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Analysis of Relaxation Processes: The 
Two-Node Two-Label Case 

D I A N N E P. O 'LEARY AND S H M U E L PELEG 

Abstract—Several relaxation processes are analyzed in the simple case 
of two nodes, each having two possible labels. It is shown that the choice of 
coefficients is very important. For certain values of the coefficients, some 
processes will have a single nontrivial convergence point regardless of the 
initial labeling. For other choices of the coefficients, there can be more 
than one possible convergence point, and different solutions can be ob
tained for different initial labelings. In the probabilistic approach where the 
coefficients are predefined in terms of joint probabilities, there are always 
two nontrivial convergence points for all possible coefficients. The results 
are also compared to the Bayesian analysis that can be obtained in this 
simple case of two nodes. Since certain selections of coefficients can give 
unacceptable results even in this simple case, it can be expected that the 
proper selection of coefficients will be much more important in the general 
case involving larger numbers of nodes and labels. 
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I. INTRODUCTION 

RELAXATION processes are used for the reduction of 
ambiguity in problems that can be represented as 

graph labeling. This representation associates with each 
object a node whose label represents the class of the object. 
Labeling a node corresponds to classification of the object. 
Initially, every node has probability estimates for all possi
ble labels. Relaxation processes use the probabilities at 
neighboring nodes to improve these estimates. Using only 
neighboring nodes reduces the global problem to many 
local problems. Solving the local problems can often give 
an acceptable global solution. 

Let G = (F , E) be a graph with V = {1,· · · , # } its set 
of nodes and Ε its set of arcs, and let Λ = { \ l 9 · · · , \ L } be 
a set of labels. We indicate by P(k\X) the probability 
estimate at the k th iteration that node i should be labeled 
λ. The true distribution Pt is unknown, but based on some 
measurements, a probability distribution P / 0 ) : Λ -* [0,1] is 
estimated for every node /. A relaxation operator @ pro
duces an improved probability estimate from the previous 

0018-9472/83/0700-0618$01.00 ©1983 IEEE 

Authorized licensed use limited to: University of Maryland College Park. Downloaded on April 29,2020 at 14:54:10 UTC from IEEE Xplore.  Restrictions apply. 



618 IEEE T R A N S A C T I O N S O N SYSTEMS, M A N , A N D C Y B E R N E T I C S , V O L . SMC-13, N O . 4, J U L Y / A U G U S T 1983 

Proc. IEEE Workshop CAPAIDM, Nov. 1981, pp. 161-167. 
[166] S. L. Tanimoto, "Pictorial feature distortion in a pyramid," Com

puter Graphics and Image Processing, vol. 5, pp. 333-352, Sept. 
1976. 

[167] , "Towards hierarchical cellular logic: design considerations 
for pyramid machines," Dep. Comput. Sci., Univ. of Washington, 
Seattle, Tech. Rep. #81-02-01, Feb. 1981. 

[168] S. L. Tanimoto and J. J. Pfeiffer, Jr., "An image processor based 
on an array of pipelines," in Proc. IEEE Workshop CAPAIDM, 
Nov. 1981, pp. 201-208. 

[169] C. D. Thompson, "Generalized connection networks for parallel 
processor intercommunication," IEEE Trans. Comput., vol. C-27, 
pp. 1119-1125, Dec. 1978. 

[170] C. D. Thompson and Η. T. Kung, "Sorting on a mesh-connected 
parallel computer," Commun. ACM, vol. 20, pp. 263-271, Apr. 
1977. 

[171] L. Uhr, "Converging pyramids of arrays," Proc. IEEE Workshop 
CAPAIDM, Nov. 1981, pp. 31-34. 

[172] S. Ullman, "Interfacing the one-dimensional scanning of an image 
with the application of two-dimensional operators," Computer 
Graphics and Image Processing, vol. 16, pp. 150-157, 1981. 

[173] S. H. Unger, "A computer oriented toward spatial problems," 
Proc. IRE, vol. 46, pp. 1744-1750, Oct. 1958. 

[174] , "Pattern detection and recognition," Proc. IRE, vol. 47, 
pp. 1737-1752, Oct. 1959. 

[175] L. G. Valiant, "Universality considerations of VLSI circuits," 
IEEE Trans. Comput., vol. C-30, pp. 135-140, Feb. 1981. 

