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ORDERING SCHEMES FOR PARALLEL PROCESSING
OF CERTAIN MESH PROBLEMS*

DIANNE P. O’LEARYT

Abstract. In this work, some ordering schemes for mesh points are presented which enable algorithms
such as the Gauss-Seidel or SOR iteration to be performed efficiently for the nine-point operator finite
difference method on computers consisting of a two-dimensional grid of processors. Convergence results
are presented for the discretization of u,, + u,, on a uniform mesh over a square, showing that the spectral
radius of the iteration for these orderings is no worse than that for the standard row by row ordering of
mesh points. Further applications of these mesh point orderings to network problems, more general finite
difference operators, and picture processing problems are noted.
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1. Introduction. Consider the standard uniform mesh finite difference approxima-
tion to the equation

Uy + Uy, =f(x, y)

in a square domain with appropriate boundary conditions. The equation for each mesh
point involves data at that point and at its north, south, east, and west neighbors. The
Jacobi iterative method for this problem converges, and the iteration matrix has a
spectral radius of cos (w/n)=1—0(1/n%), when the mesh is nx n. The successive
overrelaxation method (SOR) with optimal choice of the relaxation parameter gives
an iteration an order of magnitude faster, with spectral radius [1—sin (7/n)]/[1+
sin (7/n)]=1—0(1/n). Thus, for this problem SOR is preferred over the Jacobi
method for standard computers, since both take time proportional to n” per iteration.
These standard results can be found, for example, in [23].

However, the Jacobi method has undergone a renaissance recently with the
development of computers with parallel design. On a computer with n® processors
connected in a two-dimensional grid with local communication only, one iteration of
Jacobi can be completed in time independent of n, while SOR still requires O(n) for
the first iteration if the mesh points are ordered row by row. (However, successive
iterations can overlap the first, and be completed in time independent of n.) More
details on these implementations will be given in § 2.

SOR can be speeded for parallel computation by reordering the mesh points. For
example, using the checkerboard ordering (Fig. 5a: all even numbered mesh points
ordered after all odd points), the time per iteration using n®> processors is again
independent of n and the convergence rate is unchanged. The mesh can also be ordered
by lines into a block scheme, so that all new values on a line are determined at once.
If k lines are grouped together, the spectral radius is 1— O(k/n), but iteration time
increases with n [18].

The checkerboard ordering does not work so well for more complicated elliptic
equations or alternate approximation strategies. Whenever a finite difference mesh
point (or finite element unknown) is linked to one of its diagonal neighbors, the
checkerboard trick fails. The line methods are often still useful.
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One purpose of this work is to develop ordering strategies for use in solving
certain discretizations of elliptic equations on parallel processors. These strategies are
applicable to any problem in which the equation for each mesh point involves data at
that point and any subset of its north, south, east, west, northeast, northwest, southeast,
and southwest neighbors. The goal is to make iteration time independent of n without
sacrificing convergence speed.

A second purpose is to note that these orderings are also useful in several classes
of problems unrelated to partial differential equations.

This work is related to work performed independently by Adams [1]. In that
paper, the four-color ordering of Fig. 5a is presented for the nine-point finite difference
operator, and some multicolored orderings for other couplings of mesh points are also
given. No theoretical results concerning rate of convergence are given, but numerical
experiments on elliptic partial differential equations are reported.

There has also been other work on parallel iterative methods (see, for example,
[8]). Most recent work (see [24] for an exception) has centered around implementation
of the conjugate gradient algorithm and appropriate preconditionings. Sameh [22]
discusses preconditioning partial differential equation problems by block Jacobi with
line red/black ordering. Kowalik, Kumar, and Lord [10] discuss block Jacobi, and
Kumar in her thesis [12] considers other preconditionings and examples. Lichnewsky
[16] discusses preconditioning with an incomplete Cholesky factorization under the
nested dissection ordering. Parter and Steuerwalt [19], [20] discuss convergence proper-
ties of various preconditionings based on block iterative methods.

