
IEEE TRANSACTIONS ON COMPUTERS, VOL. C-36, NO. I1, NOVEMBER 1987 1355

Correspondence

From Determinacy to Systaltic Arrays requested data from other nodes it is blocked from further execution
until the data it has requested arrive at the appropriate input queues.

D. P. O'LEARY AND G. W. STEWART We shall say that a node in a data flow computation is ready if it has
enough data in its queues to compute, i.e., if all its requests are

Abstract-In this paper we extend a model of Karp and Miller for satisfied. At any one time it is possible for several nodes in a

parallel computation. We show that the extended model is deterministic, computation to be ready, and it is natural to ask if the order in which
in the sense that under different scheduling regimes each process in the ready nodes compute makes any difference to the overall computa-
computation consumes the same input and generates the same output. tion. This is the question of determinacy, and we shall answer it by
Moreover, if the computation halts, the final state is independent of proving that whatever the order of computation, each node sees the
scheduling. The model is applied to the generation of precedence graphs, same input and generates the same output. A related question is what
from which lower time bounds may be deduced, and to the synchroniza- is the state of the network when none of the nodes are ready, i.e.,
tion of systolic arrays by local rather than global control. when the network halts. We shall show that however the computa-

tions proceed, the network (if it halts) halts in the same state.

Index Terms-Data flow algorithms, determinacy, parallel computa- Our model is very close to a subset of DOMINO, a message
tion, systaltic arrays, systolic arrays. passing system which has been developed at the University of

Maryland, and in fact this work was undertaken to establish that the
I. INTRODUCTION system was deterministic-something we were unable to convince

The purpose of this paper is to describe and investigate the ourselves of by informal reasoning. We have already mentioned that
properties of a model of parallel computation in which independent the model is an extension of one proposed by Karp and Miller, the
processes coordinate their actions by message passing. The model is chief difference being that in their model the amount of output a node
an extension of one proposed by Karp and Miller [3] in 1966. In it can produce on firing is fixed at the beginning of a computation.
computations take place at the nodes of a directed graph, whose arcs Unfortunately, their proofs, which are based on counting arguments,
represent lines of communication. do not go through for the extended model.

Graph theoretic models of computation are by no means new (see In the next section we shall introduce the model. We apologize in
[11 for a bibliography that includes some of the more important advance for the amount of mathematical apparatus, but it seems to be
papers). The majority of these papers begin with a control flow necessary if the proofs are not to degenerate into mere hand-waving.
paradigm of computation, i.e., a sequential program or a flowchart, In Section III we establish the determinacy and halting properties of
and extract an acyclic precedence graph of the unrolled computation the algorithm We also prove an extension theorem which is used in
which can be used in code optimization or to extract parallelism. the next section to construct a precedence graph for a computation in
Others, under the generic term of data flow, begin at, or very near a the model. This graph can be used in an obvious way to determine
precedence graph. lower bounds on the computation time of the algorithm. Finally, in

Recently, there have appeared a number of parallel computers Section V we apply our theory to a device, called a diastolic control,
whose processors communicate by message passing, for example, the for the local synchronization of systolic arrays.
cosmic cube [9], the ZMOB [8], and the commercial hypercubes Throughout this note, D will denote a space of data which can be
produced by the INTEL and NCUBE corporations. Programs for transmitted between nodes. A queue will be an ordered t tuple (dl,
these systems are supported by small operating systems resident on d2, ", dt) of elements of D, with d, regarded as beginning the
each processor that coordinate the delivery of messages between queue. If Q = (dl, d2, , dt) and Q = (dl, d2, , di) are queues,
processes (e.g., the DOMINO system [5], [6] or the HARMONY then
system [2]). One purpose of this paper is to give such systems a firm 1) #(Q) = (is the length of Q;
theoretical base, and the natural starting point of such a development 2) head (Q, k) = (di, d2, ,* 1 dmin {k,tl) is the queue consisting of
is communicating sequential processes, rather than sequential pro- the first k elements of Q, or Q itself if k 2 t;
grams. Our approach is to construct a formal mathematical model 3) tail (Q, k) = (dk+ I, * * *, d,) is the queue remaining after the
which closely corresponds to an implementation of a message passing first k elements are removed, or the empty queue if k 2 t;
system and then to establish its properties with full mathematical 4)Q Q (d1, ,dt,d1, ,d)isthe)queuethatresultsfrom
rigor. appending Q to Q.

