
2-H

P a r a l l e l C o m p u t i n g 5 (1 9 8 7) 1 2 7 - 1 3 9 1 2 7
North-Holland

Parallel implementation of the block
conjugate gradient algorithm
Dianne P. O'LEARY *
Computer Science Department and Institute for Advanced Computer Studies, University of Maryland, College Park,
MD 20742, U.S.A.

Abstract The conjugate gradient algorithm is well-suited for vector computation but, because of its many
synchronization points and relatively short message packets, is more difficult to implement for parallel
computation. In this work we introduce a parallel implementation of the block conjugate gradient algorithm. In
this algorithm, we carry a block of vectors along at each iteration, reducing the number of iterations and
increasing the length of each message. On machines with relatively costly message passing, this algorithm is a
significant improvement over the standard conjugate gradient algorithm.

Keywords. Conjugate gradient algorithm, parallel implementation, message passing architectures.

1. Introduction

During the past 10 years, the conjugate gradient algorithm has become a standard method
for the iterative solution of sparse linear systems of equations. Several developments contrib
uted to this; analysis and experimentation identified the most stable versions of the algorithm
[17] and [16], produced an understanding of its error propagation [15], and provided effective
preconditioning strategies to accelerate convergence of the algorithm on a wide class of
applications (e.g., [2,3,5,12]). These ideas had their roots in much earlier work (e.g., [8,22]) but
part of the reason for their success at this time was that the preconditioned algorithms were
well matched to supercomputing technology (e.g., vector processing) and to several important
problem classes (e.g., network problems and discretizations of two- and three-dimensional
partial differential equations).

The conjugate gradient algorithm is not as naturally suited for parallel computation as it is
for vector computation, in part, because of its many synchronization points and its relatively
short, but numerous, message packets. Two techniques can reduce the number of synchroniza
tion points and increase the size of the message packets: effective preconditionings and the use
of a block of vectors in the iteration. In this paper, we consider the second technique.

In Section 2, we review the mathematics of the block preconditioned conjugate gradient
algorithm. Section 3 concerns the parallel implementation of the algorithm. A coarse grained
parallel version is introduced for networks of processors communicating by message passing.
Some analysis and simulation results for medium grained parallelism on message passing
architectures are also presented. Section 4 lists some conclusions and open questions.
* This work was supported by the Air Force Office of Scientific Research under Grant AFOSR-82-0078.

0167-8191/87/$3.50 © 1987, Elsevier Science Publishers B.V. (North-Holland)

1 2 8 D . P. O ' L e a r y / T h e b l o c k c o n j u g a t e g r a d i e n t a l g o r i t h m

2. The block preconditioned conjugate gradient algorithm

Consider the problem of solving the linear system of equations AX= B, where A is an n X n
symmetric matrix. We do not assume that A is positive definite. Suppose that M is an nXn
symmetric positive definite matrix, the preconditioner, which is in some sense a good ap
proximation to A'1. Given and initial vector zx satisfying z[Mzx = 1, it is possible to express
the solution vector X* as X* = Zk\pk9 where ̂ k is a A>vector and Zk satisfies

AZk = ZkTk + Zk9
with Tk a tridiagonal matrix and Zk an nXk matrix that is nonzero in its last column only.
The matrices Zk have M-orthonormal columns:

Z?MZk = I9
and first column equal to zx. This construction of Zk is the well-known Lanczos process [10]
and has been exploited by Paige and Saunders [16] in solving linear systems.

This algorithm has a weakness (for parallel processing) that there are a great many inner
products in relation to the remainder of the computational work. For efficiency, these inner
products must be spread among processors, and introduce synchronization points at each
iteration of the algorithm. For this reason, the block _yersion of the algorithm becomes
attractive: fewer iterations will be required if we let each Zk be a block of b /z-vectors. Tk will
then become a matrix with 26 + 1 nonzero bands. This version of the algorithm was studied
independently by O'Leary and Underwood in the late 1970's, although, sadly, Richard
Underwood's results were never published due to his death. This work was motivated by work
of Cullum and Donath [6], Golub and Underwood [7], and Underwood [21] on the block
Lanczos algorithm. More details on the block conjugate gradient algorithm and its properties
may be found in [13].