[176] L. G. Valiant and G. J. Brebner, "Universal schemes for parallel 
computation," in Proc. 13th Annu. ACM Symp. Theory of Com
puting, May 1981, pp. 263-277. 

[177] A. Waksman, "A permutation network," / . ACM, vol. 15, pp. 
159-163, Jan. 1968. 

[178] M. R. Warpenburg and L. J. Siegel, "Image resampling in an 
SIMD environment," in Proc. IEEE Workshop CAPAIDM, Nov. 
1981, pp. 67-75. 

[179] L. P. West, "Loop-transmission control structures," IEEE Trans. 
Commun., vol. COM-20, pp. 531-539, June 1972. 

[180] L. D. Wittie, "Communication structures for large networks of 
microcomputers," IEEE Trans. Comput., vol. C-30, pp. 264-273, 
Apr. 1981. 

[181] C. Wu and T. Feng, "On a class of multistage interconnection 
networks," IEEE Trans. Comput., vol. C-29, pp. 694-704, Aug. 
1980. 

[182] , "On a distributed-processor communication architecture," 
in Proc. Fall 1980 COMPCON, pp. 599-605. 

[183] , "The reverse-exchange network," IEEE Trans. Comput., 
vol. C-29, pp. 801-811, Sept. 1980. 

[184] , "The universality of shuffle-exchange networks," IEEE 
Trans. Comput., vol. C-30, pp. 324-331, May 1981. 

[185] A. Wu and A. Rosenfeld, "Cellular graph automata, I & II," 
Inform. Contr., vol. 42, pp. 305-353, Sept. 1979. 

[186] W. A. Wulf and C. G. Bell, "C. mmp—a multi-miniprocessor," 
in Proc. Fall 1972 Joint Computer Conf., Dec. 1972, pp. 765 
-777. 

Analysis of Relaxation Processes: The 
Two-Node Two-Label Case 

D I A N N E P. O 'LEARY AND S H M U E L PELEG 

Abstract—Several relaxation processes are analyzed in the simple case 
of two nodes, each having two possible labels. It is shown that the choice of 
coefficients is very important. For certain values of the coefficients, some 
processes will have a single nontrivial convergence point regardless of the 
initial labeling. For other choices of the coefficients, there can be more 
than one possible convergence point, and different solutions can be ob
tained for different initial labelings. In the probabilistic approach where the 
coefficients are predefined in terms of joint probabilities, there are always 
two nontrivial convergence points for all possible coefficients. The results 
are also compared to the Bayesian analysis that can be obtained in this 
simple case of two nodes. Since certain selections of coefficients can give 
unacceptable results even in this simple case, it can be expected that the 
proper selection of coefficients will be much more important in the general 
case involving larger numbers of nodes and labels. 

Manuscript received January 15, 1982; revised February 23, 1983. This 
work was supported by the National Science Foundation under Grant 
MCS-76-23763. 

D. P. O'Leary is with the Department of Computer Science, University 
of Maryland, College Park, MD 20742. 

S. Peleg was with the Computer Vision Laboratory, Computer Science 
Center, University of Maryland, College Park, MD 20742. He is now with 
the Department of Computer Science, The Hebrew University of Jerusa
lem, 91904, Jerusalem, Israel. 

I. INTRODUCTION 

RELAXATION processes are used for the reduction of 
ambiguity in problems that can be represented as 

graph labeling. This representation associates with each 
object a node whose label represents the class of the object. 
Labeling a node corresponds to classification of the object. 
Initially, every node has probability estimates for all possi
ble labels. Relaxation processes use the probabilities at 
neighboring nodes to improve these estimates. Using only 
neighboring nodes reduces the global problem to many 
local problems. Solving the local problems can often give 
an acceptable global solution. 

Let G = (F , E) be a graph with V = {1,· · · , # } its set 
of nodes and Ε its set of arcs, and let Λ = { \ l 9 · · · , \ L } be 
a set of labels. We indicate by P(k\X) the probability 
estimate at the k th iteration that node i should be labeled 
λ. The true distribution Pt is unknown, but based on some 
measurements, a probability distribution P / 0 ) : Λ -* [0,1] is 
estimated for every node /. A relaxation operator @ pro
duces an improved probability estimate from the previous 

0018-9472/83/0700-0618$01.00 ©1983 IEEE 

Authorized licensed use limited to: University of Maryland College Park. Downloaded on April 29,2020 at 14:54:10 UTC from IEEE Xplore.  Restrictions apply. 