Since the formal model requires a great deal of notation for its We shall say that two queues Q and Q are comparable if head (Q,
expression, it is appropriate to begin with an informal description. t) = head (Q, t) for t = min {#(Q), #(Q)}.
The computations in our model are done by independent computa- I. THE MODEL
tional nodes which cycle between requesting data from certain ine T m oDEl
nodes, computing, and sending data to certain other nodes. More Formally we shall define a computational network as a directed
precisely, the nodes lie at the vertices of a directed graph, called a graph with queues associated with each arc and a state transition
computational network, whose arcs represent lines of communica- function associated with each vertex. Specifically, the graph of the
tion. Each time a node sends data to another node, the data are placed computational network consists of
in a queue on the arc between the two nodes. When a node has 1) A set N = {N1, N2, , N } of vertices called nodes.

2) Aset of directed arcsA C {(M,N): M,N N,M*N}.
Manuscript received September 11, 1985; revised August 27, 1986. This (h esnwyac ftefr N)aentpritdwl

work was supported in part by the Air Force Office of Scientific Research emerge later when we discuss states and their transition functions.)
under Grant AFOSR-82-0078. 3) A set of queues Q = {Q(A):A E A} associated with the arcs
The authors are with the Department of Computer Science, University of of the network.

Maryland, College Park, MD 20742. In the sequel we shall need some notation for the arcs entering and
IEEE Log Number 8714094. leaving a node N. We shall denote the l1(N) nodes at the beginning of

0018-9340/87/1100-1355$01.00 ©C 1987 IEEE

Authorized licensed use limited to: University of Maryland College Park. Downloaded on April 29,2020 at 15:06:20 UTC from IEEE Xplore. Restrictions apply.

1356 IEEE TRANSACTIONS ON COMPUTERS, VOL. C-36, NO. I1, NOVEMBER 1987

the entering arcs by IN, 1, IN,2, *, IN, (N) and call the corresponding In other words this definition says that just before time X, node E,
queues QN- Q (IN,,j, N) the input queues for the node. The set of if it is ready, changes state and places its output on the queues of its
input queues for node N will be denoted by QIN. Similarly, the output arcs. In this case we shall say that E fires at time r producing
destination nodes at the end of the arcs leaving N will be denoted by state s(T).
ON,1, ON,2, *, ON,MI(N) and the corresponding queues will be Before we state and prove the determinacy theorem, let us pause to
called output queues and written QOuT. The set of output queues of consider what scheduling and execution sequences mean in a parallel
N will be denoted by QUT. processing environment. Imagine that the nodes of a computational
We now turn to the definition of the state of a node and its network have been divided into groups and each group has been

transition function. A state s of a node N is a triplet (Q 5, T, g) assigned to a processor. On each processor the resident operating
consisting of the following items: system will schedule the members of its group for execution, thus

1) the set of input queues QIN creating a local scheduling sequence. If we take the local scheduling
2) a vector T = (tl, t2, *t,(l(N)) of nonnegative integers called sequences and merge them according to the order in which the nodes

thresholds were scheduled in real time (ignoring ties, which are of probability
3) an outputfunction zero), we obtain a scheduling sequence and a corresponding

execution sequence for the computation as a whole.
g : Dtl x * xDt1(N)-*Dwi x ... xDwm(N) A change in scheduling algorithms or a change in processor speeds

will change the execution sequence. We should like to know that the
where thewa are integers. These integers may depend on the computation is in some sense unaffected by these changes. In terms of
thresholds and the contents of the queues and may be different our model, we should like to show that two execution sequences with

fordifeentstteIofnoe . N the same initial state produce essentially the same states in the nodes
We shall say that a node N in state s = (QN, T, g) is ready (or of the network. However, there are two complications. First, we

alternatively~~ ~ ~ ~~~I of the newok Howeverstate are twoifpla s First,twe=alternatively s is a ready state of N) if #(QN) 2tN (I = 1,* cannot simply compare the states of a node when they have appeared
l(N)). Informally, a node is ready if it has enough data on its input the same number of times in two execution sequences, since the node
queues to compute. may have fired more often in one execution sequence than in the

