
3 ^
P a r a l l e l C o m p u t i n g 1 6 (1 9 9 0) 9 9 - 1 1 2 9 9
North-Holland

Practical aspects and experiences

Parallel QR factorization
by Householder and modified
Gram-Schmidt algorithms
Dianne P. O'LEARY t
Computer Science Department and Institute for Advanced Computer Studies

Peter WHITMAN f
Computer Science Department University of Maryland, College Park, MD 20742, USA

Received October 1988

Abstract In this paper, the parallel implementation of two algorithms for forming a QR factorization of a
matrix is studied. We propose parallel algorithms for the modified Gram-Schmidt and the Householder
algorithms on message passing systems in which the matrix is distributed by blocks of rows. The models that
predict performance of the algorithms are validated by experimental results on several parallel machines.

Keywords. QR factorization, Gram-Schmidt algorithm, Householder algorithm, Message passing systems.

1. Introduction

The programming of parallel algorithms can be undertaken from either a global or a local
approach. In the global approach we begin with a sequential algorithm and look for tasks
which can be executed concurrently, such as those in a loop. The approach adopted by O'Leary
and Stewart [19] is a local one, writing algorithms from the point of view of transformations on
a particular matrix element or matrix block. The execution of such an algorithm with a
particular set of data is performed by a computational node. Such nodes can communicate with
a simple protocol of send and request, pausing until all requests for information have been
satisfied. A network of such nodes can be distributed across a set of communicating processors
in a parallel machine and the network can be proven to operate deterministically, regardless of
the particular assignment of nodes to processors and regardless of the particular scheduling
algorithm [20]. Further, by analyzing the graph describing the flow of data among the
computational nodes, we can determine ways to assign nodes to processors in order to
maximize the speed-up, and can calculate lower bounds on the execution times of the algorithm
on a multiprocessor [18].
* This work was supported by the Air Force Office of Scientific Research under Grants 82-0078 and 87-0158.

0167-8191/90/$03.50 © 1990 - Elsevier Science Publishers B.V. (North-Holland)

1 0 0 D . P. O ' L e a r y , P. W h i t m a n / P a r a l l e l Q R f a c t o r i z a t i o n

In this paper we use this formalism to analyze medium grained parallel algorithms for
computing the QR factorization of a matrix using either Householder transformations or the
modified Gram-Schmidt algorithm. This continues work described in [18].

There are three popular algorithms for computing the QR factors of a matrix: Givens
transformations, Householder transformations, and Gram-Schmidt orthogonalization. It is
relatively easy to devise an effective implementation of any of these algorithms on a parallel
machine that permits efficient execution of fine-grained algorithms; in such a machine, the cost
of sharing short messages between two computational nodes is roughly equivalent to the cost of
a floating point computation. Unfortunately, unless a parallel computer has shared memory or
systolic synchronization, the overhead for passing messages between computational nodes is
quite high, and fine-grained algorithms are not well matched to currently available message
passing architectures. Thus, it is important to develop efficient medium-grained algorithms, in
which both the amount of computation between bursts of communication, and the length of the
messages, is relatively high.

We study medium grained algorithms for computing a factorization of a given mXn matrix
A into the product of an orthogonal mXn matrix Q and a right triangular nXn matrix R.
Often the matrix Q must be computed explicitly, either because an orthogonal basis for the
column space of A is required, or because of efficiency considerations in the later use of Q in
the parallel machine, and we focus in particular on problems in which the number of rows m is
much larger than the number of columns n. We consider both Householder and modified
Gram-Schmidt algorithms. Our primary consideration will be the time taken by the algorithm.
Of course, criteria other than execution time should influence the choice of algorithm. For
example, Bjorck [2] has shown that QTQ can differ from the identity by a matrix of size
proportional to machine precision when the Householder algorithm is used, but by a matrix of
size proportional to machine precision times the condition number of the original matrix when
the modified Gram-Schmidt algorithm is used. The choice of algorithm must be guided by the
computer architecture and by the intended use for the matrix factors.