O'LEARY AND PELEG: ANALYSIS OF RELAXATION PROCESSES 619 

oner 

P < * + 1 > ~ # ( / > < * > , / * ) , 

where R is a set of predetermined coefficients. The coeffi
cient r i 7 (X, λ') represents the compatibility of node i being 
labeled λ and node j being labeled λ'. 

The first updating method, called nonlinear relaxation, 
was suggested by Rosenfeld et al. [1] and was based on 
heuristic considerations. Peleg [2] derived an updating 
scheme using a probabilistic argument. Faugeras and 
Berthod [3], [4] suggested the optimization of a criterion on 
the probabilistic labelings using a maximum descent algo
rithm. Hummel and Zucker [5] have recently developed a 
measure of average local consistency, also to be optimized. 

The above methods are analyzed in the following sec
tions for their behavior in the simple case of two nodes 
having two possible labels. In this case V= {1 ,2}, Λ = 
(α , / ?} ; pa and ρβ will denote the probability estimates for 
the first node and qa and ςβ the estimates for the second 
node. P r / y ( a , β) is the a priori joint probability of nodes i 
and j being labeled α and /?, respectively, P r f ( a ) is the 
a priori probability of node i being labeled a, and P r^ / ? ) is 
the a priori probability of node j being labeled β. For 
abbreviation we denote P r ^ a ) by pa, P r 2 ( a ) by qa, and 
P r 1 2 ( a , a ) by paa. 

Bayesian analysis leads to the labeling (λ , δ) of nodes 
(1,2), respectively, when Αλδ = p^q^Thii^, S) is larger 
than the corresponding A value for any other possible 
labeling. This rule can be illustrated by a two-dimensional 
diagram in the pa - qa plane, where each point in the unit 
square corresponds to a possible labeling. The Bayesian 
rule partitions the pa - qa square into four regions. Typical 
cases are illustrated in Figs. 1 and 2. For any initial 
labeling (pa°\ qa

0)), the most likely labeling is in the out
side corner of its region. Points on the boundaries of 
regions correspond to ties in the A values. 

Let 

αΊ = 

P r 1 2 (β, a) 

P r 1 2 (β,β) 
1 - <L 

P r 1 2 ( « , / 8 ) 

P r 1 2 

Pa 

(β, β) 

Then if paqa > paa, the regions are defined by the rectangle 
with corners (0,0) and (a2, b2), the rectangle with corners 
(1,1) and (av bx\ and the remaining region partitioned by 
the curve 

(la 
ραΥ>τ12(α,β) 

/ > a P r 1 2 ( a , j 3 ) + ( l -ρα)Ρτ12(β,α) 

If paqa < paa9 then the regions are the rectangle with 
corners (0,1) and (av b2), the rectangle with corners (1,0) 
and ( a 2 , bx\ and the remaining region partitioned by the 

Fig. 1. Bayesian labeling when paqa > paa. This diagram was created 
^ . - 3 / 8 , 5 . - 2 / 8 , ^ - 1 / 1 6 . 

Fig. 2. Bayesian labeling when paqa < paa. This diagram was created 
forA, = 3/8, qa = 2 /8 , ^ = 3/16. 

curve 

4« = 
( l - A ) P r i 2 0 M ) 

(1 -Ρα)**12(β,β) + / > f t P r 1 2 ( α , α ) " . 

If paqa = paa, then ax = a2 and bl = b2, and the regions 
are four rectangles formed by partitioning the square at the 
point (av bx). 

Relaxation methods give results rather different from the 
Bayesian result. At most two corners can be reached by 
relaxation, and in some cases one corner will be the only 
convergence point regardless of the initial labeling. This 
observation is discussed in the following sections. 