With each node N is associated a state transition function fN, other. The second complication is that the input queues of a node need
mapping states into states which has the following properties. Let s not be the same for the two execution sequences, even when the node

N(QIN 1 g) be a state of N has fired the same number of times.
1) If s is not a ready state of N, then fN(s) To circumvent the first complication, we shall say that an
2) If s is a ready state of N, then fN(s) = (Q$4, T, g), where the execution sequence is busy if all its nodes are ready at their respective

new threshold vector T and output function g are defined by f and the times. If Fl is the pth occurrence of a node in a busy execution
new input queues satisfy sequence, then the node will fire for the pth time at time r. Observe

that any execution sequence can be converted to an equivalent busy
N, = tail (QN, , t,) (i= 1, 2, I((N)). (2.1) execution sequence by deleting all nodes that do not fire. Thus, there

is no loss of generality in confining ourselves to busy execution
Informally, the transition function corresponds to a single compu- sequences.

tation by the node. Data, in the quantity specified by T, are removed The second complication is handled by the notion of comparability.
from the input queues and are used to generate output which goes to We say that two states Sk and Sk of a node are comparable if their
other nodes and, as we shall see, has the side effect of altering their thresholds and output functions are the same and if their input queues
states. are comparable. Since the initial parts of the input queues of two
One reason for not allowing a node to communicate directly with comparable states of a node are the same, if the node fires from either

itself is to preserve the simplicity of formula (2.1) for QN, which state it will produce the same output and the input queues will remain
would otherwise have to be modified to treat the queue on the arc comparable.
from N to itself as a special case. This is not an essential restriction We are now in a position to state and prove the determinacy
on our model of computation, since, as we shall see in the next theorem.
section, nodes can be added to cycle output data back into node N. Theorem 3.1: Let (E, s(O)) and (E, s(O)) be busy execution

sequences with the same initial state. Suppose that ET is the pth
III. EXECUTION SEQUENCES, DETERMINACY, AND HALTING occurrence of a node N in E and E- is the pth occurrence ofN in E.

Having defined how a node computes, we must now look at the Then sN(-r) and SN(f) are comparable.
behavior of the network as a whole. First consider a network in which Proof: The proof is by contradiction. Let E = N be the first
each node N has a state SN. We shall define the state of the network member of E for which the theorem fails, and let ET be the
to be the n tuple s = (SNI, SN2, **, SN). At this point we cannot corresponding occurrence ofN in E. Let z1, p,T = r and fi, *,
define a state transition function for the network, since we must first -, = i be the times at which N fires in (E, s(O)) and (E, s(O)). Since
specify an order in which ready nodes are to be executed. This leads SN(TP- I) and 9N(ip- 1) are comparable, sN(T- 1) and SN(T- 1) have
us to define a scheduling sequence as a sequencee E = (F1, E2, * *) the same thresholds and output functions. Thus, the result will be
of nodes from the network. An execution sequence is an ordered pair established if we can show that SN(T- 1) and SN(T- 1) have
(E, s(O)), where E is a scheduling sequence and s(O) = (sNl(0), comparable input queues.
SN2(0), ' * * sN(O)) is an (initial) state of the network. Given an Consider the input node IN,i. Let q be the number of occurrences of
execution sequence (E, s(O)) we define the state of the network at IN, in E before time 7 in the execution sequence (E, s(O)); let gl, * ,
time r inductively as follows. gq be the outputs from IN,i to N; and let QIN (T) be the status of the

1) If FT is not ready at time T- 1 (i.e., if s5(- 1) is not a ready queue QN1 at time T. Let the same quantities with bars over them
state of ET), then s(T) = sQr - 1). refer to the execution sequence (E, s(O)).