Algorithms for QR factorizations on parallel processing machines have been studied in many
contexts. A survey is given in [6]. Systolic algorithms based on Givens rotations are given in
Barlow and Ipsen [1], Bojanczyk [3], Heller and Ipsen [11], Ipsen [12], and Luk [15]. Givens
algorithms on shared memory machines are studied in Sameh and Kuck [25], Cosnard, Muller
and Robert [7], Dongarra, Sameh, and Sorensen [8], Modi and Clarke [16] and Lord [14].
Givens algorithms for distributed memory machines are given in Elden [9] for one and two
dimensional meshes and the torus, Pothen and Raghavan [22] for ring and broadcast communi
cation, and in Chamberlain and Powell [4], Pothen, Somesh, and Vemulapati [23], and Chu and
George [5] for a hypercube. Algorithms based on Householder reflections are given in
Dongarra, Sameh, and Sorensen [8] and Katholi and Suter [13] for shared memories, in Elden
[9] for one and two dimensional meshes and the torus, and in Pothen and Raghavan [22] for
column partitioning with ring or broadcast communication. Parallel implementation of the
modified Gram-Schmidt algorithm does not seem to have been studied.

In Section 2 we will discuss parallel algorithms for the modified Gram-Schmidt and QR
factorization algorithms when the matrix is distributed among processors by blocks of rows. In
Section 3 we will present experimental and simulation results validating the models of
execution time. In Section 4 we will summarize the results and present conclusions.

2. QR factorization algorithms

We have two major algorithmic constraints. Since themXw matrix Q is to be computed
explicitly, methods which form an implicit version of the complete mXm orthogonal matrix

D . P. O ' L e a r y , P. W h i t m a n / P a r a l l e l Q R f a c t o r i z a t i o n 1 0 1

are at a disadvantage. Since the problems have many more rows than columns, partitioning the
matrix by columns permits only limited parallelism, and we focus in this paper on algorithms
for partitionings of the matrix into blocks of rows. We will assume that we have p processors,
each containing the matrix elements from b rows of the matrix A. For simplicity we will
assume that p divides m, so that b = m/p\ the results are not essentially different for the case
that some processors have one more row than others.

We use a very simple model of execution time for parallel algorithms. We model floating
point computations by defining the time necessary to execute a statement such as

y [i] = a *x [i]+y [i]
to be a unit known as a flop. We will count a floating point addition, division, or multiplication
as half of a flop, realizing that this may or may not be a good model for a given machine. We
model communication time by saying that each message requires some start-up time o for
packaging the message, getting another processor's attention, etc., and some per-word time t.
We denote the sending of a message of length k between two neighboring processors by
send(k), and allot it time a + kr.

2.1 The parallel modified Gram-Schmidt algorithm

The Gram-Schmidt algorithm constructs an orthogonal set of vectors qt from the columns at
of the given matrix through an iterative process of considering each vector in turn, subtracting
the component of the vector in the direction of each previous vector, and normalizing the
remainder to length one. The modified Gram-Schmidt algorithm, which we consider here,
rearranges these operations in order to improve stability. Each vector in turn is normalized to
length one, and the subsequent vectors are updated by subtracting a multiple of the given
vector in order to produce orthogonality. For a discussion of the stability of the two algorithms,
see Bjorck [2] and Golub [10].

The ith step of the modified Gram-Schmidt algorithm is
T

afaj

aj*~af~ rifai> y = * +1,..., i,

where ai is column i of matrix A. The final matrix A is Q\ the elements of R are the
multipliers rtj.

In the parallel algorithm, the norm of each vector and its inner product with subsequent
vectors must be computed through a process of locally accumulating the inner products for the
blocks, accumulating the inner products across processors, making the inner products known
globally, and then doing the local modifications of the vector blocks.

From the point of view of each individual processor, the zth step of the algorithm
(i = 1,..., n) is as follows:

dotprd [/]: Compute the dot products of the local block of column i with columns /,...,/*.
This consists of n - i + 1 dot products of length b. time = (n - i + l)b flops.
accum [/]: Wait for the n — i + 1 dot products from a 'preceding' processor, if there is one,
and add on the local dot products, time = (n - i + 1) adds.
pass [/]: Send the revised n — i + 1 dot products to a 'successor' processor, if there is one.
time = 1 send(n - i + 1).
scale [/]: The last processor takes a square root to get the norm of the /th column, and
scales the other dot products by that norm, time = 1 sqrt + 1 division + (n- i) multiplica
tions.