The block version of the algorithm may be considered in two contexts: if b right-hand sides
are to be processed, then the algorithm simultaneously produces a solution vector for each one,
and probably in less work than applying the single vector algorithm b times. If only one linear
system is to be solved, then the b -1 extra vectors are a tool, like the matrix M, intended to
reduce the number of iterations.

The block preconditioned form of the conjugate gradient algorithm can be described as
follows:

Initialization: Given B and X0, let R0 = B- AX09 X0 = X0,_Z0 = 0, and Zx = R0vl9 where
v1 is defined so that Z^MZX = /. Let p0 = 0, px = ZjMAMZX9 Lxl = pl9 and Vx = I2bx2b.

Step A: (A: = 1,2,...)
1. Form the new set of columns Zk+1:

Zk+i = AMZk - Zkpk - Zk_xvkT.
Form a 'QR' factorization of Z^+^^yielding a set of new columns Zk+1 and a triangular
set of coefficients ^+1:

Zfc+i = Zk+lvk+l9

where Zk+1MZk+1 = /.
2. Compute

AMZk+l and pk+1 = Z?+1MAMZk+1.
3. Compute two new blocks of L coefficients:

L^*+i,*-i> Lk+1 k\ — [0, vk+1\Vk

D . P. O ' L e a r y / T h e b l o c k c o n j u g a t e g r a d i e n t a l g o r i t h m 1 2 9

4. Given Lkk and vkJl9 compute the QR factorization

[£*.*, "*7i]r*T+i = K.*, o].
5. Compute two new blocks of L coefficients:

6. Compute

[\Vk, Wk} = [Wk,MZk+,)Vk\x.
1. Compute \pk from

Lk,k*Pk = -(Lk,k-2^k-2 + Lk,k-\^k-\)'
8. Compute the new approximation to the solution from

xk = xk_i + wk̂ k.
Upon termination: Determine \pk+i and Xk+l from

L/c+itk+i^k+i ~ (Lk+i^-i^k-i + Lk+iyk\l/k),
Xk+i = Xk+ wk+i$k+i-

If A is also assumed to be positive definite, then there is a well-known bound for the error at
the kth step of the conjugate gradient algorithm (see, for example, [11]). Let the eigenvalues of
MA be denoted by Xn > \w_a > • • • >XX. Then

E l A E k < ((1 - v ^ M l + { ^) f c
where Ek = Xk — X* is the error after k iterations, k = Xn/Xi is the condition number of MA
in the 2-norm, and c is a matrix of constants. This result also holds for the block conjugate
gradient algorithm for each of the b error vectors [13]. In this case, however, k is reduced to
\n/\b. For special eigenvalue distributions, tighter convergence bounds can be derived for both
algorithms by appealing to the optimal polynomial property of conjugate gradients as in [11].

3. Parallel block preconditioned conjugate gradient algorithms

3.1. Coarse grained algorithms and analysis

Figure 1 is a diagram of the per-iteration work of the block preconditioned conjugate
gradient algorithm illustrating its coarse-grained parallelism; if O(l) processors are available, it
might be practical to assign subsets of them to given tasks, performing, for example, Steps 2, 3,
and 4 in parallel. The updating of the X matrix of solution vectors (Steps 3 through 8) may be
largely decoupled from the generation of the Lanczos vectors (Steps 1 and 2), operating on a
separate group of processors or in low-priority mode on the Lanczos processors, as long as
there is a queuing mechanism for saving the Lanczos vectors until they have contributed to the
X update. This coarse-grained algorithm is also well-suited for parallel computers with vector
processors, since it preserves long vector operations within a single processor. Standard tricks
for forming products of sparse matrices with vectors can be employed, and results can be
pipelined between steps such as 6 and 8.

Another way to achieve coarse-grained parallelism is to assign one processor (or a small
number of processors) per column of Z, since in general the number of columns is independent

130 D.P. O'Leary / The block conjugate gradient algorithm

1.k
(4.5a?/?2 + time_to_form_MZ)

(nb2 + time_to_form_AZ)

1.k+1

4.k+1

Fig. 1. Coarse-grain parallelism in the block conjugate gradient algorithm (time per step at the kth iteration, and the
partial ordering of the steps).

of the size of the matrix. This scheme results in a great deal of inter-processor communication
but good load balancing.