2) If FT is ready at time T- 1, then set SET(T) = fE7ISET(T - 1)], and By the determinacy of the execution sequence (E, s(O)) before time
alter the states of the output nodes of FT by setting r, if r = min {q, q} then gj = g (j 1, * , r). Moreover, the ith

thresholds ofN satisfTy tN,i(TJ) =tN,iQrj) (j = 1 * *,p- 1). Hence,

QOUTy(T)= OUT(--)| g (1= I , m(F7)), by direct calculation of what comes in and what goes out, both

where g1 is the jth component of the output function of 5E7(T 1) tail [QNN,(O)g1 lg21 * Igr tN1(T1)+ *+tN,1(Tp_1)I. (3.1)
evaluated at [head (Q' ,1(T- 1), t1), * , head (QEN (5)(r- 1),
tI(k))] rr Moreover, depending on whether r = q or r = q, either QNN ,(i - 1)

Authorized licensed use limited to: University of Maryland College Park. Downloaded on April 29,2020 at 15:06:20 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON COMPUTERS, VOL. C-36, NO. 11, NOVEMBER 1987 1357

or QNN,(- 1) is equal to (3.1). Hence, QN i(T- 1) and Q I(f-1) this way a (variable) data item circulates between N and M, passing
are comparable, which establishes the theorem. from N to M when N fires and back to N when M fires, as it must,

Because Theorem 3.1 concerns ongoing calculations, it makes no before N fires again. Note that a node can bring itself to a halt by
assertions about equality of all states at a given time, or even about refusing to send data to a memory node.
their comparability. However, we should hope that if the calculation By adding memory nodes we can endow a node with as much
stops, the confusion introduced by different execution sequences will memory as we require. This in effect converts our nodes to ordinary
sort itself out. To make the notion of stopping precise, we shall say sequential computers, and in the sequel we will speak freely of
that an execution sequence (E, s(O)) halts at time r if all the nodes in programming and reprogramming nodes.
the network are unready at time r, and r is the smallest integer for The above observations allow us to prove the following extension
which this is true. Note that if a busy execution sequence halts at time theorem. It will be used in the next section to construct precedence
r, the corresponding scheduling sequence terminates with E. graphs for computations in our model.

Before we treat the states of the network, we give the following Theorem 3.4: Let (E, s(O)) and (E, s(O)) be finite busy execution
useful lemma. Let us agree to call two busy execution sequences sequences. For each N E N let PN be the number of occurrences of
equipollent if they have the property that a node firing p times in one the node N in (E, s(O)) and PN be the number of occurrences in (E,
fires p times in the other. s(O)). Let qN = max {PN, PN}. Then (E, s(O)) and (E, s(O)) can be
Lemma 3.2: If (E, s(O)) and (E, s(O)) are equipollent of length Xr, extended to equipollent sequences (E*, s(O)) and (E*, s(O)) of length

then s(T) = 9(r). T = ENEN qN-
Proof: This follows from determinacy and a direct computation Proof: Reprogram each node N so that it halts after qN firings

of the input queues in the spirit of (3.1). but otherwise behaves as before. Now if some node N in one of the
We are now ready to prove the following halting theorem. sequences (E, s(O)) or (E, s(O)) has not fired qN times, then at the end
Theorem 3.3: Let (E, s(O)) and (E, s(O)) be busy execution of one of the sequences, some node must be ready, for otherwise both

sequences that halt. Then (E, s(O)) and (F, s(O)) are equipollent. sequences halt with N having fired exactly qN times in one sequence
Hence, they both halt in the same state. and less than qN times in the other, contradicting the halting theorem.

Proof: We begin by showing that a node can fire no more times We may, therefore, extend the sequence possessing the node that is
in (E, s(O)) than in (E, s(O)). Let the nodeN fire PN times in (E, s(O)) ready by adding that node to it. Continuing in this manner, we extend
IfN fires more than PN times in (E, s(O)), let TN denote the time of its both sequences until each node N has fired qN times, at which point
(PN + l)th firing. both sequences halt.