102 D.P. O'Leary, P. Whitman / Parallel QR factorization

♦DOTPRD [1] DOTPRD [1]
♦PA S S [1] « -

*ACCUM [1]
♦PASS [1]

DOTPRD [1] DOTPRD [l]

♦BRDCAST[l]
♦UPDATE [1]
♦DOTPRD [2]

♦PASS [2]

*BRDCAST[2]
♦UPDATE [2]
♦DOTPRD [3]

*PASS [3]

*BRDCAST[3]
UPDATE [3]

BRDCAST[1]
UPDATE [1]
DOTPRD [2]
<—
♦ACCUM [2]
♦PASS [2]

BRDCAST[2]
UPDATE [2]
DOTPRD [3]
«—
♦ACCUM [3]
♦PASS [3]

*BRDCAST[3]
UPDATE [3]

♦ACCUM [1]
♦PASS [1]

UPDATE [1]
DOTPRD [2]

*ACCUM [2]
♦PASS [2]

UPDATE [2]
DOTPRD [3]

♦ACCUM [3]
♦PASS [3]

*ACCUM [1]
♦SCALE [1]
♦BRDCAST[l]
UPDATE [1]
DOTPRD [2]

♦ACCUM [2]
♦SCALE [2]
♦BRDCAST[2]
UPDATE [2]
DOTPRD [3]

♦ACCUM [3]
♦SCALE [3]
♦BRDCAST[3]
UPDATE [3]

♦UPDATE [3]

Fig. 1. Time course for modified Gram-Schmidt algorithm on a ring of processors. Each column gives the tasks
executed by a different processor. If a processor cannot proceed until completion of a task on a neighboring processor,

this is indicated by an arrow pointing to that task.

brdcast[i]: Wait for the n — i + 1 accumulated dot products from a 'preceding' processor, if
there is one, and pass them on to a 'successor' processor, if there is one. time = 1
send(n — i + 1).
update [/]: Scale the local block of column i by the norm of the /th vector, and update the
local block of columns i + 1 through n by subtracting from them multiples of the local block
of column i (determined by the dot products) to make those columns orthogonal to column
i. time = (n — i)b flops + b multiplications.
The times above ignore wait times. In order to find the elapsed time for the algorithm, we

must find a critical path of steps through the algorithm which must be performed sequentially,
and add the times for these sequential steps to the wait times.

D.P. O'Leary, P. Whi tman / Paral le l QR factor izat ion 103

From the local point of view, a processor will fall into a pattern of performing brdcast[z],
update [/], and dotprd [z + 1], and then wait before accum [i + 1] and pass [i + 1], and wait
again before brdcast[z + 1], The length of the wait will depend on the connectivity of the
processors: if the processor network is a ring, then the processor which is the kth to receive the
dot products will wait for k — 1 processors preceding it to perform pass [/ + 1] before its own
accum [z + 1], and then will wait for p — k — 1 processors after it to perform pass [z + 1] and
the k preceding processors to perform brdcast[z +1] before its own brdcast[z + 1]. As an
example, the time course for n = 3 p = 4 would be as indicated in Fig. 1. The algorithm could
be improved slightly at the cost of increased program complexity by letting the assignment of
the processor which performs scale [i] rotate counterclockwise by one each step.

Processor p — 1 will be the last to finish, and we have marked a critical time-path through
the time course with stars. The elapsed time for three or more processors will be

n

TIMEG>S ring = £ {DOTPRD [i] + (p- 1) ACCUM [z] + SCALE [z]
i = l

+ (/? - 1) PASS [l] + 2 BRDCAST[z] + UPDATE [i]}

+ (/> — 3) brdcast[«].
We can determine the optimal number of processors by minimizing this expression with

respect to p\ the optimal number of processors is proportional to the square root of the number
of rows, and the full expression is given in Fig 3.

The time analysis for the execution of the algorithm on a hypercube (or any other
architecture in which sums across processors can be accumulated and distributed in log2p
steps) is performed in a similar fashion. In this case,

n

TlMEGScube =]T {DOTPRD [z] + (log2jP - 1) ACCUM [z] + SCALE [/]
j = l

+ \og2P PASS [/] + log2/7 BRDCAST[z] + UPDATE [/]} .

The optimal number of processors is proportional to the number of rows m, and the full
expressions are given in Fig. 4.