Another aspect of the problem is the mapping of irregular mesh problems onto
regular arrays of processors. One heuristic approach is given in [3]. The measure of
success is taken to be maximizing the number of problem edges that match processor
connections. In [7], the mapping problem is studied for adaptive local refinements of
regular meshes.

In § 2 we present some background on parallel computation and mesh problems.
In § 3 we present orderings for mesh points and discuss convergence rates for the
system of equations corresponding to the nine-point finite difference approximation
to the operator u,, + u,,. In § 4 we discuss implications for more complicated problems,
including nonlinear systems of equations and constrained optimization problems.

2. Parallel computation of mesh problems. In this section, we consider sources
of mesh problems and the implementation of the Jacobi, Gauss-Seidel, and conjugate
gradient algorithms on parallel processors.

By a parallel computer system, we mean a set of processors, possessing some local
memory, capable of performing some arithmetic operations and connected in some
network so that each processor can communicate with “neighboring” processors and
perhaps with common memory. Examples of parallel processors include the Denelcor
HEDP, the ILLIAC [2], DAP, BSP [11], FEM [9], the ZMOB [21], systolic arrays [13],
wavefront array processors [14], [15], and plans for the Japanese Fifth Generation
Computer System [17].

The examples we consider will assume that the processors are arranged in a
two-dimensional grid. Each processor should have at least one connected neighbor in
each adjacent row and column. This structure is of interest because in many sparse
matrix problems, the graph of the matrix has the structure of a planar mesh. Such
problems arise from diverse applications areas. Three are described below.

1) The discretization of elliptic partial differential equations imposes a regular or
irregular grid on the region. In two dimensions, a finite difference method often results
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in a rectangularly oriented grid in which each unknown is directly coupled to some
subset of eight compass-point neighbors. Finite element methods over irregular regions
produce less patterned grids, but are still characterized by local coupling only. Graded
grids, which introduce refinement into some subregions, also occur commonly in such
problems.

2) Network problems also exhibit a mesh structure, arising from limited con-
nectivity between nodes of the network. Such problems are typical in electrical power
system analysis, queuing theory models of communication networks, and geodesy.

3) Digital image processing problems also have mesh structure. In this case, the
grid is usually quite regular, resulting from digital coding of a gray level or color level
for each “pixel” or picture element. Typical pictures have 10,000-100,000 pixels. Key
problems are noise smoothing, feature extraction (e.g., finding region boundaries),
and scene analysis (e.g., determining the position of the light source). Often the problem
is formulated as a constrained optimization problem

min uTA(w)u+u’b.
c=su=d
In noise smoothing, for example, u is the vector of digitized color levels, ¢ and d
represent bounds on meaningful digitized colors, and A has the structure of a 9-point
operator, since a color at one point is most closely coupled to the eight neighboring
colors.

Jacobi-type iterative methods have been widely used for parallel computation of
mesh problems. Application to partial differential equations and network problems
seem to share a common heritage, but the developments for image processing were
independent. Such iterations take the form

ulkv =‘I'{u§k): j is a mesh neighbor of i},

where ¥ is a function of several variables. Under a reasonable assignment of mesh
values to processor nodes, the ith process can access neighboring values efficiently,
update its own value, and be ready for the next iteration in time independent of the
size of the mesh. An example is given in Fig. 1. Here we have a rectangular grid of
processors, with nearest neighbor connections, applying the Jacobi iteration to a
five-point operator. In many applications, however, these schemes are only slowly
convergent, and more sophisticated methods are required.
Gauss-Seidel-like methods have also been considered. They take the form

ul D =w[{u(®: j is a mesh neighbor of i and j= i}

U{u}k”):j is a mesh neighbor of i and j<i}].
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F1G. 1. The Jacobi iteration for a five-point operator on a nXn grid of processors. (a) Step 1: Each
processor passes its current mesh value to each of its neighbors. (b) Step 2: Each processor updates its mesh value.
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When expressed in this form, u; cannot be updated until all of its neighbors with lower
indices are updated. This method is illustrated in Fig. 2 for the same problem as Fig.
1 with row by row ordering of mesh points. The first iteration takes time proportional
to n for an nXn grid, but each successive iteration takes only two more time units.
Alternate orderings of mesh points are much better than this; we discuss them in the
next section.
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FI1G. 2. The Gauss-Seidel iteration for a five-point operator on a nx n grid of processors, using row by
row ordering of the mesh points.

