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We develop in this work variants of the capacitance matrix algorithm which can be used to solve
discretizations of elliptic partial differential equations when either the original system of equations or one which
arises from substructuring has a rank-deficient matrix.

1. Introduction

The capacitance matrix algorithm is a variant of the Woodbury formula for updating the
inverse of a modified matrix. It has been applied very successfully to the solution of finite
difference or finite element problems arising from elliptic partial differential equations (see, for
example, Hockney [6], Proskurowski and Widlund [11] and O'Leary and Widlund [9]). The
standard algorithm requires that the discretization matrix and the related matrix for which a
"fast" solver exists are nonsingular. We study in this work the case where one or both of these
matrices are rank-deficient. The case in which one of the matrices is deficient has been studied
previously by Buzbee, Dorr, George, and Golub [3]. The work presented here results in slightly
different algorithms for this case and also handles the case in which both matrices are singular.
Lewis and Rehm [8] and Proskurowski and Widlund [10,11] discuss alternate methods for
computation with two singular matrices, based on conjugate gradients preconditioned by the
related matrix. Astrakhantsev [2] studies another iterative method for this problem, and Gunz-
burger and Nicolaides [5] propose a direct factorization technique.

As a very simple example, consider the model problem

-uxx-uyy=f(x, y) on J2,
where the region £2 consists of a union of rectangles, and appropriate boundary conditions
(Dirichlet, Neumann, or mixed) are given (see Fig. 1). We discretize the problem into Ax = b by
either finite difference or finite element techniques.

In order to solve Ax = b efficiently, it is tempting to take advantage of the fact that the matrix
A is related to the matrix B corresponding to a direct sum of matrices for problems on rectangles
("substructures") each of which has either Dirichlet or Neumann boundary conditions on each
side. Fast algorithms exist for the solution of such problems. To see the relationship between A
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Fig. 1. The domain for the model problem.
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and B, we order the equations and unknowns by considering first Ql9 then J22 and finally T.
Then the matrix yl has the structure

A =

The matrix B corresponding to a discretization of the same partial differential equation over
J2-L U r and over J22 separately is

B =

where B22 is either equal to A22 or differs from it by a matrix of small rank corresponding to
different boundary conditions along T, and Bn is equal to An. In this case, the two substruc
tures are disjoint.

Another way to substructure is to allow the points in T to belong to both domains. In this
case we have, for example

B =

and solutions of equations involving B require solving a problem on J22 U T and then a problem
on Q2 U r with data on T given. In this case, the substructures overlap.

In both the case of disjoint substructures and that of overlapping substructures, we can
express A as A = B + UZT9 where U and Z are matrices of rank at most a small multiple of the
number of unknowns corresponding to T, and we can make use of fast solvers for B in order to
efficiently solve equations involving A.

Such a strategy is complicated when the original problem has Neumann boundary conditions,
leading to a matrix A which has a rank-deficiency of 1, and to a matrix B with a deficiency of 1
if the substructures are taken to overlap or a deficiency equal to the number of rectangles in S2 if
the substructures are disjoint. Further, even if the original problem has mixed boundary
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conditions, leading to a full-rank A, substructures with all Neumann boundary conditions lead
to a rank-deficient B.

In this paper we derive formulas for the capacitance matrix algorithm when either A or B or
both A and B are singular (Section 2), apply this to the model problem (Section 3), and discuss
variants and extensions of the algorithm (Section 4).

2. The capacitance matrix algorithm

In this section we present the standard capacitance matrix algorithm, based on the Woodbury
formula [7], and develop variants to handle rank-deficient matrices. This discussion is purely in
terms of linear algebra. In Section 3, we apply these results to the model problem.

2.1. The standard algorithm

Let A and B be square nonsingular matrices of dimension n with A= B+ UZT. (Ordinarily,
U and Z will be low-rank matrices.) One version of the capacitance matrix algorithm is as
follows:

Algorithm 2.1. To solve Ax = 6, compute x = G(I- UC~lZTG)b, where G = B~l and C = J +
ZTGU.