2.2 The parallel Householder algorithm

The Householder factorization algorithm transforms the matrix A by reducing one column
at a time into upper triangular form. The zth step is defined by

W| = 0/+ %.*/>

yt = sign (au) /*?,.+ ••• +a,
1

2

1T: =

A <- (/ — 7TiuiuJ)A.
The final transformed matrix A is R.

The description of the parallel algorithm is complicated by the fact that at step i, only rows i
through m of the matrix are active, so different processors may have different numbers of
active rows, ranging from 0 to b. We describe the decomposition algorithm from the point of
view of an individual processor. Processors which contain only rows numbered less than i do
not participate in step i. The zth step (z = 1,...,«) is as follows:

dotprd [/]: Compute the dot products of the local block of column i with columns /,...,«.
Only use elements that are in matrix rows z through m. time = (« — / + l)a flops, where a is

1 0 4 D . P. O ' L e a r y , P. W h i t m a n / P a r a l l e l Q R f a c t o r i z a t i o n

an integer between 0 and b, depending on the step z and the index of the processor.
accum [/]: Wait for the n - i + 1 dot products from a 'successor' processor, if there is one,
and add on the local dot products, time = (n — /-hi) adds.
pass [/]: Send the revised n - i + 1 dot products to a 'preceding' processor, if there is one.
time = 1 send(n - z + 1).
scale [z]: The processor which contains au is the last to receive the revised dot products. It
takes a square root to determine the scale factor yi9 adds it to the main diagonal element,
corrects the inner products for the addition of y, to the zth element of ui9 and multiplies
them by irt. time = 1 sqrt + 1 division + 1 addition + (n - i + 1) flops + (n- z) multiplica
tions.
brdcast[z]: Wait for the n - i + 1 scale factors from a 'preceding' processor, if there is one,
and pass them on to a 'successor' processor, if there is one. time = 1 send(n - i + 1).
update [z]: Update the local block of columns i through n by subtracting multiples of the
local block of column z. time = (n-i)a flops.
Note that this algorithm forms uj A by computing aj A and then adding ytej A. So far we

have computed an upper triangular matrix R and vectors ut which determine the matrix Q by
the relation

(e, Gx) = (/- wD • • • (/- *mumu*)9
and for many applications this is sufficient. In this paper, however, we are considering the
problem of computing the matrix Q explicitly, so a second phase of the algorithm is needed to
construct Q. Since we are looking for the first n columns of the product matrix, the product
must be accumulated from right to left, unless we compute the entire matrix and throw away
the last m-n columns. This right to left accumulation means that the construction of Q
cannot be overlapped with the computation of R9 and we will see that this essentially doubles
the cost.

The algorithm for constructing Q begins with an array of zeroes, with a main diagonal of
ones, distributed among the processors. Step i of the algorithm updates Q by computing

el+i^G/-^-/ww_l(wj_/e/), z=o,...,w-i.
Since the vectors un_t have zeroes for their first /z - z + 1 entries, at step z, only matrix entries
in rows n - i through m and columns n - i through n can change. Thus, only processors
containing rows n - i through m need participate in the zth step. Further, the first n - i
columns of Qt are unit vectors, so the operations involving column n - i are particularly
simple. The operations are as follows, for z = 0,..., n - 1:

dotprd [z]': Compute the dot products of the local block of un_t with the local block of the
last j columns of the current Q. time = aft flops, where a ranges between 1 and b and $
ranges between 0 and n, depending on the step z and the index of the processor.
accum [z]': Wait for the z dot products from a 'preceding' processor, if there is one, and add
on the local dot products, time = i adds.
pass [i]': Send the revised i dot products to a 'successor' processor, if there is one.
time = send(i).
scale [z]': The last processor to receive the dot products scales them (since the processors
actually store an unnormalized multiple of «„_,). time = 1 division + i multiplications.
brdcast[z']': Wait for the z + 1 scaled dot products from a 'preceding' processor, if there is
one, and pass them on to a 'successor' processor, if there is one. time = send(i + 1).
update [/]': Add the multiples of the local block of un_t to the local block of the last i + 1
columns of Q. time = aft flops.
As an example, the time course for the first three column operations for computing i* on a

ring of 4 processors with two rows each is given in Fig. 2. We assume here that the matrix has

