
■27

COMPUTER VISION, GRAPHICS, AND IMAGE PROCESSING 41, 333-345 (1988)

NOTE

Some Algorithms for Approximating Convolutions
Dianne P. O'Leary

Mathematical Analysis Division, National Bureau of Standards, Gaithersburg, Maryland 20899
and Computer Science Department and Institute for Advanced Computer Studies,

University of Maryland, College Park, Maryland 20742
Received July 9,1986; accepted September 3,1987

This paper presents some algorithms for approximating two-dimensional convolution oper
ators of size n X w, n odd, by a product, or sum of products, of 3 X 3 convolutions.
Inaccuracies resulting from the approximation as well as from fixed point computation are
discussed and examples are given. © 1988 Academic Press, Inc.

1. INTRODUCTION

This work involves the approximation of two-dimensional convolutions of size
n X n, n odd, by a product (or sum of products) of 3 X 3 convolutions. The
motivation for the work is related to the PIPE, a parallel image processing machine
developed in the Center for Manufacturing Engineering of the National Bureau of
Standards and described by Kent et al [4]. Standard image processing algorithms
require the application of convolutions of size n X n to an image, but the PIPE
hardware can only handle 3x3 convolutions. For a survey of the uses of convolu
tions in image processing, see Huang [3]. For some background on the algebra and
properties of convolutions, see Mitra and Ekstrom [6].

The PIPE is a parallel processing machine consisting of a number of stages.
Images flow through the stages in real time, and during each time period, each stage
can perform a limited number of pointwise arithmetic or Boolean operations on its
three current 256 X 256 images, or apply a 3 X 3 convolution operator to an image.
The time period is not sufficient to allow 5 X 5 or larger convolutions. The
operations performed at a given stage, and the data paths routing the images, are
under program control.

Thus, in defining algorithms for the PIPE and similar real-time processing
machines, the standard measure of computational complexity, the number of
arithmetic operations, is not applicable. The relevant measure is simply the number
of stages of the PIPE machine needed to perform a given operation.

In Section 2 we summarize some of the properties of convolutions and derive
exact representations for some classes of convolutions. In Section 3 we apply these
methods and others to the problem of approximating a general convolution. The
effects of inexact arithmetic are discussed in Section 4. Section 5 provides some
examples.

Many of the ideas in this work derive from conversations with Chris Witzgall.
Comments of a referee were very helpful.

333

0734-189X/88 $3.00
Copyright © 1988 by Academic Press, Inc.

All rights of reproduction in any form reserved.



334 DIANNE P. O'LEARY

2. EXACT FACTORIZATIONS OF CONVOLUTIONS

2.1. Properties of Convolutions
We begin this section with some examples establishing notation and illustrating

the basic properties of convolutions and their factorizations. Convolutions are
related to polynomials in two variables, and to block-banded Toeplitz matrices of
infinite dimension. We exploit the first relationship, but not the second. For
simplicity, we restrict our examples to 5 X 5, but the principles are general.

Example 1. Convolutions obey the algebra of polynomial multiplication. The
coefficients in the product

C21
L12
C22

u13

C23
c31 C32 C33
^41 C42 C43
^51 C52 C53

^14
C24

L34

u54

^15

C25
L35
^45
u55

*11
*21
«31

*12
*22
*32

*13
123
<33

" 11

b31

UY1

b22
*32

'13

^23

y33

( i )

are defined by the relationship

5 5 / 3 3 \ / 3 3 \
E E^5-y-^= E LaijX>-y-A[ E Ev3">34
i = l 7 = 1 \ / = l y = l / \ i = l y = l /

From this, we conclude that multiplication of convolutions is commutative.

In general, an/iXw convolution corresponds to a polynomial in two variables
with highest order term xn"1y"~\ and if a factorization into 3x3 convolutions
exists, the factorization contains a = (n — 3)/2 + 1 factors. There are n2 condi
tions on the parameters in the factors in order to make the product of a terms equal
to a given convolution, and there are 9a parameters.