If UTU=I, then an alternate formula for the capacitance matrix is C— UTAGU._This
algorithm is useful in case there is an easyway to solve linear systems involving the matrix B but
not an easy way for systems involving A. It can be easily verified by substitution that the x
defined by the capacitance matrix algorithm does indeed solve the problem Ax = b, assuming
that B'1 and C"1 exist. Further, if 2?_1 exists, then C is nonsingular iff A is.

2.2. Algorithms involving singular matrices

Let the singular value decomposition of A be denoted by A = WA2AYj, where WA and YA
have orthonormal columns (denoted by wf and yf respectively) and 2A is diagonal_with
elements a, > 0. We will not assume that the a( are ordered by size. Another way to write A is as

i = l

Let A be a matrix related to A by

a= Z«i™?(y?)T>
i = l

where mA<n. Thus, A is a matrix of rank mA which differs from A by a matrix of rank n — mA
aligned with the singular vectors.

The following simple lemma shows how to solve a consistent linear system Ax = b using the
capacitance matrix algorithm above.
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Lemma 2.2. Suppose that the problem Ax = b is consistent, i.e., bTwf = 0, i = mA + 1,..., n. Then
if Ax = 6, then x also solves the system Ax = b.

Proof. The solution to Ax = b is uniquely determined by
n y . n

x=1£-^yJA where 6= £7^,
7 = 1 a J z = l

and, by assumption, yi, = 0 for i = mA + 1,..., «. Now,
m A n y r n A

Ax = £ «,w^) £ J,/ = E W = 6,
/ = 1 y = l a 7 i - l

and the result is established. □

Now suppose that we also have a singular matrix B, related to B as A is related to A:
n m B

B-T,fi,wf(y?)T and 5= £ A-H^/f.
J = l 1 = 1

Suppose further that B is the matrix for which linear systems are easy to solve. To use the
capacitance matrix algorithm we need to be able to relate solutions of linear systems By = d to
those of By = d. The next lemma gives us this result.

Lemma 2.3. Let s be a solution to the linear system Bs = d, where dTwf = 0 and sTyj* = 0 for
i = mB + !,...,«. Then

8,
j=mB+\ n

solves Bs = d where

d = d+ £ *,wf
/ = mi?4-l

Proof.
n - «■ ,

\ i = m fl  + l / \ j = m B + l P J
n

/ = w B + l j = m B + l " y / = m B + l

as required. □

Therefore, the full capacitance matrix algorithm is as follows, where steps may be skipped if
nonsingular matrices are involved.
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Algorithm 2.4. To solwOjAx « b, where A is a lower-rank version of A, A= B + UZT, and J? is a
lower-rank_version of J5, for which linear systems are easy to solve:

(1) Let b be the projection of b_ orthogonal to the null space of AT.
(2) Let d _be the projection of b orthogonal to the null space of BT.
(3) Solve Bs = b by solving Bs = d (minimum norm solution) and computing

(4) Solve Ct = ZTs, where C = / + Z^B'^V.
(5) Let r=_b— Ut, and let r be the projection of f orthogonal to the null space of BT.
(6) Solve Bx = f by solving Bx = r (minimum norm solution) and computing

x = x + £
y' = wB+l

(rV) y

(7) Now x solves Ax = b and Ax = b.

3. Application to the model problem

We illustrate the capacitance matrix algorithm by applying it to two examples: the model
problem with all Neumann boundary conditions, and the model problem with mixed boundary
conditions. We will assume that there is a fast way to solve either problem over region J22 U T
and over Q2.