3.2. Medium-grained algorithms and analysis

If more than a constant number of processors are available, further speedups can be
achieved by dividing the work within steps of the block conjugate gradient algorithm. From
Fig. 1, we see that the most time-consuming steps of the algorithm are Steps 1 (updating the
Lanczos vectors) and 2 (forming A times the block of vectors). If b, the number of vectors, is
small, then the next most costly steps are 6 (forming a new block of auxiliary vectors) and 8
(updating the approximate solution vectors). In partitioning the work among a large number of
processors, we have two choices:

(1) Partition the Z matrices into pieces containing one or more rows and all of the columns;
(2) Partition the Z matrices into pieces containing elements from one or more rows and

columns.
Row partitioning has two advantages. The first is that only the QR factorization of Step 1

and the matrix multiplication and inner product of Step 2 involve communication among
processors; all other steps require data which is local to its processor. (Since the L and V
matrices are small, we let each processor which is responsible for a block of X update these
matrices independently. This means that Steps 3, 4, 5, and 7 are performed by every one of
these processors.) The second advantage is that it is significantly easier to program than the row
and column partitioning algorithm.

Two orthogonal factorizations need to be performed at each iteration: the first finds an
orthogonal basis for the Z vectors (Step 1) and the other updates the factors of the matrix T
(Step 4). The first of these is difficult for three reasons: the matrix is large (nXb), the
orthogonal matrix must be computed explicitly rather than as a product of factors, and it is
important that the computed columns of this matrix really be orthogonal. If an algorithm such
as Givens or Householder transformations is used for this QR factorization, the elementary
matrices must be multiplied together in order to accumulate the first b columns of the Q

D . P. O ' L e a r y / T h e b l o c k c o n j u g a t e g r a d i e n t a l g o r i t h m 1 3 1

matrix, and this cannot be begun until the factorization is complete, unless we are willing to
form the full nXn matrix. This fact effectively doubles the time required for either of these
two algorithms. Because of this, the modified Gram-Schmidt algorithm is much faster in this
computation. The disadvantage is that the computed columns may not be sufficiently close to
orthogonal. Bjorck [4] has shown that QTQ can differ from the identity by a matrix of size
proportional to machine precision when the Householder algorithm is used, but by a matrix of
size proportional to machine precision times the condition number of the original matrix Z
when the modified Gram-Schmidt algorithm is used. Unfortunately, even the modified
Gram-Schmidt algorithm is 'slow' for parallel processing since it requires b — 1 passes through
the matrix, with communication on each pass. The classical Gram-Schmidt algorithm, in which
ZTZ is formed initially, and then subtraction and normalization of columns is done, is much
more efficient in parallel computation. An error analysis has been given by Abdelmalek [1]. An
alternative, proposed by Stewart [20], is to compute R as a Cholesky factor of ZTZ and form
the rows of Q by solving Z = QR. This algorithm shares the efficiency of classical
Gram-Schmidt. Both these algorithms and modified Gram-Schmidt will fail to produce a
sufficiently orthogonal Q if Z is ill-conditioned, and it is possible to iterate them ('reortho-
gonalize'). Ill-conditioning, however, indicates that the columns of Z are close to rand-defi
cient, and we should drop a column and continue the algorithm on the reduced (and
well-conditioned) block. The timing counts below assume that the classical Gram-Schmidt
algorithm is used and that reorthogonalization is not necessary.

A lower bound on execution time for a parallel algorithm can be determined by the
technique of studying a critical path through the computational graph for the algorithm as in
[14]. If such a time can actually be achieved by an implementation, then it is optimal. This is
the technique used to derive the results of this section.

The analysis of parallel algorithms depends on three parameters: the time for floating-point
operations, the time for start-up of a message, and the per-word transmission time for
messages. To normalize the results, we will assume that
- the time for a typical floating-point computation (a 'flop', defined to be an addition, a

multiplication, and some indexing) is 1,
- start-up time is s9
- per-word transmission time is w.
We will use pRXpc processors, arranged either in a torus or a hypercube. The matrices Z are
partitioned into (n/pR) X (b/pc) pieces, one per processor. The bxb matrices L9 L, and \p ,
and the four blocks of V are stored in (b/pc) X b pieces, with pR copies of each. The matrices
p, pT, v~l, and v~T are stored in a similar way in b X (b/pc) blocks.