Example 2. If a convolution has a factorization as a product of 3 X 3 convolu
tions, then that factorization is nonunique:

1 0
2 0
3 0
4 0
2 0

- 5 0 4 "
-10 0 8
-15 0 12 =
-20 0 16
-10 0 8

1 0 - l "
2 0 - 2 *
1 0 - 1

1 0 - 4
0 0 0
2 0 - 8

2 0 - 2
4 0 - 4 *
2 0 - 2 .
1 - 3 2 "
2 - 6 4 *
1 - 3 2 .

.5 0 •2"
0 0 0
1 0 - 4 .
1 3 2"
0 0 0 .
2 6 4.

The second factorization is formed by multiplying the convolutions in the first
factorization by scale factors whose product is 1. The third factorization cannot be
derived in a simple way from the first two.



approximating convolutions 335

Note that under standard measures of computational complexity, the first two
factorizations would be preferred to the third, since the number of arithmetic
operations is proportional to the total number of nonzeroes in the convolutions: 10
in the first two, vs. 15 in the third and in the original 5x5 convolution. All three
factorizations require two terms, however, and therefore run in equal time on a
machine like the PIPE.

Example 3. Convolutions can also be decomposed, either by diagonals or by
subarrays, as a sum of products of 3 X 3 convolutions:

0 0 0 1 0
0 0 3 0 0
0 3 0 0 0
1 0 0 0 1
0 0 0 1 0

0 0 l "
0 2 0 *
1 0 0

0 1 0"
1 0 0 +
0 0 0

0 0 o"
0 0 0 *
0 0 1

1 0 0
0 0 0
0 0 0

0 0 1
0 0 0
0 0 0

0 0 0
0 0 3
0 3 0

0 1 0
0 0 0
0 0 0 J

0 0 0
0 0 0
1 0 0

+ 0 0 0
0 0 0
0 0 1

0 0 0
0 0 1
0 1 0

0 0 0
1 0 0
0 0 0

0 0 0
0 0 1
0 1 0

The convolutions with a single 1 are just shift operators, and many computer
architectures (although not the PIPE) can take advantage of this.

Example 4. Convolutions can also be decomposed as a sum of nontrivial
convolutions of decreasing si2«:

1 - 1 - 2 4 - 1 1 = 1 1 1 1 1

0 0 o"
0 1 0
0 0 0.

0 l o "
- 2 -2:> - 2

0 I o .
where the first term in the decomposition also has an exact representation as a
product of 3 X 3 convolutions.

Example 5. Not every convolution has an exact factorization as a product of
3x3 convolutions. Here is an example of one which does not:

1
0
0
0
0

0 0 0
-22

-32

L42

-52

-23

-33

u43

-53

L24

L34

L44

-54

0
X

C35

C45

^55



336 DIANNE P. O'LEARY

The ctj represent arbitrary values and the X represents any nonzero value. Then,
equating terms on the left- and right-hand sides in Eq. (1), we obtain the conditions
an = au = a2\ = a3\ = *i2 = ^13 = *2i = ^31 = 0- The condition on X requires
that aub23 + #23*13 = X> which is a contradiction. Thus the 25 equality conditions
on the 18 parameters of the 3 X 3 factors are inconsistent, and no set of parameters
exists.

The class of convolutions which have an exact factorization are those for which
the n2 conditions of Eq. (1) yield a solution. (For a detailed mathematical discus
sion of these conditions, see Chakrabarti, Bose, and Mitra [1].) These conditions are
not very revealing, however, and it is useful to have classes of matrices which can be
determined by inspection to have exact factorizations. We now study two such
classes: the convolutions which, considered as a matrix, have rank 1, and convolu
tions whose nonzeros he on a single diagonal or anti-diagonal.

2.2. Convolutions Which are Matrices of Rank 1
The set of convolutions which are matrices of rank 1 have exact factorizations.

