-
descent method to minimize a two-part cost function
of the form®

C=(1-0)Y YR, (x,y)?
—CCZZU(X.)’)— t)Z‘

where R, (a roughness measure) is the value of the
digital Laplacian and t is the mean of the image, so that
— XX (f(x.y) — t)?is low when the gray levels are all
far from the mean. Figure 2 shows the results of 2,4, 6,8
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Fig. 1. Input images.

w

Fig. 2. Results of 2, 4, 6, 8 and 10 iterations on the fine tank image. (a) x = 0.7; (b) & = 09.
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Fig. 3. Analogous to Fig. 2 for the Landsat image.
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Fig. 4. Results of 2 and 4 iterations on the fine tank image using o = 0.5, after 10 iterations on the coarse
image.
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Fig. 5. Analogous to Fig. 4 for o = 0.7.

Fig. 6. Results of 4 iterations on the fine tank image using « = 0.5, after 10iterations on the coarse image when
the latter is obtained by sampling rather than averaging.

and 10iterations of steepest-descent applied to the fine
image of the tank to minimize this cost function, using
@ = 0.7and ¢ = 0.9 in Fig. 2a and Fig. 2b, respectively.
Figure 3a—b shows analogous results for the Landsat
image.

Figures 4-8 show results of coarse/fine processing
using this cost function. In all of these figures, 10
iterations were performed on the coarse image, with o
= 0.7 (left column) or « = 0.9 (right column). Figure 4
shows results after 2 and 4 iterations on the fine image
(top and bottom rows), using « = 0.5, and Fig. 5 shows
analogous results for & = (.7.* In these examples, the

*a = 0.7 already yields a very smooth result, suggesting
that « = 0.9 would be too high.

coarse image was obtained from the fine one by block
averaging. For comparison, Figs. 6 and 7 show results
after 4 iterations on the fine image using & = 0.5 and «
= 0.7, respectively, when the coarse image was ob-
tained by sampling rather than averaging; this seems
to make little difference. Figure 8 shows results for the
Landsat image after 4 iterations using « = 0.5 and 0.7
(top and bottom rows), with the coarse image obtained
by averaging. In all these examples, the results are
more blurred than those in Figs. 2 and 3, so that some
of the detail is lost, but the convergence to smooth dark
and light regions is very good.

In Figs. 4-8, the initial values for the fine-image
iteration were obtained by bilinearly interpolating the
results of the coarse-image iterations, and then averag-
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Fig. 7. Analogous to Fig. 6 for & = 0.7.

Fig. 8. Results of 4 iterations on the fine Landsat image after 10 iterations on the coarse image, using o = 0.5
(top row) and « = 0.7 (bottom row).

Fig. 9. Results of giving greater weight to the interpolated values than to the original fine values (x = 0.7, 2
iterations on the fine image).



K. A. Naravanan, DIANNE P. O'LEaRrY and A zZRIEL ROSENFELD

Fig. 10. Analogous to Fig, 4 (bottom row) when the fine image is obtained by nearest-neighbor rather than
bilinear interpolation.

Fig. 11. Analogous to Fig. 5 (bottom row).

Fig. 12. Results of iterations 1-9 of probabilistic relaxation on the fine tank image.
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Fig. 13. Results of 1 (left) and 2 (right) iterations of probabilistic relaxation on the fine image, after 5
iterations on the coarse image.

ing these values with the original fine-image values,
giving equal weight to each. Figure 9 shows the results
of giving greater weight to the interpolated values
(specifically, at each pixel, the interpolated value has
weight 2/3 and the original fine-image value has weight
1/3). Here we used o = 0.7 and 2 iterations. The results
seem quite similar; compare the top row of Fig. 5.
Figures 10 and 11 show results using nearest-neighbor,
rather than bilinear, interpolation; the results are
somewhat less fuzzy than those in Figs. 4-7.

The final experiment compared fine-only and
coarse-fine probabilistic relaxation.!! Figure 12 shows
iterations 1-9 of relaxation (the Rosenfeld-Hummel-
Zucker algorithm) applied to the tank image
at full resolution. In Fig. 13, 5 iterations of this
relaxation algorithm were applied to the coarse
image (obtained by block averaging) and then 1 or 2
iterations (left and right columns) of the same algor-
ithm were applied to the fine image, after initializing
the probabilities by bilinear interpolation. Again, there
is some loss of detail, but the convergence is very good
at very low computational cost (compare Fig. 12 with
iterations 2 and 3 in Fig. 9).

3. CONCLUDING REMARKS

Two-resolution methods of relaxation and cost
function minimization can be used to segment an
image into light and dark regions at much lower
computational cost than single-resolution methods,
though with loss of fine detail. Thus, the two-(or
multi-) resolution approach may be preferable to
conventional methods, especially in situations where
multiresolution image representations (“pyramids”)
are already being used for other purposes.

A possibility for further reducing computational
cost in a two-resolution scheme would be to apply the

process to the fine image only in border regions, i.e. in
the vicinity of coarse image points at which the
roughness measure remains high.
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APPENDIX. ALGORITHMS
A.l. Cost function minimization

In the cost function
1=y YRy —a T ()~ 1),
Xy x oy
the roughness measure R, used was the value of the digital
Laplacian

L(f) = 4f(x,3) = [f(x = 1,p)
+ ey = D+ A+ Ly + Sy + 1))
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and r was the mean of the image f. The steepest-descent
method minimizes this cost function by constructing a
sequence of images /= {1, f1), 12 constructingf** 1 by
adjusting /™ at each point in a direction that reduces

CH=(1-a) Y ¥ L0y +a) ¥ (™M y) —t)?
x y L,

subject to the restriction that the values of f* remain within
the allowed gray level range. Specifically, we have

f“” ”{x,y} :f(l) [.’C,_}’] e l(k)ac(h(x,y)faﬁil

It can be verified that for the Laplacian roughness measure we
have

1 ocw

2y 200 (x,y) = 8[f(x = Ly) + f(x,y — 1)
+ x4+ 1Ly +flx y+1)]
F2f(x—Ly—=1)+fl(x—1,y+1)
Hx+Ly-D+flx+ Ly+1)]
+fx -2 p)+7(x, y—2)
x4+ 2,0+ fx, y+2)]

—af™(x, y)—1)

A.2. Probabilistic relaxation

Theinitial gray level z, at the i-th pixel is mapped into initial
“light” and “dark” probabilities as follows: let d, | be the
darkest and lightest gray levels; then = p%., =
=z — d); Pl = p{¥a = (z — d)l — d). These
probabilities are then iteratively adjusted using the formula

2
PV =p (L +qP) ¥ PP+ q)
j=1

where g} is the average, over all neighbors u of the i-th pixel,
of

2

Cli.j; u, v)p®.
v=1
Here C(i, j; u, v) was taken to be

Av(pf pld))
Av(pl) Av (p))’

where the average is taken over all pixel pairs in the image
having the same neighbor relationship as u has to i.
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