On a ring of p processors, the time to cycle p vectors of length x9 distributed one vector per
processor, among all of the processors is (p - l)s + (p - l)xw. If the processors are connected
in a hypercube, this can be done in time 2 log p s + 2x(p - l)w>/log p (see, for example, [18]).
Using these facts, we can calculate the time per step of each conjugate gradient iteration. Table
1 gives these times for matrices partitioned as described above. If pc = 1, then the number of
floating-point operations can be reduced as indicated by the numbers in Fig. 1.

There are many variants on implementations of the block conjugate gradient algorithm. The
times for the variants differ in low-order terms only. The computation time for one variant is

llnb2 - nb nb2 51b3 - 21b2 + ft/3 16b3 b3
t i m e c o m p - p ^ p c ^ + 2 p c 3 p 2 6 p l

+ 4ft3 + 2ft2 + \b + time_to_form_Z + time_to_form_MZ. (1)

The total time per iteration on a torus of processors for one variant is the computation time

132 D.P. O'Leary / The block conjugate gradient algorithm

Table 1
Overhead time per iteration for the medium grained algorithm

Step Floating-point operations (flops) TORUS
communication and
accumulation time

HYPERCUBE
communication and
accumulation time

5nb2
PrPc

,3*3

+ • * -
PrPc

-3b2-hb

nb2

PrPc
b3

+ time

6pc

_to_form.

6pl

_MZ

4 (p c - l) s + (p K - l) s

nbw+ 40fc-l>
PrPc

+ (/»R"lXw+l) —
Pc

l\ogpcs = 2\ogpRs

S n b (p c - l)+ ^ - F - w
PrPc log Pc
b2 log pK

Pc
(2w + l)

, , b* + b b*

n b 2 b 2
P r P c P c

+ time _ to _ form _^4Z (pc — l)s + (pR-l)s

PrPc

+ (/>R-lA("+l)
Pc

2 log pc s + 2 log pK s

2 n b (p c - l)+ ^ J - w
PrPc log Pc
b2 log pR

Pc (2w+l)

2b3 2b2
P c P c

16b3-2b2 16b3
P c 3 P c

+ 4b3+2b2+\b

4b3 2b2
P c P c

4 n b 2 2 n b
P r P c P r P c

3b3 3b2
P c P c

nb2
PrPc

(P c - l) s + 2 (p c - l) — wPc

3(Pc- l) s + Z (pc - l) ^ -wPc

H p c - V 2b2+ b 2b2
P c p i

b2
(/ ?c - l) 5+4 (/ ?c - l) Pc

nb
(P c - l) s + 2 (p c - l) — — wPrPc

2(pc- l) + 3(pc- l)—w
Pc

(Pc ~ l) s + (Pc -1) t tw
PrPc

2 l o g p c s + ^ - w
pc log pc

b 2 (p c - l)5 log pc s +16—^ '-w
Pc log Pc

2b2 + b 2b2'
P c p i

b 2 (p r - l)2 log pc s +8—^ J-w
Pc log pc

4 n b { p c - l)2 l o g p c s + ^ - w
PrPc log Pc

b \ P c - V)4 log Pc s + 6
Pc log Pc

2 \ o g p c s + 2 ^ J - wPcPk log />c

above plus the portion of the communication and accumulation time which cannot be
overlapped with computation, which is given by

Snbw Snbw 4b2pR +4b2pRw- 48ft2w- 3ftw- 4ft2t i m e m m = 1 -
P k P k P c

. 5b2w . 39ft2w 3ftw

2pc

2Pc
+ •

2 + —7T- + 2j?R^ + 14/>c^ - 16s, (2)

and from this we can determine, given the machine parameters s and w and the problem
parameters n and ft, the optimal number of processors. We define the overhead time to be the

D.P. O'Leary / The block conjugate gradient algorithm 133

80000

- 60000
Q.