We illustrate this for 5 X 5 convolutions. Since each row of such a matrix is a
multiple of the first one, every rank-1 matrix has a representation as uvT, where u
and v are column vectors. In polynomial representation, this corresponds to

5 5

p(*>y) = E Ujys~j E"/*
y = l / = 1

5 - i

Since the u} are real numbers, the fourth degree polynomial in y has a factorization
as the product of two quadratic polynomials with real coefficients, and similarly for
the polynomial in x. We thus have a decomposition of p(x, y) as

p(x, y) = {axy2 + bxy + c^(a2y2 4- b2y + c2)(dlX2 + exx + /i)

x{d2x2 + e2x+f2),

where all of the coefficients are real. (If enough of the roots of the polynomial in x
or the polynomial in y are real, then this decomposition can be done in a different
way by pairing the roots in a different way.) We now have a factorization of the
original polynomial, or, equivalently, a factorization of the convolution, as

" fl l " ~a2
,T = by

- c l .
UxCifA* b2

- C 2 .

[ ^ 2 / 2 ]

M i a ^ i a J i a2d2 a2e2 a2f2
= M i V i * i / i * b2d2 b2e2 b2f2

C j d1 V i clA J c2d2 c2e2 c2f2

Thus, any convolution which is a matrix of rank 1 has an exact factorization of this
form, unique only up to scale factors for each factor, and there may be other



APPROXIMATING CONVOLUTIONS 337

factorizations corresponding to different pairings, as in Example 2. In that case we
had

(y4 4- 2y3 4- 3y2 4- Ay 4- 2)(x4 - 5x2 4- 4)
= (y + l)(j + l)(y2 + 2)(* + l)(x - l)(x + 2)(jc - 2),

and two alternative pairings of the x factors with the y factors give the first and
third factorizations.

To perform this factorization on a computer, we find the roots of the polynomials
of a single variable, and then pair these roots to obtain quadratic factors with real
coefficients. There are many standard algorithms for finding roots of polynomials;
one is to use Newton's method on the system of equations obtained from the
symmetric functions of the roots.

2.3. Single-Diagonal Matrices
The set of convolutions which have only one nonzero diagonal also have exact

factorizations. We illustrate this for 5 X 5 convolutions.
Suppose that the convolution A has only one nonzero diagonal, and we call the

coefficients on that diagonal ul9 w2,..., uk. Then again we can form and factor the
polynomial

k

E uixk~i = (axx2 4- bxx 4- cx)(a2x2 + b2x 4- c2),
/ = i

where some of the leading coefficients are zero if the degree k - 1 is less than 4. A
product of convolutions with these coefficients and some shift convolutions then
reproduces the original. For example,

" l 0 0 0 0
0 « 2 0 0 0 «1 0 o" a2 0 0
0 0 " 3 0 0 = 0 * 1 0 * 0 b2 0
0 0 0 " 4 0 0 0 C l 0 0 c2
0 0 0 0 " 5 .

0 0 0 0 o"
" 2 0 0 0 0 « 1 0 0" "0 0 0 "
0 M3 0 0 0 = 0 h 0 * b2 0 0
0 0 " 4 0 0 0 0 Cl 0 c2 0
0 0 0 «S 0
"o 0 " 3 0 o"
0 0 0 « 4 0 « 1 0 0 "0 o r
0 0 0 0 M5

= 0 h 0 * 0 0 0 .
0 0 0 0 0 0 0 c l . .0 0 0

.0 0 0 0 0 .



3 3 8 D I A N N E P . O ' L E A R Y

Again, the critical computational task is finding roots of polynomials in one
variable.

A similar decomposition can be performed for matrices with a single antidiago-
nal, as illustrated in Example 3.

3. ALGORITHMS FOR EXACT AND APPROXIMATE FACTORIZATIONS
We discuss in this section five methods for decomposing an n X n covolution as a

product (or sum of products) of 3 X 3 terms.