II. PROBABILISTIC R E L A X A T I O N 

In this section the probabilistic relaxation developed by 
Peleg [2] is analyzed. The updating of node / based only on 
the neighbor j is 

/><* + i>(«) = 

/>/*>(«) Σ Pfk>{fi)ru(a,fi) 
β€ΞΑ 

Σ Λ< Λ )(λ) Σ PfKfiKiKfi) 
λ€ΞΛ 0€=Λ 

One way to combine all estimates from all neighbors is 
by averaging their effects: 

ρ ( * + ΐ ) ( α ) = Ι Σ P<* + i>(a), 

where η is the number of neighbors of node * and (/, j) e Ε 
indicates that / and j are neighbors. The coefficients 
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/• ( y(a, β) are defined as 

ru(a, β) 
P r , 7 ( a , j 8 ) 

P r ( . ( a ) P r , ( j 8 ) ' 

where Pr / y (a , >t3) is the a priori joint probability of nodes i 
and j being labeled a and β, respectively, ΡΓ , ( α ) is the 
a priori probability of node / being labeled a, and Ρ^(β) is 
the a priori probability of node j being labeled β. 

To simplify the notation for the two-node case, we write 
the four coefficients as r a a , r a / 8 , r / 8 a, A*^, where 

P r 1 2 ( X , g ) 
^ s Ρ Γ ι ( λ ) Ρ Γ 2 ( δ ) · 

The iteration process can be expressed as 

Pik){raaq^ + Γαβ#٤ 

(k + l) _ ι a ~ 1 

Ha 

Pik + l ) 

nik)(r n(k) , <*)\ 
4a \raaPa ^ ΓβαΡβ ) 

(k + l) : 1 <7«* + 1 ) · 

The compatibility coefficients have several constraints on 
them: 

P r , ( o ) + Ρτ٥(β) = 1 

?τ2(α) + Ρτ2(β) = 1 

P r 1 2 ( a , a ) + P r 1 2 ( a , 0 ) = Pr , («) 

Ρτη(β,α) + Ρνι2(β,β) = Ρ Γ , ( / ? ) 

P r 1 2 ( a , « ) + P r 1 2 ( 0 , a ) = P r 2 ( a ) 

Ρτι2(α,β)+Ρτι2(β,β) = Pr 2 (/3), 

and all probabilities lie between zero and one. It is easy to 
show that this leaves three degrees of freedom in the 
compatibilities which, for convenience, we will take as 
Prx (a) = pa9 P r 2 ( a ) = qa, and P r 1 2 ( a , a) = paa. Then the 
compatibilities take the form 

/ \ / Paa Ρα ~ Paa \ 
raa Γαβ 

Ραία 

<7α - Paa Paa ~ Ρα~ 4 t t + 1 
Γβα νββ 

1 , 0 -Ρα)$α (٥ - Α , Χ ΐ 

whenO <paa^pa,qa < 1. 
To understand the iteration process fully, let us first 

consider the fixed points, those points for which 

n(k + \) = (k) 
r a ra 

(A + l) = <*> 
τα τα 

From these conditions, we get the relations 

{Pa -Pa)(raaQa + 'α/Λ 1 ~ ?«)) 

(^a2 ~ 4a)(raaPa + ^«(1 " Pa) ) 

There are several cases. 

q - i 

P =P Ρ =1 

Fig. 3. Convergence of probabilistic relaxation when paqa > p a i 

diagram was created for the initial probabilities of Fig. 1, giving 
This 

R = 
2/3 
6/5 

10/9 \ 
28 /30 ) ' 

Ρ = i 

Fig. 4. Convergence of probabilistic relaxation when paqa < p a a . This 
diagram was created for the initial probabilities of Fig. 2, giving 

R = ( 2 2 / 3 \ 
\ 4 / 1 0 6 / 5 / · 

a) For any choice of qa°\ if p(

a

0) = 0 or p(

a

0) = 
ρ components remain fixed. 

b) For any choice of p(

a°\ if q(

a

0) = 0 or qa

0) = 
q components remain fixed. 

C) I f Paa = PaVa, ^ 

1, then the 

1, then the 

'aa Γαβ 

Γβα Γββ 

1 1 
1 1 

and all points are fixed points. (This corresponds to the 
labelings of the two nodes being independent events.) 

d) If pa

k) = pa and qa

k) = qa then the ρ and q compo
nents remain fixed. This case corresponds to the "no 
information" labeling in Peleg [2]. 

N o other possibilities exist. Thus, for the probabilistic 
labeling there are either five fixed points (pa = 1 or 0, 
qa = 1 or 0; and pa = pa, qa = qa) or an infinite number of 
them (case c). 