If there are no nodes N that fire more than PN times in (F, s(O)),
then we are through. Otherwise, let N be the node for which TN iS IV. PRECEDENCE GRAPHS AND LOWER BOUNDS
smallest. Let us compare 9N(TN- 1) with sN(T), i.e., the states of N In this section we shall show how to associate a unique precedence
just before its (PN + l)th firing in (E, s(O)) and at the end of (E, graph with an execution sequence, which gives a static picture of the
s(O)). By determinacy the two states have the same thresholds and the entire computation. We have noted in the Introduction that prece-
same output functions. Moreover, the input queues in the state dence graphs of sequential algorithms can be used to uncover
SN(TN- 1) cannot be longer than those in sN(T), for the number of parallelism. For computational networks, the precedence graph is
firings of each node M * N in (E, s(O)) is greater than or equal to the less useful, since parallelism is built into the very definition.
number of firings in (E, s(O)) up to time TN- 1, and by determinacy Nonetheless, a precedence graph can be used to determine lower
each firing places the same amounts of data on the input queues. bounds on the execution time of a computation. In practice it is good
Further, N has fired an equal number of times in both execution to have such lower bounds to shoot at when deciding how to assign
sequences up to this time and, by determinacy, has removed an equal nodes to processors and how to schedule nodes on processors.
amount of data from its input queues. It follows that, since sN(r) is not Before we begin, we pause to introduce a notational convention.
a ready state of N, SN(TN- 1) is not a ready state of N. Hence, N The elements ET of a scheduling sequence are simply nodes, perhaps
cannot fire in (E, s(O)) at time TN-a contradiction. repeated many times in the sequence. In what follows we shall need to
A similar argument shows that a node fires no more times in (E, distinguish the occurrence of a node at time T from an occurrence of

s(O)) than in (E, s(O)). Hence, each node fires the same number of the same node at another time or. This can be done by working with
times in both sequences, which with Lemma 3.2 establishes the the ordered pair (E, T). To simplify our formulas we shall let ET
theorem. stand for this ordered pair.

The practical consequence of the determinacy and halting theorems Let (E, s(O)) be a busy execution sequence for a computational
is that if one can imagine an execution sequence in which a network. The precedence graph for (E, s(O)) is a directed graph P(E,
computation terminates properly, then it must work for all execution s(O)) which is constructed as follows. The vertices of the graph are
sequences. One such execution sequence may be obtained by the pairs ET. The arcs are assigned as follows.
assigning all the nodes of the network to a single processor. In other 1) Draw an arc from E to ET if T is the smallest integer greater
words, on systems that conform to our model, one can debug on a than a such that E,, = E.
single processor with the assurance that the program will run when it 2) For each E0, Let gl, * *, gm(Eu) be the outputs from the firing of
is distributed on a network of processors. El. For] = 1, 2, - *, m(E,) draw an arc between E0 and ET if E =
The halting theorem has the major drawback that it cannot be OE j and the firing of ET consumes some of the message gj.

applied to execution sequences that do not halt. To circumvent this The properties of the precedence graph are described in the
difficulty we are going to show how two execution sequences for a following theorem.
network can be extended to a point where they can be compared. But Theorem 4.1: The precedence graph of a busy execution sequence
first we must discuss the problem of internal states of a node. (E, s(O)) is acyclic. If (F, s(O)) is an equipollent sequence, then P(E,
The difficulty is that we have not given our nodes a great deal of s(O)) and P(E, s(O)) are isomorphic. If there is a path in P(E, s(O)),

computing power. Their state transition functions have no memory, from Fa to ET, and F0(FT) represents the pth (qth) occurrence of
and a node is unable even to count for itself. However, we can FU>(FT) in the execution sequence, then in any execution sequence
circumvent this difficulty by embedding acomputational network in a beginning with s(O) the pth occurrence of F0J precedes the qth
larger one which effectively provides memory for each node. With occurrence of FT.
each node N associate a memory node M and arcs (M, N) and (N, Proof: The fact that P(F, s(O)) is acyclic follows from the fact
M). Whenever N fires it places a single item of data on Q(N, M) that if there is an arc from EU to FT then a < T.
and sets the threshold for Q(M, N) to one. The node M always has a The isomorphism is defined as follows. If FT represents the pth
threshold of one associated with Q(N, M), and its transition function occurrence of FT in (F, s(O)), then FT iS mapped onto FT where FT
causes the data item on Q(N, M) to be transferred to Q(M, N). In represents the pth occurrence of JET in (F, s(O)). The determinacy

Authorized licensed use limited to: University of Maryland College Park. Downloaded on April 29,2020 at 15:06:20 UTC from IEEE Xplore. Restrictions apply.