D.P. O'Leary, P. Whitman / Parallel QR factorization 105

DOTPRD [1] DOTPRD [1]

♦ACCUM [1]
♦SCALE [1]
♦BRDCAST[1]
update [1]
DOTPRD [2]

♦ACCUM [2]
♦SCALE [2]
♦BRDCAST[2]
UPDATE [2]

♦ACCUM [1]
♦PASS [1]

♦BRDCAST[1]
UPDATE [1]
DOTPRD [2]

♦ACCUM [2]
♦PASS [2]

♦BRDCAST[2]
UPDATE [2]
DOTPRD [3]

♦ACCUM [3]
♦SCALE [3]
♦BRDCAST[3]
UPDATE [3]

DOTPRD [1] ♦DOTPRD [1]
-▶ + P A S S [1]
♦ACCUM [1]
♦PASS [1]

♦BRDCAST[1]
UPDATE [1]
DOTPRD [2]

♦ACCUM [2]
♦PASS [2]

♦BRDCAST[2]
UPDATE [2]
DOTPRD [3]

♦ACCUM [3]
♦PASS [3]

♦UPDATE [1]
♦DOTPRD [2]
♦PASS [2]

♦UPDATE [2]
♦DOTPRD [3]
♦PASS [3]

♦BRDCAST[3] <—
UPDATE [3] ^UPDATE [3]

Fig. 2. Time course for the first three steps of the Householder algorithm on a ring of four processors with two rows per
processor.

been distributed by blocks of rows, so that processor 1 has rows 1, 2,..., b, etc. The time course
for the accumulation of Q is similar, although successive steps involve more and more
processors rather than fewer and fewer.

Processor p will be the last to finish, and we have denoted a critical time-path through the
time course by stars. The elapsed time for computing R will be

£ {dotprd [i] + (pei 1) ACCUM [i] + SCALE [z]
i = l

+ (Pcurrent " 1) PASS [/] + (Pcurrent - l) BRDCAST[Z] + UPDATE [I] } ,

where pcurrent is the current number of active processors. The time to compute Q is expressed

1 0 6 D . P. O ' L e a r y , P. W h i t m a n / P a r a l l e l Q R f a c t o r i z a t i o n

Modified Gram-Schmidt algorithm on ring of processors:

n 2 p m n 2 n p m nTIME = —£ + h — + -t— + n sqrt4 p 4 2 p

I T X u T X T X T) T X I

x/2m(2n +1)
Popt —

v/n(l + 2r) + 2r + 4er + 1 + 4(r + a)/n
Householder algorithm with block mapping of rows on a ring of processors:

n 2 p 2 m n 2 n p m n 3 n 2 I n n 3 p n 2 pT I M E = _ Z + _ + _ + _ + _ + _ _ _ _ _ + n s g r *

^ m 2 m 2 J ^ m J

>/2m(2n + 1)
Popt —

y/(l + 4r)n + 6r + 8(7 +1 - ^r+3nr+4na+ny2+n/2
Householder algorithm with wrap mapping of rows on a ring of processors:

n 2 p 2 m n 2 3 n 2 m n n p ^ n 3 n 2T I M E = _ + _ _ + _ + _ + ^ + 2 n _ _ _ _ + n s g r <

+ {2n2p + 3np - 2n2 - 3n} r + {4np - 4n} <r

_ ^2/71(271 + 1) - n(2n + 1)P°Pt " v/(l + 4r)n + '6r + 8(r+l

Fig. 3. Elapsed time and optimal number of processors for the algorithms on a ring of processors. The times are
normalized so that the time for a flop is one. If the formula for popt gives a value outside the range [1, m], the optimal

number of processors is either 1 or m.

similarly as
n - \
Y, {DOTPRD [z] + {pcurrent - 1) ACCUM [/] + SCALE [/]
i = 0

+ (Pcurrent ~ l) PASS [/]' + (pcurrent ~ l) BRDCAST[z]r + UPDATE [/]' }

for a total time given in Fig. 3. The number of processors which gives rninimal time is
proportional to the square root of the number of rows.

The analogous calculations for the hypercube connections (assuming that every brdcast[z]
and pass [z] takes the full log2jp stages) shows that the number of processors which gives
itiinimal time is proportional to m.