At other points, the iteration process can be understood 
qualitatively through the two-dimensional diagram in the 
Pa ~ Qa plane indicating the convergence of the process for 
various starting points. Such diagrams are sketched in Figs. 
3 and 4 for the following possible cases. 
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1) paqa > p a a . In this case the diagonal elements of the 
compatibility matrix are dominated by the off-diago-
nal elements and convergence is either to the (α, β) 
or (/?, a) labeling unless the iteration process is started 
on a fixed point or on a certain simple curve through 
(A, <U See Fig. 3. 

2) PAa = Paa' Ε ν β Ι Ύ P o i n t i s f i x e d -
3) paqa < p a a . This is the case converse to 1). See Fig. 4. 

The answers produced by the relaxation scheme do not 
correspond precisely to the answers produced by the use of 
a Bayesian probability model. 

III. N O N L I N E A R R E L A X A T I O N 

The nonlinear updating rule was heuristically suggested 
by Rosenfeld et al. [1]. The updating factor for the estimate 
P^k)(X) (at the kth iteration) is 

Σ Σ nj(\9x>)p}V(x% 

where η is the number of neighboring nodes for the node /. 
The new estimate of the probability of λ at node i is 

defined as 

>(* + !) ( λ ) = 
/><*>(λ)[ΐ + <7,<*'(λ)] 

Σ Ρ/*>(λ')[ΐ + <7, (*W] ' 
λ ' € Ξ Λ 

Thus each Pfk\X) is multiplied by [1 + qt(\% and the 
values are then normahzed such that p(k+1) will be a 
probability vector. This updating is iterated until some 
termination criterion is met. 

The coefficients f/y used in this scheme are in the range 
[ - 1 , 1 ] , and 

a) if λ and λ' are compatible for objects at and aj9 

respectively, then r / y (X, λ') > 0; 
b) if λ and λ' are incompatible for at and aj9 respec

tively, then τ ; 7 (λ , λ') < 0; 

If we let rX8 = (1 + rxs)/2, then the iteration process takes 
the same form as the probabilistic scheme: 

7 ( * + D = 

Pik){raAk) + WIP) +P^{rfiaq^ + r ^ ) 

Ρ?+1)=1-Ρ? + 1) 

<*+1) = tik)(raapik) + r,aPp) 

^ 4ik){raapiV + ΓβαΡρ) + q^{rafip^ + r„p^) 

Here the r values are all positive and have been normalized 
to range between zero and one. The r coefficients for the 
probabilistic algorithm for two nodes and two labels can 
also be normahzed in this way by dividing each of them 
through by a constant, and thus probabilistic relaxation is 
a special case of this algorithm in which there are further 
restrictions on the r values. Thus all the cases discussed in 
the previous section apply to this iteration too. If the point 

(Pa> <U> 

Pa = 
raa Γαβ Γβα + Γββ 

Γββ Γ«β 
Γαα Γαβ 'β« + ΓΛ 

satisfies 0 < ρ α < 1 and 0 < qa < 1, then the previous 
discussion applies (and p a = p a > qa = qa). If not, then the 
convergence situation is similar, but no curve exists which 
partitions the unit square, and all initial noncorner label-
ings will converge to the same corner. The proof of this can 
be sketched as follows. Suppose p a > 1. (The cases p a < 
0, qa > 1, and qa < 0 are similar.) Then 

- 1 < 
rafi 

νββ r* 
< 0. 

βα 

Now 

qa

k + l ) = q a

k ) 
raaPak) + " Pik)) 

P(ak)Uk)raa + ( 1 " + ( 1 ~ Ρ ^ Λ α + ( l " ΐί^ββ) ' 

c) if neither labeling is constrained by the other, then 
η/λ, λ') = 0; 

d) the magnitude of ftj represents the strength of the 
compatibility. 

Methods for computing the /;· · are suggested in [6]. Some 
observations on the two-node two-label case in this scheme 
were made by Pavlidis [7], but our analysis goes somewhat 
further. 

For the case of two nodes and two labels, we have 

Again two cases exist. If raa - Γαβ < 0, then qa can be seen 
to be monotonically decreasing. If raa - Γαβ > 0 then qa 

increases monotonically. By continuity of the iteration 
functions, then, the final convergence point is the one to 
which the initial point (/?,0) in the first case or (p9l) in 
the second case converges for 0 < ρ < 1. 

The convergence into one corner, regardless of the initial 
labeling, is an undesirable result in applications of relaxa
tion for which both the initial labeling and the coefficients 

pik){(i + U<iik)+(i+^Hk)) 
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contain valid information and should affect the final label
ing. 