1358 IEEE TRANSACTIONS ON COMPUTERS, VOL. C-36, NO. 11, NOVEMBER 1987

theorem assures us that if two vertices are joined in P(E, s(O)), then Xi.
they will be joined in P(E, s(O)).
To establish the last statement, truncate the sequence (E, s(O)) so

that it ends with ET. Let (E, s(O)) be another sequence and truncate it
so that it ends with the qth occurrence of E. Use the extension p = Xi*Y|
theorem to extend the truncated sequences to equipollent sequences.
Since the precedence graphs of equipollent sequences are isomorphic
and since E° precedes ET in the first graph, the pth occurrence ofE,
must precede the qth occurrence of ET in the second graph. [
The theorem justifies calling P(E, s(O)) the precedence graph of

the execution sequence. Not only is it the same for all execution Fig. I. Systolic array for the inner product.
sequences with the same initial state, but it contains the basic
information about what can and cannot be implemented in parallel. If
two vertices lie on a path in the precedence graph, the execution of
one must precede that of the other; if they do not, then their M
executions are independent.
The precedence graph can be used to determine a lower bound on data line control line(M,D) (D,M)

the execution time of a network. The technique has been exhaustively i

treated in the operations research literature under the rubric critical BUFFER
path method, and accordingly we shall confine ourselves to a sketch D
of the basic construction.
Assume that an execution time d/ has been assigned to each vertex data line control line(1),N) (N,D)

ET of the precedence graph. We define the duration D, of vertex ET as ,ROCSSO
the maximum over all paths terminating at Er of the sum of the N
durations of vertices on the path. It can then be shown that the
shortest time in which a network can be executed is the largest Fig. 2. Diastolic control element.
duration in the precedence graph. Moreover, on a system in which
each node is assigned to a separate processor, this bound can be
attained, provided communication is instantaneous, means that the buffer is empty. Although the processor M can

In highly structured problems, the precedence graph and the compute as much as is necessary, M must wait for a signal from the
assocIated durations can frequently be determined by inspection. For control line to send information to N, at which point it transmits the
example, the authors [6] have used this approach to determine lower information not directly to N but to the buffer D. Likewise, a signal
ebounds on the execution time of a network for computing the on (N, D) means that N is ready to receive data. IfD has data, it must
Cholesky decomposition. wait for a signal on (N, D) to transmit it, after which it puts a signal

on (D, M) to indicate that the buffer is empty. On receiving the data,
N drops the signal on (N, D) until it is ready to process more data.

V. SYSTALTIC ARRAYS This method of control lends itself to a suggestive nomenclature.
In this section the model developed in the previous sections will be Systolic arrays were named from an analogy with a beating heart; as

used to show that a feedback technique for synchronizing systolic the heart pumps blood, so systolic arrays pump data. However, the
arrays will work properly (for a survey of systolic arrays see [4]). To systole is only the contractive phase of the heart's beat. The
set the stage, consider the simple systolic array, shown in Fig. 1, for expansive phase is called the diastole, and the adjective systaltic
computing an inner product of two vectors. The components of the refers to the heartbeat as a whole. Diastolic control elements are so
vectors are generated in the processors labeled xi_ l and yi- 1. They called because they force processors to rest in sort of a diastole after
are passed onto the processor labeled p = xi*yiwhere their product is they have received data and performed their computations. To
formed. The product then goes to a fourth processor, labeled s = s + continue the analogy, a systolic array with diastolic control will bc
p, where the inner product is accumulated. called a systaltic array.

As they are usually conceived, systolic arrays require global We claim that any systolic network can be converted to a systaltic
control. For example, in the inner product array the data generators network that runs without global control. Physically the conversion
must release xi- 1 and Yi- 1 at exactly the time the product processor amounts to placing diastolic control elements between processors as
releases p = xi*yi. Although this kind of global control is easy described above. The processors must also be modified to send and
enough to effect in a toy array like the one in Fig. 1, it is more accept the control signals associated with the diastolic control
difficult in the two-ditnensional arrays that are being devised to solve elements and to fire whenever the data they need are available.
problems in numerical linear algebra. To prove that the modification works, we must establish two
A partial solution to this problem comes from the observation that a things. First, that the resulting systaltic network computes the same