> 40000

CD

I 20000

1 0 2 0 3 0 4 0 5 0 6 0 7 0
number of processors

80 90 100

Fig. 2. Time per iteration for a torus of processors; matrix size n =10000, blocksize b—\t start-up time s = 500,
per-word transmission time w = 0.01.

total time, but not including the time to form AZ or MZ. In order to minimize this overhead
time per iteration, pR should be chosen by the rule

2 _ llnb2pc — nbpc — nb2 + SnbwpQ — &nbwpc
2b2pc + 2b2wpc + 2spQ

(3)

Since, in general, the blocksize ft will be a small number, and since pc is bounded above by ft,
equations (1), (2), and (3) above can be evaluated for all possible pc values to determine the
best. If pc = 1, (3) reduces to

2 lOnf t2 - nbPi =
2(b2 + b2w + s)'

giving a per-iteration, time proportional to]/n. The constant of proportionality can be quite
high, however. In Fig. 2 we graph the overhead time per iteration vs. the number of processors
for a matrix of size 10000 on a machine with start-up time s = 500 and per-word time w = 0.01.
Only 9 processors can be used effectively, giving a minimal time per iteration of 18030. On a
machine with s = l9 many more processors can be utilized, as shown in Fig. 3. Here a time per
iteration of about 1200 can be achieved with 145 processors. The time per iteration on a single
processors is 80013.

Figures 4 and 5 analogous results for the block algorithm with a blocksize of 8. With
s = 500, 160 processors can be used to give a time per iteration per vector of 13623, much
better than the single vector algorithm. At s = 1, 1728 processors can be used, but the time is
1462, larger than for the single vector iteration. The time per vector per iteration for this
algorithm on a single processor is 711436.

Table 2 illustrates the minimal time per iteration achievable under the constraint that the
algorithm be at least 50% efficient, i.e., time per iteration given p processors must be bounded
by 2/p times the time per iteration for a single processor. As start-up time decreases, the
number of usable processors increases to a limit of 183 when w = 0.01 and the matrix
dimension is 10000. On a smaller problem, n = 1000, this limit is 56, as shown in Table 3.

134 D.P. O'Leary / The block conjugate gradient algorithm

5000
co

0)

>- 3000
o

0}
E

1000

+ +
5 0 1 0 0 1 5 0 2 0 0

number of processors
250 300

Fig. 3. Time per iteration for a torus of processors; matrix size n = 10000, blocksize b=l, start-up time 5 = 1, per-word
transmission time w = 0.01.

Similar results can be derived for a hypercube of processors. If pc is a power of two, then
communication across processors with the same 'row' index is confined to a hypercube of
dimension log pR9 and similarly for the 'column' indices. Communication and accumulation
can be performed in time

time,,
4ft2 log pR w 16nbw 16nbw 34b2w 34b2w

Pc PrPc log Pc Pr log Pc Pc log Pc log Pc

+ 5ft2w + 3ftw + 4ft2 log pR 5b2w
2Pc 2p2c

+ 4 log Pr s + 26 log Pc s> (4)

cn 80000
"■P
CD

CO 60000
Q.

O
o
> 40000
1_

Q.

E 20000

+
1 0 0 2 0 0

number of processors
300

Fig. 4. Time per iteration per vector for a torus of processors; matrix size n =10000, blocksize 6 = 8, start-up time
s = 500, per-word transmission time w = 0.01.

D.P. O'Leary / The block conjugate gradient algorithm 135

5000
co

3000

CD
Q.

1000

1 0 0 0 2 0 0 0 3 0 0 0 4 0 0 0 5 0 0 0
number of processors

6000 7000

Fig. 5. Time per iteration per vector for a torus of processors; matrix size n =10000, blocksize 6 = 8, start-up time
.s=l, per-word transmission time w = 0.01.