An alternate distribution of the data is the wrap mapping of rows. Here, each processor
contains every p-th row of the matrix, so that, for example, processor 1 has rows 1, p +1,
2p + l,...,(b — l)p + 1. Under this mapping, all processors remain active throughout the
algorithm as long as m> n+ p. Figs. 3 and 4 give the results, and the optimal number of
processors is proportional to y/m for a ring and m for a hypercube.

D.P. O'Leary, P. Whitman / Parallel QR factorization

Modified Gram-Schmidt algorithm on a hypercube of processors:

107

mnT I M E = h
P

m n f t x 2 n \ ,— + n s q r t + { — + - j l o g 2 p

+ {n2 -f n} rlog2p + 2n<7log2p

__ 2m(2n +1) loge 2Popt ~ (4r + l)n + 4r + Sa + 1

Householder algorithm with block mapping of rows on a hypercube of processors:

2 n m m n n 3 n 1 r 9 • » .
T IME = + + — + — + nsqr t + - {n2 + n} log2p

p p 2 2 2

+ {2n2 + 3ra}rlog2p + 4ncrlog2p

_ 2m(2n + 1) loge 2Popt " (l + 4r)n + 6r + 8(7+1

Householder algorithm with wrap mapping of rows on a hypercube of processors:

2 m n 2 m n 3 n 2 ^ n 3 n 2 1 , 9T I M E = 1 h — — - f 2 n 7 ^ + « * ? ^ + 7 : (n + n) l o g 2 p
p p 2 p 2 p 2

+ {2n2 + 3n} r log2p -h 4n(7log2 p

_ (2 m - n) (2 n + l) l o g e 2Popt " (l+47> + 6r + 8(7-r-l

Fig. 4. Elapsed time and optimal number of processors for the algorithms on a hypercube of processors. The times are
normalized so that the time for a flop is one. If the formula for popt gives a value outside the range [1;'th], the optimal

number of processors is either 1 or m.

If the matrix Q is not explicitly required, then similar calculations show that the high-order
terms of arithmetic operations in the Householder algorithm (block or wrap mapping) agree
with those of the modified Gram-Schmidt algorithm in Figs. 3 and 4. For a ring of processors,
the high order terms for communication are twice as large; for a hypercube, they are the same
as for modified Gram-Schmidt.

3. Experimental results

The algorithms were programmed and tested on several machines: a bbn Butterfly with 128
nodes and software floating point, a bbn Butterfly with 16 nodes using software floating point,

Machine fl o p start-up a per-word r relative a relative r
16-Butterfly, software fp 852 223 16 .26 .02

128-Butterfly, software fp 1096 321 23 .29 .02
16-Butterfly, hardware fp 27 223 16 8.26 .59
16-McMob, software fp 447 4232 147 9.47 .33

Fig. 5. Times (in microseconds) for the machines for floating point operations and communication, and relative
communication times when the floating point time is normalized to 1.

108 D.P. O'Leary, P. Whitman / Parallel QR factorization

+ 200 x 10 predicted times* 200 x 10 actual times
o 100 x 10 predicted times
x 100 x 10 actual times

•So

number of processors

Fig. 6. Results of modified Gram-Schmidt timings on 16-node Butterfly, software floating point.

a bbn Butterfly with 16 nodes using hardware floating point, and the 16 node McMob. The
values for the parameters a, r, and the time for one flop are given in Fig. 5.

The Butterfly is a shared memory machine. Each processor has a direct access path to its
own memory module, and there is a log2p level switch between the p processors and the p
memory modules to allow access to other modules. McMob is a machine designed and built at
the University of Maryland consisting of MC-68000 processors connected by a slotted ring,

number of processors

Fig. 7. Results of modified Gram-Schmidt timings on 128-node Butterfly.

D.P. O'Leary, P. Whitman / Parallel QR factorization 109

+ 500 x 10 predicted times
* 500 x 10 actual times
o 300 x 10 predicted times
x 300 x 10 actual times

number of processors
Fig. 8. Results of modified Gram-Schmidt timings on 16-node Butterfly, hardware floating point.

permitting direct communication between any pair of processors without assistance or inter
ference from other processors. See [24] for further details on the architecture.