systolic array can be modeled as a computational network in an results as the original systolic network. Second, that there is no
obvious way. It then follows from determinacy and the halting buildup of data. The model of parallel computations developed
theorem that global control is not required for the array to compute previously will now be used to show that both are true.
the correct results. We could instead allow each processor to fire The first step is to cast the notion of systolic network in terms of
when its data become available. However, this raises the possibility computational networks and execution sequences. It turns out that the
of a quickly firing node sending data to another, slower node at a rate essence lies not so much in the network as in the way the nodes are
faster than the slower node can consume it. Even providing the executed. Hence, a busy execution sequence (E, s(O)) will be called
slower node with a queue will not save this situation, since the systolic if there are integers 0 = bo < b1 < b2 *such that
amount of excess data is potentially unbounded. 1) There is no path in the precedence graph between any two
The problem of data accumulation can be solved by placing what elements of Bi = {Ebi- i+ i, *., Ebi}.

will be called diastolic control elements between the processors. 2) Elements in Bi have connections in the precedence graph only
Fig. 2 shows such an element, labeled D, between two processors from elements in B, 1 and only to elements in Bi+ 1
labeled M and N. It is assumed that M originates data which N needs The first property in this definition implies that all the elements of
for its computation. The element consists of an intelligent buffer, data the set B, can be executed in parallel (call this execution the ith beat).
lines from M to D and from D to N, and control lines from N to D Moreover, no output they generate can be consumed during the ith
and from D to M [labeled (N, D) and (D, M)]. A signal on (D, M) beat. The second property assures that all data generated in a beat will

Authorized licensed use limited to: University of Maryland College Park. Downloaded on April 29,2020 at 15:06:20 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON COMPUTERS, VOL. C-36, NO. 1 1, NOVEMBER 1987 1359

be consumed in the next beat. These two properties characterize the processors, its functions can also be dividied between two existing
systolic arrays in the literature. 1 processors. Indeed, some of the parts may become identical with
The next step in the verification that the systaltic network works is registers used by the processors for other purposes, and the control

to insert nodes into the systolic network that correspond to the may undergo simplification. For example, in an acyclic network the
diastolic control elements. To simplifv the discussion, it will be buffer D can be identified with an input register of the target
convenient to assume that all messages in the systolic execution processor N, and N can send back the control message to M
sequence are of length one. This is no essential restriction; since the whenever it has finished using the registers. It is the same diastolic
data space D has not been specified, a data item on a queue could be control element, but the hardware implementing the element has
anything from a single bit to a complicated message. become inextricably mixed with the hardware of N.

Let the arc (M, N) belong to the network. Add a diastolic control
node D by deleting the arc (M, N) and adding data arcs (M, D) and REFERENCES
(D, N) and control arcs (N, D) and (D, M). The states of D are [1] J. C. Brown, "Formulation and programming of parallel computations:
contrived so that D can fire only when there is a data item in Q(M, A unified approach,", in Proc. 1978 Int. Conf. Parallel Processing,
D) and one in Q(N, D). WhenD fires, it places the item in Q(M, D) D. Degroot, Ed. Washington, DC: IEEE Computer Society Press,
on Q(D, N) and places an item on Q(D, M) to signal that the buffer 1985, pp. 624-631.
is empty. [2] W. M. Gentleman, "Using the harmony operating system," Nat. Res.

Thestates of M and N must also be modified. If M is in a state
Council of Canada Tech. Rep. ERB-966, 1985.

The states ofM and N must also be modified. If M iS in a state [3] R. Karp and R. Miller, "Properties of a model for parallel computa-

whose firing would send a message along the arc (M, N), then set the tions: Determinacy, termination, queuing," SIAM J. Appi. Math.,
threshold of the arc(D, M) to one, so that Mcan fire only when the vol. 14, pp. 1390-1411, 1966.
buffer in D is ready to receive an item. If N is in a state such that its [4] H. T. Kung, "Why systolic architectures?" IEEE Computer., vol.
next firing would consume an item from M,2 let its firing place an 15, pp. 37-46, 1982.
item on Q(N, D), so that D can pass the item on. [5] D. P. O'Leary and G. W. Stewart, "Data-flow algorithms for parallel
The systolic execution sequence for the array must now be matrix computations," Commun. ACM, vol. 28, pp. 840-853, 1985.