Table 2
50% efficiency times for various simulated torus machines, n =10000

b = l
Processors Time

> = 8

Processors Time

500 0.01 8
50 0.01 26
5 0.01 76
0.5 0.01 150
0.05 0.01 178
0 0.01 183
0.5 0.10 146

8278 88
6026 328
2100 688
1064 808
894 824
873 832

1094 728

15660
4293
2058
1753
1719
1710

1947

Table 3
50% efficiency times for various simulated torus machines, n = 1000

6 = 1
Processors Time

6 = 8
Processors Time

500 0.01 3
50 0.01 8
5 0.01 24
0.5 0.01 46
0.05 0.01 55
0 0.01 56

5018 16
1853 48
666 96
345 112
291 112
285 112

7959
2858
1460
1268
1261
1260

0.5 0.10 45 355 104 1388

136 D.P. O'Leary / The block conjugate gradient algorithm

2 0 0 0 0 7
co

i- 15000

5000 + +
1 0 0 2 0 0 3 0 0 4 0 0 5 0 0

number of processors
600 700

Fig. 6. Time per iteration for a hypercube of processors; matrix size n = 10000, blocksize 6 = 1, start-up time s = 500,
per-word transmission time w = 0.01.

where the logpc terms should be omitted if /?c = l> an(l similarly for log pR. Analytical
minimization of this formula plus (1) yields

P r -
llwft2 — nb — nb /pc — 16nbw/ log pc + 16nbwpc/ log pc

(4ft2w + 2ft2 + 4spc) log e

CD
E

2 0 0 0 T

1500

1000

500

H 1
1 0 0 0 2 0 0 0

number of processors
3000

Fig. 7. Time per iteration for a hypercube of processors; matrix size n =10000, blocksize 6=1, start-up time 5 = 1,
per-word transmission time w = 0.01.

D.P. O'Leary / The block conjugate gradient algorithm 137

20000
co

fc 15000a

a. 10000
CD
E

5000 + +
1 0 0 2 0 0 3 0 0 4 0 0 5 0 0

number of processors
600 700

Fig. 8. Time per iteration per vector for a hypercube of processors; matrix size n = 10000, blocksize 6 = 8, start-up time
5 = 500, per-word transmission time w = 0.01.

and, when pc = 1 this gives a formula for the optimal number of processors of
10«ft2 - nb

Pr =
(4b2w + 2b2 + 4s) log e

Figures 6 through 9 give rsults analogous to Fig. 2 through 5, but for the hypercube rather than
the torus. When s = 500, the optimal number of processors is now 29 rather than 9, and the
time drops to 13128 from 18030. When j = l, it is possible to effectively utilize 3000

2000

1500

1000

500

5 0 0 1 0 0 0 2 0 0 0
number of processors

3000

Fig. 9. Time per iteration per vector for a hypercube of processors; matrix size n = 10000, blocksize 6 = 8, start-up time
5=1, per-word transmission time w = 0.01.

138 D.P. O'Leary / The block conjugate gradient algorithm

Table 4
50% efficiency times for various simulated hypercube machines, n =10000

5 w 6=1 6 = 8
Processors Time Processors Time

500 0.01 8 17271 168 8301
50 0.01 57 2806 496 2852
5 0.01 329 486 1024 1385
0.5 0.01 1187 134 1152 1234
0.05 0.01 1807 88 1168 1217
0 0.01 1922 83 1168 1216

0.5 0.10 1114 143 1064 1337

Table 5
50% efficiency times for various simulated hypercube machines, n = 1000

5 w 6=1 6 = 8
Processors Time Processors Time

500 0.01 2 6517 16 7471
50 0.01 8 1746 56 2571
5 0.01 47 338 104 1358
0.5 0.01 151 106 120 1194
0.05 0.01 221 72 120 1189
0 0.01 232 69 120 1189

0.5 0.10 141 113 112 1285

processors. For the slow start-up machine, blocking reduces the overhead, but there is increased
overhead time for the 5 = 1 machine. Tables 4 and 5 give the optimal number of processors
under the 50% efficiency constraint. The number of usable processors increases to a limit of
1922 for n = 10000 and 232 for n = 1000, as the start-up time decreases.

4. Summary and open questions

The block conjugate gradient algorithm can:
(1) Significantly reduce conjugate gradient overhead time on machines with minimal con

nectivity (e.g., torus) and on machines with high communication costs;
(2) Give faster convergence, and thus a lower overall cost, on matrices with certain

eigenvalue distributions, even on hypercubes with low communications costs;
(3) Solve several problems simultaneously;
(4) Reduce the number of accesses to the matrices A and M, causing a speed-up if these

matrices must be generated or brought in from secondary storage each time they are used.
This work has not considered the related questions of efficient formation of matrix-vector

products and the choice of preconditioners well suited for parallel computation. Much work
has already been done on these questions (e.g., [19,9]), but much more remains.