3.1. Method 1: Rank-1 Approximations
An n x n convolution, considered as a matrix A, can be decomposed as the sum

of at most n rank-1 matrices. Each of these rank-1 matrices can be factored exactly.
Therefore, one exact representation of a convolution is as a sum of at most n
products, each of which represents a rank-1 matrix. Since it may be desirable to
represent a convolution by only a few of these terms, it is important to be able to
obtain the best rank-1 (or rank-2, etc.) approximation for a given matrix. One
criterion for "best" is least squares: among all rank-A: matrices B, chose the one for
which

n n

E EKy-*/;)2
;= iy= i

is minimized. This problem has been well studied (see, for example, Stewart [10,
1973, p. 322]) and the solution is known to be given by the sum of the first k terms
of the "singular value decomposition"

n
a = E wvj

/ = i

where the scalars a, are ordered ax> a2> • • • > an > 0 and ut and vt are column
vectors satisfying the orthogonality conditions

ujuj = vjvj = 0, i±j9
ujut = vjvt = 1,

for i,j = 1,..., n. This method produces an exact representation of the convolution
A if k terms are taken, where k is the number of nonzero singular values, or,
equivalently, A: is the rank of the matrix A. Treitel and Shanks (1971) have also
used low rank approximations to convolutions.

Method 1.

1. Compute the singular value decomposition of the matrix A.
2. For each rank-1 term in the decomposition:

Factor the rank-1 matrix as a product of 3 X 3 convolutions, and replace
A by A minus the rank-1 matrix, leaving the residual stored in A.
Quit if the residual is small enough.



APPROXIMATING CONVOLUTIONS 339

3.2. Method 2: Decomposition by Diagonals
The matrix A can also be decomposed as the sum of its diagonals running from

upper left to lower right: for example, a 3 X 3 matrix can be expressed as the sum
of 5 terms:

A =

" 0 0 0 " " 0
0 0" an 0 0

0 0 0 + a2X 0 0 + 0 a22 0
a31 0 0 0 a32 0 0 0 a3

"0 a12 0 " "0 0 *13~
+ 0 0 a 2 3 + 0 0 0 .

0 0 0 0 0 0

In general, a convolution of dimension n X n can be decomposed as the sum of
2n — 1 diagonal convolutions, and each diagonal can then be represented exactly as
a product of 3 X 3 convolutions.

Methods 2 and 3.

1. Consider each diagonal of A as a vector, and order them by decreasing
2-norm.

2. For each diagonal:
Factor the 1-diagonal matrix as a product of 3 X 3 convolutions, and
replace A by A minus the 1-diagonal matrix, leaving the residual stored in
A.
Quit if the residual is small enough.

3.3. Method 3: Decomposition by Anti-Diagonals
The matrix A can also be decomposed as the sum of its diagonals running from

upper right to lower left: for example, a 3 X 3 matrix can be expressed as the sum
of 5 terms:

A =
an o 0 "

" 0
a12 0"

" 0
0 « 1

0 0 0 + a21 0 0 + 0 fl22 0
0 0 0 0 0 0 .°31 0 0

" 0 0 0 " "0 0 0 "
+ 0 0 a ^ + 0 0 0

0 a32 0 0 0 a33

Each of the 2n — 1 1-diagonal matrices of dimension n X n, can then be repre
sented exactly as a product of 3 X 3 convolutions, as was done in the first part of
Example 3.



3 4 0 D I A N N E P . O ' L E A R Y

3.4. Method 4: Approximation by Least Squares
The approximation problem can also be expressed as a nonlinear least squares

problem

m i n i L K - * , y ) 2 . ( 2 )

where B is a matrix formed from the product of a = (n — 3)/2 4- 1 convolutions of
size 3x3. This rather innocent-looking problem is complicated by the fact that the
solution is nonunique, as discussed in Section 2. This means that the matrix of
second derivatives of the function in (2) will be singular at a solution, and this
greatly complicates the numerical methods and makes them much less reliable.
If the scale factors were the only source of nonuniqueness, we could easily eliminate
the complication by removing some of the degrees of freedom (e.g., setting some of
the coefficients in the 3 X 3 convolutions to constants), but, as we saw above, even
this will not guarantee a unique solution.