We did not use the full communication capability of any of the machines. McMob and the
Butterflys were programmed using the domino communication system [21] as if they were rings
of processors, and the Butterfly memory was used as a message passing medium rather than as
a resource shared among processors.

10

g

+ 200 x 10 predicted times
*200x 10 actual times
o 100 x 10 predicted times
x 100 x 10 actual times

number of processors

Fig. 9. Results of modified Gram-Schmidt timings on 16-node McMob.

110 D.P. O'Leary, P. Whitman / Parallel QR factorization

xlO3

■8

5.5

5

4.5

4

3.5

3

2.5

2

1.5

\\\\
I

I

(

1 1 1 1 1

0 Gram-Schmidt
x Householder (block)* Householder (wrap)

-

t

t
I

1

K -

\

s ' v . • *

i r — • T i i

0 20 40 120 140

Fig.

6 0 8 0 1 0 0

number of processors

10. Model of algorithm performance on hypercubes for a matrix of dimension 256 X 8.

The modified Gram-Schmidt program implemented the algorithm of Section 2.1 except that
an axpy (ax + y) operation was used for accum [z], adding n(n + l)(p - l)/4 operations. This
causes the curves to bend up sooner than they might. The actual times and the results predicted
by the model of Fig. 3, with the correction for accum [z], are given in Figs. 6-9. The actual
times are an average of 5-10 runs. The variation in the McMob data was negligible, but the

1.2

0.8

E 0 . 6

0.4

0.2

0

0 Gram-Schmidt
x Householder (block)* Householder (wrap)

' 0 2 0 4 0 6 0 8 0 1 0 0 1 2 0 1 4 0

number of processors

Fig. 11. Model of algorithm performance on hypercubes for a matrix of dimension 256 X128.

D . P. O ' L e a r y , P. W h i t m a n / P a r a l l e l Q R f a c t o r i z a t i o n 111

Butterfly timings varied by as much as 10% for two runs using the same configuration of
processors and 20% if a different choice of processors was made. On the Butterfly, even if a
single processor was used, the reported timings varied by as much as 0.05 sec, which can be
attributed to system-level interrupts and variability in the manufacturer-provided timing
routines. When multiple processors are used, there is an additional variability due to inter
ference in the switching network for memory accesses. As indicated in the figure captions, most
examples were 100 X 10 or 200 X 10, but larger matrices were used on the hardware floating
point Butterfly in order to reduce the variability in the timings.

We also implemented a Householder algorithm on a ring of processors, and results were as
predicted by the corresponding model.

Figs. 10 and 11 give predictions of the relative performance of the modified Gram-Schmidt
and Householder algorithms on hypercubes using the models of Fig. 4 for matrices of size
256 X 8 and 256 X 128. For these figures, the floating point time was taken to be 1, the relative
start-up time was o = 10, and the transmission time was r = 0.5. The block-mapped algorithm
is faster than the wrapped-mapped algorithm for p > n and slower for p < n regardless of the
machine parameters. As the number of rows in the matrix increases, keeping the number of
columns and the number of processors constant, the two mappings for the Householder
algorithm give results that are indistinguishable. Recall, however, that the model neglects the
savings in accum [z] and brdcast[z] as fewer processors remain active in each algorithm.

4. Conclusions

Models for the execution time of a modified Gram-Schmidt and a Householder algorithm
for computing the QR factorization of rectangular matrices have been presented and validated.
If an explicit representation of the Q matrix is needed, then the modified Gram-Schmidt
algorithm can be much more efficient, and in any case is not slower. The choice of algorithm
for a given application must also be based on stability properties of the two algorithms and the
intended application.

References

[1] J.L. Barlow and I.C.F. Ipsen, Parallel scaled Givens rotations for the solution of linear least squares problems,
SIAM J. Sci. Stat. Comput. 8 (1987) 716-733.