I V . OPTIMIZATION A P P R O A C H 

For the case of pairwise compatibilities, Faugeras and 
Berthod [3], [4] define a consistency vector qt for every 
node /: 

= j - Σ Σ ^ ( λ , λ Ο Ρ , ί λ ' ) , 

where ηι is the number of neighbors of node /', and <7,(λ) 
specifies how consistent label λ at node / is with the 
labelings at the neighboring nodes. Based on this they 
suggest a criterion to indicate both consistency and am
biguity: 

C= Σ Pi' 9i 
/ G V 

= Σ Σ ^,(λ)<7,(λ) 
/ <= V λ e Λ 

= Σ \ Σ />(λ)/>(λ'), · , 7 (λ,λ') . 
( / , / ) e £ i λ ε Λ 

Y e Λ 

The idea is to maximize C over all probability labelings. 
Hummel and Zucker [5] derive a support function for a 

label λ at a node /': 

5 , ( λ ) = Σ Σ ru(X,X')Pj(n 
(i,j)eE λ ' ε Λ 

and a local consistency measure 

A(P)= Σ Σ ^(λ )5 , . ( λ ) 
/ ε Κ A G A 

= Σ Σ ρ , ( λ ) ρ 7 ( λ ' ) ^ ( λ , λ ' ) . 
( / , λ £ Λ 

λ ' ε Λ 

Thus both optimization approaches optimize an expression 
of the same form, although the rtj values may differ. 

Hummel and Zucker also proved that when the rf- -s are 
symmetric, i.e., r / y.(X, λ') = /^-(λ', λ ) for all /, y, λ, λ', if 
A(Q) attains a local maximum at a point Z \ then Ρ is a 
"consistent" labeling, which they define as 

Σ ^ , ( λ ) 5 , ( λ ) > Σ ρ , ( λ ) 5 , ( λ ) , ,· = 1 , 2 , · · · , « , 

for all possible probabilistic labelings Q, where ^ ( λ ) is 
evaluated using the labeling P. We also adopt symmetric 
coefficients for our analysis. 

Since in the optimization approach rtj is used to indicate 
neighborhood consistency, we assign 

Α · , ( λ , λ ' ) = 0, for a l l / , λ , λ'. 

We then get the following expression for the target func
tion in the two-node label case. Let 

A = 
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0 r 
aa 

0 0 τββ 

r 
aa 

0 0 

Γββ 0 0 

Ρ = 1 

Fig. 5. Convergence of optimization method when raa < r a / 3 , r^e and 
Γββ < Γα/3' τβα· This diagram was created for same Λ as in Fig. 3. 

Fig. 6. Convergence of optimization method when raa > Γαβ, Γβα and 
Γββ > Γαβ' Γβα· This diagram was created for same R as in Fig. 4. 

and 

P T = (Ρα>Ρβ><1α><1β)· 

Then 

C = A(P) = PTAP 

= 2{Pa(raa<Ia + ? α β ς ρ ) + Ρ β { ^ α + 

= 2 ( / ? α ( ^ α + ^ f y ) + (1 ~ Ρα)('βα<1α + ^ f y ) ) -

Consider the behavior of this function for fixed qa and 
Then C is a monotonic function of p a , increasing with p a if 
raa1a + >*αβ<1β > *βα<1α + ? β β ς β , constant if equality holds 
and decreasing otherwise. Thus no local maxima or minima 
can exist for values of p a lying strictly between zero and 
one. We obtain a similar argument for qa by rearranging 
the expression. Thus any maximum occurs at a point where 
pa = 0 or 1 and qa = 0 or 1. 

Now C is a quadratic function of p a and qa and has a 
single saddlepoint (pa,qa), found by setting the gradient 
equal to zero: 

Pa = 
'ββ Γβα 

raa Γαβ Γβα + Γββ 

<la 
'ββ Γαβ 

Vaa Γαβ Γβα Γββ 

There are two cases: 
1) If 0 < p a < 1 and 0 < qa < 1 then the function C has 

a saddle point inside the p a - qa square. (Note that this is 
equivalent to (νββ - rafi)(raa - κβα) > 0 and (rfip - rfia)(raa 

<3 = 1 
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Γαβ) ^ 0.) Two local maxima exist, located at opposite 
corners of the square. (Similarly, two local minima are at 
the other two corners.) A pure steepest-ascent algorithm 
will converge to one of three points: one of the two 
maximal corners, or the inflection point (pa,qa). The 
convergence regions are sketched in Figs. 5 and 6. The 
dividing line between the regions passes through (pa,qa) 
and makes a 45° angle with the axes. 