An alternate way to consider Gauss-Seidel-type algorithms is to express them in
iteration matrix form. To solve Au = b, for example, the iteration takes the form

u®V=(D~L)"'[b+Uu']

where A= D~—L—U, L is strictly lower triangular, and U is strictly upper triangular.
Some researchers have proposed explicitly forming (D — L)™' or some approximation
to it so that the iteration can be performed completely in parallel.

Because of success in solving problems on standard machines, methods like
conjugate gradients are attractive candidates for parallel processors. They impose one
further requirement on machine architectures, however: in addition to easy access to
mesh neighbors, it is also necessary to accumulate inner products. On a rectangular
n X n grid of processors with only nearest neighbor connections, this is an O(n) process,
quite slow for large grids. Some additional processor communication channels are
necessary. Some alternatives follow:

(1) One common proposal is to add to each column of processors the ability to
accumulate an inner product quickly using a bus.

(2) Perfect shuffle connections among processors in each row and column reduce
inner product time to O(log n). Connections for a single column of n =16 processors
are shown in Fig. 3. Information in a processor is redistributed as if it were on a card
being shuffled in a deck. For n =16 processors, the successive reorderings are

123 45 6 7 89 10 11 12 13 14 15 16
192 10 3 11 4 12 5 13 6 14 7 15 8 16
159 132 6 10 14 3 7 11 15 4 8 12 16
135 79 11 13 15 2 4 6 8 10 12 14 16
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The cycle repeats every log n steps. Thus, if originally each even processor j accumulates
the jth and (j+ 1)st elements in the inner product, then at stage 2, processors numbered
2,4,--+,16/2 can accumulate four terms. At the third stage, 8-term partial sums can
be accumulated, and the 16-term inner product is available after log 16 steps. It can
then be communicated to each processor in another log n steps.

[
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F1G. 3. Perfect shuffle connections among 16 processors.

O

(3) An arrangement with the same speed for inner products but with fewer
connections and fewer wire crossings is shown in Fig. 4. In this incomplete interchange,
the even processors send their information to the top of the grid in reverse order. The
successive reorderings for n =16 are
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Again, inner products can be accumulated in log n steps-and broadcast along the
reverse pathways.
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FIG. 4. Incomplete interchange connections among 16 processors.

It is interesting to note that either the perfect shuffle or the incomplete interchange
connections shown above make multigrid iterations [4] possible on a nearest neighbor
grid, since examination of the permutation pattern shows that within log n steps,
rearrangements are made which could be used to place in proximity every other mesh
point, every fourth mesh point, every eighth, etc.

3. Orderings for nine-point operators. Figure 5 shows orderings of mesh points
which can make algorithms like SOR practical for parallel computation when the
equation at each mesh point depends on the point itself and any subset of its eight
immediate neighbors. To make the discussion clear, we will use the P* scheme as an
example. The other schemes are similar and, in many cases, simpler.

Note in Fig. 5b that we have divided the mesh points into three groups. Those
labeled ““1” are to be ordered before those labeled “2”, and those labeled ““3’’ are
last. Within each group, neighboring points—those in the same *“P”’—are numbered
consecutively in an arbitrary way. The matrix corresponding to the mesh in Fig. 5b
has the sparsity structure shown in Fig. 6. Notice that the pattern is

D] A B U U,
(1) AT Dz C U | =\ Uy
BT CT D3 Us U3
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FIG. 5b. The P? ordering.

where D;, D,, and D; are block diagonal matrices with blocks of size 5X5 or less,
and the vector u; consists of all variables numbered ‘““i”’. For parallel processing, the
(k+1)st step of this scheme would be as follows:
(1) Perform an iteration of block SOR on the first group of equations:
W = (1 0)ul + D7 (v, — Aug” — Bud®).

Note that each “P” group can be processed independently and concurrently by a
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FIG. Sc. The T? ordering.