modified to account for the diastolic control nodes. For the initial [6] D. P. O'Leary and G. W. Stewart, "Assignment and scheduling in
state, letM and N be any pair of nodes with a diastolic control node parallel matrix factorization," Linear Algebra Appl., vol. 77, pp.
staetwe, n thm e N aetecnet fteodQM) 275-299, 1985.
D between them. Let Q(D, N) take the contents of the old Q(M, N) [7] D. P. O'Leary, G. W. Stewart, and Robert van de Geijn, "DOMINO:
in the initial state, and initialize Q(M, D), Q(D, M), and Q(N, D) A message passing environment for parallel computation," Univ.
so that they are empty. Now augment the execution sequence so that Maryland Comput. Sci. Tech. Rep. TR-1648, 1986.
after each beat all diastolic control nodes that are ready fire. [8] C. Rieger, "ZMOB: Hardware from a user's viewpoint," in Proc.

It is evident that the systaltic network is equivalent to the original IEEE Comput. Soc., Conf. Pattern Recognition Image Processing,
systolic network. The only difference between the execution of the 1981, pp. 399-408.
two networks is that the systaltic network transfers the data generated [9] C. L. Seitz, "The cosmic cube," Commun. ACM, vol. 28, pp. 22-
in a beat to the diastolic control nodes. These then fire in a diastole, 33, 1985.
transferring the data to where it would originally have gone. It nov.'
follows from the halting theorem that the systaltic network can
execute in any order and still produce the same results as the systolic
array. In particular, processors can fire whenever their data are
ready.

It also easy to see that there can be no data accumulation in the Decoding of DBEC-TBED Reed-Solomon Codes
systaltic network; in fact, there can be at most one item on a queue at
any time in any execution sequence. For consider two nodes M and N ROBERT H. DENG AND DANIEL J. COSTELLO, JR.
with a diastolic control node D between them. Since M can send at
most one item along the arc (M, D) and since D consumes one item Abstract-A problem in designing semiconductor memories is to
from Q(M, D) when it fires, the only way Q(M, D) can have more provide some measure of error control without requiring excessive coding
than one item is forM to fire twice, sending an item to D each time, overhead or decoding time. In [SI and VLSI technology, memories are
while D fires not at all. But after the first firing of M, Q(D, M) is often organized on a multiple bit (or byte) per chip basis. For example,
empty and remains so until D fires, which prevents M from sending some 256K bit DRAM's are organized in 32K x 8 bit-bytes. Byte-oriented
another item to D-a contradiction. A similar argument shows that codes such as Reed-Solomon (RS) codes can provide efficient low
the queue Q(D, M) can contain no more than one item of data. overhead error control for such memories. However, the standard

Thus, we have shown how any systolic array can be replaced by a iterative algorithm for decoding RS codes is too slow for these
systaltic array that requires no global synchronization for its correct applications.
functioning. There are two comments to be made about this In this correspondence we present a special decoding technique for
construction. double-byte-error-correcting (DBEC), triple-byte-error-detecting (TBED)

First, synchronization by diastolic control elements is not confined RS codes which is capable of high-speed operation. This technique is
to communication within networks; they can also be used to connect designed to find the error locations and the error values directly from the
systaltic networks that would ordinarily run at different speeds. This syndrome without having to use the iterative algorithm to find the error
has the important consequence that systaltic arrays can be designed locator polynomial.
without detailed consideration of timing in the larger environment in
which they will operate. Index Terms-Byte error correction and detection, byte-organized

Second, although the diastolic control element is a conceptual memory systems, error control coding, Reed-Solomon codes, VLSI
entity that could be implemented physically and placed between two memory systems.

' It is interesting to note that in what follows we may replace the second Manuscript received July 16, 1984; revised September 9, 1986. This work
property by the requirement that at no time does any input queue have more was supported by NASA under Grant NAG 2-202.
than one element. This allows data to skip beats. The authors are with the Department of Electrical and Computer Engineer-

2 Note that this can be determined from the state transition function ing, University of Notre Dame, Notre Dame, IN 46556.
evaluated at the current state. IEEE Log Number 8714096.

0018-9340/87/11l00-1359$01.00 ©) 1987 IEEE

Authorized licensed use limited to: University of Maryland College Park. Downloaded on April 29,2020 at 15:06:20 UTC from IEEE Xplore. Restrictions apply.