References

[1] N.N. Abdelmalek, Round off error analysis for Gram-Schmidt method and solution of linear least squares
problems, BIT 11 (1971) 345-367.

D . P. O ' L e a r y / T h e b l o c k c o n j u g a t e g r a d i e n t a l g o r i t h m 1 3 9

[2] O. Axelsson, On preconditioning and convergence acceleration in sparse matrix computations, Report 74-10,
CERN, Geneva, 1974.

[3] O. Axelsson, Solution of linear systems of equations: iterative methods, in: V.A. Barker, ed., Sparse Matrix
Techniques (Springer, New York, 1977) 1-11.

[4] A. Bjorck, Solving linear least squares problems by Gram-Schmidt orthogonalization, BIT 7 (1967) 1-21.
[5] P. Concus, G.H. Golub and D.P. O'Leary, A generalized conjugate gradient method for the numerical solution of

elliptic partial differential equations, in: J.R. Bunch and D.J. Rose, eds., Sparse Matrix Computations (Academic
Press, New York, 1976) 309-322.

[6] J. Cullum and W.E. Donath, A block Lanczos algorithm for computing the q algebraically largest eigenvalues and
a corresponding eigenspace of large, sparse, symmetric matrices, Proc. 1974 IEEE Conference on Decision and
Control (1974) 505-509.

[7] G.H. Golub and R. Underwood, The block Lanczos method for computing eigenvalues, in: J.R. Rice, ed.,
Mathematical Software HI (Academic Press, New York, 1977) 361-377.

[8] M.R. Hestenes, The conjugate gradient method for solving linear systems, Proc. Symposium on Applied Mathe
matics 6 (1956) 83-102.

[9] C. Kamath and A. Sameh, The preconditioned conjugate gradient algorithm on a multiprocessor, Manuscript,
University of Illinois Computer Science Department, 1984.

[10] C. Lanczos, An iteration method for the solution of the eigenvalue problem of linear differential and integral
operators, J. Res. National Bur. Standards 45 (1950) 255-282.

[11] D.G. Luenberger, Linear and Nonlinear Programming (Addison-Wesley, Reading, MA, 1984).
[12] J.A. Meijerink and H.A. van der Vorst, An iterative solution method for linear systems of which the coefficient

matrix is a symmetric M-matrix, Math. Comput. 31 (1977) 148-162.
[13] D.P. O'Leary, The block conjugate gradient algorithm and related methods, Linear Algebra Appl. 29 (1980)

293-322.
[14] D.P. O'Leary and G.W. Stewart, Assignment and scheduling in parallel matrix factorization, Linear Algebra Appl.

77 (1986) 275-300.
[15] C.C. Paige, Computational variants of the Lanczos method for the eigenproblem, J. Inst. Math. Appl. 10 (1972)

373-381.
[16] C.C. Paige and M.A. Saunders, Solution of sparse indefinite systems of linear equations, SIAM J. Numer. Anal. 12

(1975) 617-629.
[17] J.K. Reid, On the method of conjugate gradients for the solution of large sparse systems of linear equations, in:

J.K. Reid, ed., Large Sparse Sets of Linear Equations (Academic Press, New York, 1971) 231-254.
[18] Y. Saad and M.H. Schultz, Data communication in hypercubes, Computer Science Department Report 428, Yale

University, 1985.
[19] M.K. Seager, Parallelizing conjugate gradient for the CRAY X-MP, Parallel Comput. 3 (1986) 35-47.
[20] G.W. Stewart, Communication in parallel algorithms: An example, Proc. 18th Symposium on the Interface between

Computer Science and Statistics (American Statistical Association, Washington, DC, 1986) 11-14.
[21] R. Underwood, An iterative block Lanczos method for the solution of large sparse symmetric eigenproblems,

Computer Science Department Report STAN-CS-75-496, Stanford, CA, 1975.
[22] E.L. Wachspress, Extended application of alternating direction implicit iteration model problem theory, J. SIAM

11 (1963) 994-1016.