Similar approximation problems have been studied by Pistor [8] and Maria and
Fahmy [5], who approximate n X n unstable filters by a product of stable ones of
smaller dimension.

There are many standard algorithms which can be applied to (2) (see, for
example, Dennis, Gay, and Welsch [2]), but most of these methods are only
guaranteed to find a local minimum of the function; i.e., perturbing the coefficients
in the 3x3 convolutions in the solution will give a higher sum of squared residuals,
but there may be a different combination of coefficients which results in a better
approximation. To find the global rather than the local minimum is a much more
expensive and less-understood task, and reliable algorithms are rare.

Method 4. Solve the nonlinear least squares problem (2) to obtain an ap
proximation to A.
3.5. Method 5: Least Squares Approximation by a Sum of Products
This last method is similar to Method 4 except that positive weights wtj are

included in the objective function:
n n

i n m E Z ^ K " * / ( 3 )
Oij /=1 y = l

In the first step of the calculation, we choose the weights to be 1 for the interior
coefficients of the convolution (i, j = 2,..., n - 1) and large for the border coeffi
cients. This forces a better approximation to the border coefficients and leaves a
residual which is concentrated in the interior, in a convolution of order n — 2. The
process can then be iterated, giving an approximation of A as a sum of convolutions
of size «, n — 2,..., 3, each of which has an exact factorization. This form of
decomposition is similar to Example 4. Example 5 tells us that the minimum may be
nonzero even if the interior weights are zero.

A related problem has been studied by Pratt, Abramatic, and Faugeras [9], who
applied for a patent on the idea of approximating a convolution as a linear



A P P R O X I M A T I N G C O N V O L U T I O N S 3 4 1

combination of powers of a single small convolution C,

A = f bfi1,
1=1

and proposed a hardware configuration implementing this summation. Mutluay and
Fahmy [7] do work related to that of Pratt et al. [9].

Method 5.

n - 3 n - 3
F o r a = - y - + 1 > — ^ — > • • • > !

Solve the nonlinear least squares problem (3) with weights of 1 for interior
coefficients and a large number for border coefficients, obtaining a product with
a terms.
Replace A by the convolution of dimension 2 smaller, formed from the
residuals on the interior coefficients.

4. THE EFFECTS OF INEXACT ARITHMETIC
The PIPE computer, like many image processing machines, operates in fixed-point

binary arithmetic. The images are represented to 8-bits including sign, the convolu
tions to 12-bits, and computation intermediate to forming the application of a
convolution with an image is performed to 20-bits. For convenience, we will
consider the binary point to be located in front of the first bit. Overflow causes an
erroneous result (wrap-around arithmetic) with no error flag.

These arithmetic characteristics have several implications for the design of the
approximation algorithms. We now discuss these implications.

There is a tolerance for the approximation of a convolution beyond which the
algorithm need not go. If the convolution has been represented to the fixed-point
round-off precision, then there is no sense in further work to reduce the residual.
Algorithms for approximating convolutions should contain a tolerance tol which
states that a residual convolution of less than tol times the size of the original
convolution should be considered to be zero. One way to measure the size of a
convolution C is by

(?**)
1/2

This tolerance also affects the choice of weights in Method 5. We ask that the
border coefficients be approximated 1/tol times more accurately than the interior
coefficients. This essentially asks that the border residuals be (fixed point) zero
relative to the interior ones, in case all of them cannot be made zero.

The fixed point arithmetic also means that the best floating point approximation
to a given convolution is not necessarily the best fixed point approximation. There
are two parts to this problem: scaling and rounding.