[2] A. Bjorck, Solving linear least squares problems by Gram-Schmidt orthogonalization, BIT 1 (1967) 1-21.
[3] A. Bojanczyk, R.P. Brent and H.T. Kung, Numerically stable solution of dense systems of linear equations using

mesh-connected processors, SIAM J. Sci. Stat. Comput. 5 (1984) 95-104.
[4] R.M. Chamberlain and M.J.D. Powell, QR factorization for linear least squares problems on the hypercube,

Technical Report CCC 86/10, Chr. Michelsen Institute, Bergen, Norway, 1986.
[5] E. Chu and A. George, QR factorization of a dense matrix on a hypercube multiprocessor, Parallel Comput. 11

(1989) 55-71.
[6] M. Cosnard, M. Daoudi, J.M. Muller and Y. Robert, On parallel and systolic Givens factorizations of dense

matrices, in: M. Cosnard et al., eds., Parallel Algorithms and Architectures, (Elsevier Science Publishers B.V.,
North-Holland, 1986) 245-258.

[7] M. Cosnard, J. Muller and Y. Robert, Parallel QR decomposition of a rectangular matrix, Numer. Math. 48 (1986)
239-249.

[8] J.J. Dongarra, A.H. Sameh and D.C Sorensen, Implementation of some concurrent algorithms for matrix
factorization, Parallel Comput. 3 (1986) 25-34.

[9] Lars Elden, A parallel QR decomposition algorithm, Technical Report LiTH-MAT-R-1988-02, Linkoping Univer
sity, Sweden, 1988.

[10] G.H. Golub, Numerical methods for solving linear least squares problems, Numer. Math. 9: 139-148, 1966.
[11] D.E. Heller and I.C.F. Ipsen, Systolic networks for orthogonal decompositions, SIAM J. Sci. Stat. Comput. 4

(1983) 261-269.

11 2 D . P. O ' L e a r y , P. W h i t m a n / P a r a l l e l Q R f a c t o r i z a t i o n

[12] I.C.F. Ipsen, A parallel QR method using fast Given's rotations, Technical Report YALEU/DCS/RR-299,
Computer Science Dept., Yale Univ., 1984.

[13] CR. Katholi and B.W. Suter, A parallel algorithm for computing the QR factorization of a rectangular matrix,
Technical Report TR-88-07, Dept. of Computer and Information Sciences, University of Alabama at Birmingham,
1988.

[14] R.E. Lord, J.S. Kowalik and S.P. Kumar, Solving linear algebraic equations on an MIMD computer, /. Assoc.
Comput. Mach. 30 (1983) 103-117.

[15] F.T. Luk, A rotation method for computing the QR-decomposition, SIAM J. Sci. Stat. Comput. 1 (1986) 452-459.
[16] J.J. Modi and M.R.B. Clarke, An alternate Givens ordering, Numer. Math. 43 (1984) 83-90.
[17] D.P. O'Leary, Fine and medium grained parallel algorithms for matrix QR factorization, in: H.J.J. te Riele, Th.J.

Dekker, and H.A. van der Vorst, eds., Algorithms and Applications on Vector and Parallel Computers (Elsevier
Science Publishers B.V., North-Holland, 1987) 347-349.

[18] D.P. O'Leary and G.W. Stewart, Assignment and scheduling in parallel matrix factorization, Linear Algebra Appl.
11 (1986) 275-299.

[19] D.P. O'Leary and G.W. Stewart, Dataflow algorithms for parallel matrix computation, Comm. ACM 28 (1985)
840-853.

[20] D.P. O'Leary and G.W. Stewart, From determinacy to systaltic arrays, IEEE Trans. Comput. C-36 (1987)
1355-1359.

[21] D.P. O'Leary, G.W. Stewart and R. van de Geijn, DOMINO: a message passing environment for parallel
computations, Technical Report TR-1648, Computer Science Dept., University of Maryland, 1986.

[22] A. Pothen and P. Raghavan, Distributed orthogonal factorizations: Givens and Householder algorithms, SIAM J.
Sci. Stat. Comput. 10 (1989) 1113-1134.

[23] A. Pothen, J. Somesh and U. Vemulapati, Orthogonal factorization on a distributed memory multiprocessor, in:
M.T. Heath, ed., Proc. Hypercube Multiprocessors 1987, SIAM, Philadelphia (1987) 587-596.

[24] Chuck Rieger, Zmob: hardware from a user's viewpoint, in: Proc. IEEE Computer Society Conf. Pattern
Recognition and Image Processing (1981) 484-521.

[25] A.H. Sameh and D.J. Kuck, On stable parallel linear system solvers, J. Assoc. Comput. Mach. 25 (1978) 81-91.