F1G. 5d. The H + H ordering.

separate processor or group of 5 processors. Only 5X5 linear systems need to be
solved directly.
(2) Process the second group of equations similarly:
uf V= (1-0)uf?+ D3 (v~ ATuf*"V ~ Cuf?).

Part of this computation could overlap (1).
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FiG. 5f. The Box ordering.

(3) Process the third group:
u$t =1-w)ul+owbD3 (vs— BTul+V — CcTuf*").

Computation of (1— )ul could overlap (1), and computation of v;— BTu{**Y could

overlap (2).
This scheme can be implemented efficiently on computers with n* processors (one
per point), n*/5 processors (one per “P”), or n?/15 processors (one per cluster of
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it

FIG. 6. Matrix sparsity structure for the P> ordering.

three “P’s” numbered 1, 2, and 3). Communication is local: each P communicates
with at most six of its neighbors, and by distributing the mesh points in the natural
way, these will be on neighboring processors.

For illustration, we describe the algorithm for a two-dimensional grid of processors
with communication connections to horizontal and vertical neighbors only, assigning
three vertically adjacent “P’s” to each processor. A processor’s view of a typical
iteration is as follows:

(1) For its block of 5 equations for u Y each processor accumulates the terms

involving points in u; and u, from information it already has. When the necessary u;
values from the previous iteration arrive from (a subset of) the north, south, east, and
west neighboring processors, then the u; terms are computed, a 5 X5 linear system is
solved, and then u, can be updated. Appropriate subsets of the 5 new u,; values are
then sent north, south, east, and west.
(2) Next, in a similar way, the processor accumulates terms for its 5 components
of u$*? which involve points in u, and u; and completes the update after u, information
arrives from the 4 neighbors. Then the 5 new u, values are sent north, south, east,
and west as appropriate.

(3) The third set of 5 points is updated and communicated in the same way.

The iteration is synchronized by the data flow rather than by any global communica-
tion. If fewer processors are available, the “P’s” can be enlarged, at the cost of solving
linear systems larger than 5X5: each number in the “P” can represent a j X[ group
of mesh points for any integers j and I, giving 5jI X 5jl systems to be solved. The
iteration can be terminated after a fixed number of iterations or by a convergence
test. If the communication required for a convergence test requires m times the time
of an iteration, it could be performed roughly that often. Any global communication
paths in the grid of processors (such as the ones described for inner products in § 2)
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are idle during the iteration process, and thus could be dedicated to convergence
communication.

To study the convergence rate of the P> SOR method (as well as the others in
Fig. 5) we list some properties of the matrix of (1) corresponding to the nine-point
difference approximation to the Laplacian. Let D denote the block diagonal part; —L
the strictly lower triangular part; and — U the strictly upper triangular part. The main
tools we use are

(T1) {23, p. 91] For a regular splitting M—N of a Stieltjes matrix (one which is
symmetric, positive definite, and nonpositive off the diagonal), if M and N have no
common nonzeros, then putting more nonzero elements in M monotonically improves
the spectral radius of the iterative method

ue M INu—M1o.

(T2) [23, p. 124] For irreducible Stieltjes matrices, the “SOR theory” holds
“approximately’; i.e., for

-2
1+V1-p%(J)

where p(J) denotes the spectral radius of the Jacobi iteration matrix, then, for the
SOR iteration using this value of the relaxation factor w,

@opt— 1< p(SOR) <V —1.

We have the following properties:

(a) The original matrix is an irreducible Stieltjes matrix.

(b) The P? Jacobi method (M = D, N = L+ U) and the P> Gauss-Seidel method
(M=D-L,N = U), are regular splittings and thus convergent. They are also p-regular
splittings.

(c) By (T1), the rate of convergence for each P*> method is better than that for
the corresponding standard method.

(d) Consider dividing the mesh of Fig. 5b into blocks, each containing two vertical
lines of mesh points. By (T1), the spectral radius for the P> Jacobi method is not less
than that for the two-line Jacobi method (since it is independent of ordering) and not
greater than the standard point-Jacobi method. Thus

p(]Z—line) = p(JP3) = p(Jpoint),

and, since p(J.ine) and p(Jpoine) are both 1— O(1/n?) [18], so is p(J p3).