Under floating point, the product of several 3x3 convolutions is invariant if the
convolutions are multiplied by various scale factors which are powers of 2 and



342 DIANNE P. O'LEARY

whose product is 1, as long as intermediate underflow and overflow are avoided.
This is not true in fixed point, and scaling has a tremendous effect on the accuracy
of an approximation to a convolution. It can be shown that the best scalings are
those which make the 3 X 3 convolutions of approximately the same magnitude.
This is implemented by choosing scale factors which make the largest magnitude
components in each convolution equal. Choosing powers of 2 which approximate
these scale factors can be better on some examples, because the resulting coefficients
are more likely to have exact representations on machines with binary arithmetic.

This brings us to the second problem, that of rounding. In approximating a 5 X 5
convolution, we have 18 coefficients, and each of these must be rounded up or down
to represent them on image processing machines. This gives 218 possible convolution
products for binary arithmetic, and it is obviously impractical to test them all. The
choice needs to be made by machine-assisted intuition.

5. COMPUTATIONAL EXAMPLES

5.1. Computational Example 1
As an illustration of the approximation algorithms, consider the convolution

A =

0 0 0.125 0 0
0 0 0 0 0

0.125 0 -0.500 0 0.125
0 0 0 0 0
0 0 0.125 0 0

This is a Laplacian-type operator, scaled to avoid overflow on machines which
represent numbers in the interval (-1,1).

Method 1, the singular value decomposition, yields the essentially exact represen
tation

A =
-0.15974

0.25000
0.15974
0.15974
0.25000

-0.15974
0.15974

-0.19890
. 0.15974

0.25000
-0.39127
-0.25000

0.25000
0.39127

-0.25000
-0.19890

0.24767
-0.19890

0.15974
-0.25000
-0.15974.
-0.15974"
-0.25000
0.15974.
0.15974

-0.19890
0.15974

0.15974 0.19890 0.15974
0.19890 0.24767 0.19890

L0.15974 0.19890 0.15974

The roots of the polynomials for the first rank-1 matrix were all real (2.052, - 0.487,
— 2.052, and 0.487 for each factor), and other pairings of these roots would result in
a different but equally accurate representation in floating point arithmetic. The
second rank-1 component has complex roots (±0.6226, ±0.7825), and the represen
tation is unique up to scale factors. A single term representation of A gives a
residual of 0.056, compared to 0.559 for the size of A itself. Applying the single term
representation to an image requires approximately 18 multiplications per image
point, vs. 5 multiplications per point for the original 5X5 convolution, but requires
only two stages on the PIPE.



APPROXIMATING CONVOLUTIONS 343

Method 2 reports that there are 3 nonzero diagonals in A, and leads to the
decomposition

A =
-0.70711 0 0

0 0 0
0 0 0

0 0
0 0

+

0 . 3 5 3 5 5 0 0
0 0 0
0 0 0 . 3 5 3 5 5

0 . 3 5 3 5 5 0 0
0 0 0
0 0 0 . 3 5 3 5 5

0
0

0.70711.
0 0 0"
0 0 0

0.35355 0 0.
0 0 0.35355
0 0 0
0 0 0

Because of the structured pattern of A, Method 3 produces results similar to
Method 2.

Method 4, the least squares calculation, produces the decomposition

A =
-0.0067334 0 0.17251

0 0 0
0.17251 0 -0.66703

0.66703 0 -0.17251
0 0 0

-0.17251 0 0.0067334

which gives a residual of norm 0.046, slightly better than the rank-1 approximation.
Rounded to 3 significant digits, we obtain

0.007 0 0.173
0 0 0

0.173 0 -0.667
*

0.667 0 -0.173
0 0 0

.-0.173 0 -0.007

=

-0.0047 0
0 0

0.1166 0
0 0

.-0.0299 0

—

0.1166 0 - 0.0299 ~
0 0 0

0.5O47 0 0.1142
0 0 0

0.1142 0 0.0047.

for a residual of 0.047.
Method 5, the bordering method, gives the (exact) result

A =
0
0
35:238

0
0.49203

0

-0.35238
0
0

*
-0.35473

0
0

0
0.49203

0

0
0

-0.35473

iteir coefficients

"-0.17454
0

. 0.17338

0
-0.257

0
91

0.17338"
0

-0.17454
•

Although some of the five representations are clearly better than some of the others,
the choice of which one to use will depend on the amount of computational time it
is possible to devote to this convolution problem, some machine-dependent con-