Example 3.1. In the Neumann case, the matrix A is equal to the matrix B corresponding to the
Laplacian over the two disjoint rectangles with all Neumann boundary conditions, plus a
correction:

A = B +
0 0
0 E
1 0

AT^ 3 2

0

0
^ 2 2 ^ 2 2

^ 2 3

and E is a matrix of unit vectors in the positions of the boundary points of S22 along T. For each
point on T, or adjacent to it in £22, the left correction matrix has a unit vector in that direction as
a column. The corresponding row of the right correction matrix is the difference between the
corresponding row of A and that of B. The correction matrices have dimensions n X 2/7, where n
is the total number of unknowns and p is the number of unknowns corresponding to T.

The matrix A has the property that Ae = 09 where e is the vector of all ones. (In terms of the
original differential equation, this corresponds to the fact that any constant solves the homoge
neous equation.) Similarly, Be1 = 0 and Be2 = 0, where

e, = eo =

A nonsingular form of the matrix B can be created by adding rank-one terms corresponding to
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0 0 C j g 0
0 E 0 c2e
/ 0 cxe 0

" 0
0 (l + co/cjc (c0A2)^

, z= A 22 -°22 (^oAi)e (l + c0/c2)e
0 ■ 2̂3 (l + c0/cx)e (c0A2)e

the zero eigenvalues: B = B — cxexe[ — c2e2ej. Theconstants should be chosen within an interval
containing the nonzero eigenvalues of B. Let A=A + c0eeT. Now, note that A=B+ UZT,
where

U =

We define the result v = Gu as follows:
For each rectangle (i.e., substructure):
(1) Let ui be the subvector of u with the ni components corresponding to this rectangle, and

let ft, = uje/nt and ut = ui - /i#e, so that u( has mean zero.
(2) Solve the differential equation on the rectangle with all Neumann boundary conditions and

discrete right-hand side function ui9 yielding a vector vt with mean zero.
(3) Let v§ = vt + c^e.
For this example problem, the capacitance matrix algorithm is:

Algorithm 3.2.
(1) Compute b = b — (bTe/n)e. This forces the right-hand side b to have mean zero, ensuring

that the problem is consistent.
(2) Form s = Gb.
(3) Multiply ZT times s.
(4) Solve Ct = ZTs. This can be accomplished by explicitly forming and factoring the

capacitance matrix C = I+ ZTGU, or by using an iterative method such as preconditioned
conjugate gradients, which requires matrix-vector products Cp but does not explicitly require the
matrix C

(5) Form r = b-Ut.
(6) Form x = Gr.
(7) If a solution with mean zero is required, replace x by jc - (xTe/n)e.

with Neumann
The correction

Example 3.3. As a second example, consider the model problem of Fig. 1
boundary conditions on Q1U T but at least one Dirichlet segment on J22.
matrices are somewhat simplified in this case:

U =

For the first rectangle, the result for v = Gu is defined as above by first projecting the right-hand
side and by later correcting the mean; for the second rectangle, the linear system has a
nonsingular matrix and no projection is necessary. The capacitance matrix algorithm isjhe same
as for the all Neumann problem above, except that steps (1) and (7) are omitted and b = b.

0 0 c0e 0 0 e
0 E 0 , z - AT A 2 2 D 2 2 0
J 0 c0e 0 AT e

4. Further discussion

The algorithm in the previous section is well suited for parallel processing. Coarse grain
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parallelism can be achieved by assigning the work for each substructure to a separate processor.
Finer grain parallelism can result from using parallel solvers for solving Laplace's equation on
each substructure (see, for example [1]). The work in multiplying by U and Z can be similarly
divided.

f The model problem from Fig. 1 has corners which can give rise to nonsmooth solutions. To
better resolve the solution, standard techniques can be used, such as refining the mesh near the
corners or adding an appropriate function to the basis set.

The use of a direct or an iterative method for solving the capacitance matrix equation (step (4)
above) involves a trade-off between storage space and solution time. In two dimensions, either
option is reasonable, but the size of the capacitance matrix and its lack of sparsity often forces
the use of an iterative method in three-dimensional problems; see the discussion in [9]. For
certain simple problems, it may be possible to determine the singular value decomposition of C
in terms of Fourier vectors, leading to a more efficient implementation [4].
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