2) If (pa,qa) does not he within the unit square, then 
only one maximum and one minimum exist, and they are 
located at opposite corners. Thus any ascent algorithm 
would converge to the maximal corner independently of 
the initial point. 

The comment at the conclusion of the last section re
garding the undesirability of a single convergence point 
also applies here. 

The criterion just considered may be modified by adding 
a so-called entropy term to the function C , giving a new 
function to be maximized: 

C = C-y[paPp + qaqp] 

where γ is a positive number. Let 

This unacceptable behavior results from certain choices of 
the coefficients. 

The two-node two-label analysis can be useful also for 
understanding relaxation in more general cases and for 
yielding insight on how pairwise relaxation estimates should 
be combined in higher dimensions. Every multinode case 
can be reduced to a two-node two-label case by assuming 
independence among all nodes and labels except two. 
Thus, for every general relaxation case, choices of coeffi
cients exist that give rise to single identical solutions for all 
initial labelings, and it is conjectured that a single solution 
occurs in cases other than reduction to the two-node case. 
It is desirable to have guidelines for choosing the coeffi
cients in the nonlinear relaxation algorithm, as is the case 
in Peleg's probabilistic relaxation, but it is unclear yet 
whether such algebraic restrictions are necessary or verifi
able in practical situations. 
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Pa = 

Qa 

-y(fy ~ 'αβ + Υ/2) +(raa ~ 'αβ ~ 'βα + foXfrg ~ fr« + Υ / 2 ) 

(raa - 'αβ ~ *βα + *ββ١ " Τ * 

-Ύ(Γββ ~ Γβ« + y/2) + ( Γ « α - Ταβ ~ fr« + rfifi)(rfifi " ^ + ?/2) 

(raa ~ raB ~ rfia + 'ββ)2 - Υ* 

Then the gradient of C is zero at (p,q). For γ = 0, C = C , 
and the discussion above holds. For γ > \raa - Γαβ - τβα + 
Γββ\, C has a global minimum at (pa,qa), rather than a 
saddle point. If this point is within the pa - qa square, then 
each corner is a local maximum and a convergence point 
for a steepest ascent algorithm. As γ increases to infinity, 
the point (pa,qa) converges to ( 1 / 2 , 1 / 2 ) , and the four 
quadrants of the pa - qa square define the convergence 
regions. 

V . C O N C L U D I N G R E M A R K S 

The analysis of relaxation processes for the two-node 
two-label case shows that in some cases relaxation can 
yield a result that is independent of the initial labeling. 

R E F E R E N C E S 

[1] A. Rosenfeld, R. A. Hummel, and S. W. Zucker, "Scene labeling by 
relaxation operations," IEEE Trans. Syst., Man, Cybern., vol. SMC-6, 
pp. 420-433, June 1976. 

[2] S. Peleg, "A new probabilistic relaxation scheme," IEEE Trans. 
Pattern Anal. Machine Intell., vol. PAMI-2, pp. 362-369, July 1980. 

[3] O. Faugeras and M. Berthod, "Improving consistency and reducing 
ambiguity in stochastic labeling: An optimization approach," IEEE 
Trans. Pattern Anal. Machine Intell., in press. 

[4] M. Berthod and O. Faugeras, "Using context in the global recogni
tion of a set of objects: An optimization approach," in Proc. IFIP, 
1980. 

[5] R. Hummel and S. Zucker, "On the foundations of relaxation 
labeling processes," Computer Vision and Graphics Lab., McGill 
University, TR-80-7, July 1980. 

[6] S. Peleg and A. Rosenfeld, "Determining compatibility coefficients 
for curve enhancement relaxation processes," IEEE Trans. Syst., 
Man, Cybern., vol. SMC-8, pp. 548-555, July 1978. 

[7] T. Pavlidis, Structural Pattern Recognition. New York: Springer, 
1977. 

Authorized licensed use limited to: University of Maryland College Park. Downloaded on April 29,2020 at 14:54:10 UTC from IEEE Xplore.  Restrictions apply. 