344 DIANNE P. O'LEARY

straints, and how each of the approximations fits in with the other steps in the
image processing problem.
5.2. Computational Example 2

As a second example, consider the convolution

A =

127 0 0 0 -128
127 0 0 0 -128
127 0 0 0 -128
127 0 0 0 -128
127 0 0 0 -128

128

which is an example of an edge detector. Since A is a rank-1 matrix, we obtain an
exact factorization

A =
1

128
14.335

-8.8595
14.335

0
0
0

14.391
-8.8943

14.391

8.8595 0
14.335 0
8.8595 0

-8.8943
-14.391
-8.8943

Rounding to three significant digits gives the approximation

A =
128

1
128

14 .3 0 14 .3
- 8 . 9 0 - 8 . 9
14 .3 0 14 .3

8.9
14.3
8.9

0
0
0

- 8 . 9
-14.3
- 8 . 9

127.27
125.28
127.27
125.28
.127.27

0
0
0
0
0

0
0
0
0
0

0
0
0
0
0

-127.27
-125.28
-127.27
-125.28
-127.27

Experimenting with nearby convolutions yields

A =
128

13 0 13 8 0 - 8
- 8 0 - 8 * 13 0 -13
13 0 13 8 0 - 8

1
128

104 0 0
105 0 0
104 0 0
105 0 0
104 0 0

0
0
0
0
0

-104
-105
-104
-105
-104

which, although normalized differently than A, is a very good edge detector.
6. CONCLUSIONS

We have summarized some theory related to the approximation of n x n con
volutions, n odd, by a product or sum of products of 3 X 3 convolutions, and have
presented five algorithms for computing approximations. The purpose of these
algorithms is to assist the analyst in the design and approximation of convolution
operators on image processing machines.

REFERENCES
1. S. Chakrabarti, N. K. Bose, and S. K. Mitra, Sum and product separabilities of multivariate

functions and applications, /. Franklin Inst. 299,1975, 53-66; also in [6].
2. J. E. Dennis, D. M. Gay, and R. E. Welsch, NL2SOL—An adaptive nonlinear least-squares

algorithm, ACM Trans. Math. Software 7,1981, 369-383.



A P P R O X I M A T I N G C O N V O L U T I O N S 3 4 5

3. T. S. Huang, Recent advances in picture processing and digital filtering, in Picture Processing and
Digital Filtering (T. S. Huang, Ed.), pp. 283-292, Springer-Verlag, New York, 1979.

4. E. W. Kent, M. O. Shneier, and R. Lumia, PIPE (pipelined image processing engine), manuscript,
CME, National Bureau of Standards, 1984.

5. G. A. Maria, and M. M. Fahmy, An lp design technique for two-dimensional digital recursive filters,
IEEE Trans. Acoust. Speech Signal Process. ASSP-22, 1974, 15-21; also in [6].

6. S. K. Mitra, and M. P. Ekstrom, Two-Dimensional Digital Signal Processing, Dowden, Hutchinson, &
Ross, Stroudsburg, PA, 1978.

7. H. E. Mutluay, and M. M. Fahmy, Recursibility of N-dimensional IIR digital filters, IEEE Trans.
Acoust. Speech Signal Process. ASSP-32, 1984, 397-402.

8. P. Pistor, Stability criterion for recursive filters, IBM J. Res. Dev. 18, 1974, 59-71; also in [6].
9. W. K. Pratt, J.-F. Abramatic, and O. Faugeras, Method and Apparatus for Improved Digital Image

Processing, U.S. Patent 4,330,833,1982.
10. G. W. Stewart, Introduction to Matrix Computations, Academic Press, New York, 1973.
11. S. Treitel, and J. L. Shanks, The design of multistage separable planar filters, IEEE Trans. Geosci.

Electron. GE-9,1971,10-27; also in [6].