(e) By (T2), there is a value of @ for which p(SORp3)=1—0(1/n). Thus, in
using the P’ ordering we have not sacrificed rate of convergence.

The P’ scheme is the most complicated of the schemes in Fig. 5. The pattern
repeats a shifted scheme of 4 columns. The other schemes are more regular.

The P? and T’ schemes are balanced, dividing the mesh points into three groups
of equal size. The H+ H and Cross schemes have about twice as many ““1” points as
“2’s” or (““3’s”"), and the Box scheme has three times as many “2’s” (or ““3’s”) as ““1’s”.

The patterns can be enlarged in various ways; for example, the H+ H scheme
can be stretched in both dimensions, with each number in Fig. 5c representing a j X/
block; stretched vertically, with each number in a crossbar representing a 2j X I block
while all other numbers represent j X I blocks; stretched horizontally, with each number
in a vertical bar representing a jX 2/ bloeck while all other numbers represent a jX !
block; or in a variety of other proportions.

Wopt
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4. Further applications. We have shown how the mesh orderings of Fig. 5 can
be used to make the time per iteration of the standard stationary iterative methods
on a two-dimensional grid of processors independent of n without sacrificing rate of
convergence. We now discuss implications for more complicated algorithms and prob-
lems. In particular, we consider further cases in which iteration time is independent
of n.

A. Other connectivities and geometries. It is not critical that the mesh be equally
spaced, that the region be a square, or that each variable be directly coupled to all 8
neighbors. For example, hexagonal connections, and piecewise linear finite elements
over regular triangles, also fall within this scheme.

B. Nonlinear problems. The iterations of § 2 can also be applied to nonlinear
systems of equations f(u)=0, where the Jacobian matrix of f has nine-point con-
nectivity structure.

C. Gradient methods. These mesh orderings can also be used to simplify steepest

descent or conjugate gradient algorithms for the problem
min uTAu—u"b,

or a nonquadratic version of it, where A is positive definite and has nine-point structure.
The standard algorithms require inner products over vectors of length n”. On two-
dimensional grids of processors with nearest neighbor connections only, this is an O(n)
process. An iteration can be derived, however, which holds two sets of variables
constant while solving problems involving the third. Each iteration would take the form:

Fori=1,2,3
Decrease the function by changing u;, holding the other variables fixed. (“Decrease”
could mean solving the subproblem exactly or simply reducing the objective function
by several iterations of a gradient method.)

This breaks the problem into three parallel sets of small problems (5 unknowns each,
for the P> ordering) which can be solved using local communication only.

This is a descent algorithm, but does not have the finite termination property of
conjugate gradients.

The mesh orderings can also be used with the standard preconditioned conjugate
gradient algorithm (see, for example, [5]). In this case the preconditioning operator,
iterations of the SSOR iteration, for example, could be applied in time independent
of n using only local communication, although the conjugate gradient iteration would
still require inner products of length n°.

D. Constrained problems. Free boundary problems for partial differential
equations can lead to minimization problems with upper and lower bounds on the
variables [6]: for example,

min uTAu—u"b, c=u=d,
u

or a similar problem with nonquadratic objective function. Iterations as in § 2 (Jacobi,
Gauss-Seidel, SOR) are still applicable as long as each variable change is truncated
if necessary to keep the variable within range.

Gradient methods are also often used for constrained problems. In addition to
the inner products used to determine parameters, an additional global check is
ordinarily necessary to calculate the maximum step which keeps the variables within
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range. The orderings of § 2 can be used to produce an algorithm in which the inner
products and step length checking for gradient methods are reduced to local operations.
The algorithm is analogous to that in (C) above.

E. Three-dimensional problems. These methods also extend to the solution of
three-dimensional problems on two-dimensional arrays of processors. Foran nXnXp
grid, an iteration using the ordering schemes above crossed with a line scheme in the
third dimension would produce algorithms with iteration time proportional to p on a
two-dimensional grid of n* processors with local connections.
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