
Yet Another Polynomial Preconditioner
for the Conjugate Gradient Algorithm*

Dianne P. O’Leary

Department of Computer Science
Institute for Advanced Computer Studies
University of Maryland
College Park, Maryland 20742

Dedicated to Gene Golub, Richard Varga, and David Young

Submitted by Robert J. Plemmons

ABSTRACT

Polynomial preconditioning is a useful tool in the effective use of the conjugate

gradient algorithm on special architectures such as message-passing parallel comput-

ers, machines with hierarchical memory, vector processors, and machines with very

limited memory. In this work vve investigate the use of a new adaptive algorithm

which uses the polynomial preconditioner based on the residual polynomial from k

steps of the conjugate gradient algorithm.

1. INTRODUCTION

The conjugate gradient algorithm is now the standard iterative method
for solving linear systems of equations AX * = b involving sparse symmetric
positive definite [6] or indefinite [II] matrices A. The basic algorithm is
accelerated by the choice of a preconditioning matrix M which approximates
A in some sense, but for which a fast algorithm exists for solving linear
systems My = d. There has been some progress in determining such a
preconditioning operator automatically (e.g., as a sparse incomplete factoriza-
tion of A [9]>, but the choice of an effective M is often quite problem-depen-
dent, relying on information about an underlying physical system.

*This work was supported by the Air Force O&e of Sponsored Research under grant

AFOSR-87-0158.

LINEAR ALGEBRA AND ITS APPLICATIONS 154-156:377-388 (1991)

Q Elsevier Science Publishing Co., Inc., 1991

377

655 Avenue of the Americas, New York, NY 10010 0024-3795/91/$3.50

378 DIANNE P. O’LEARY

For the remainder of this paper, we will assume that a good M has
already been chosen (e.g., an incomplete factorization, a related operator, an
underlying iterative operator, etc.), and only address the question of how to
use the conjugate gradient algorithm effectively given M and A. Since M
can be incorporated into the problem formulation through a change of
variables, without loss of generality we will consider Ax* = b to be the
resulting system, and we will discuss polynomial preconditioners for this
(already preconditioned) system.

Initially we will consider the positive definite problem, reserving discus-
sion of the indefinite case to the end of Section 2.

At iteration k + 1, the conjugate gradient algorithm forms an approxima-
tion to the solution vector x* of the form

xk+l= xo + pdAb-o> (1)

where r. is the initial guess of the solution vector, r. = b - Ax, is the initial
residual, and gk is a polynomial of degree k. This polynomial is optimal in
the sense of forming xk + i to minimize

E(x) =(x - r*)rA(r -x*) (2)

among all polynomials of degree at most k with constant term one [Id].
Because of this property, choosing a preconditioning operator 9(A)

which is a polynomial in A cannot speed the convergence, since the resulting
iteration will still form the new x as x0 plus a polynomial in A times ro, and
thus the same or a higher degree polynomial will be needed to achieve the
same value of E(x). Consequently, the number of matrix-vector multiplica-
tions cannot decrease.

Nevertheless, polynomial preconditioning is a useful tool in accelerating
the convergence of the conjugate gradient algorithm on many computer
architectures. The reason is that although the number of matrix-vector
multiplications cannot be decreased, the number of conjugate gradient
iterations may be reduced, since several matrix-vector multiplications are
performed at each iteration. This substantially reduces the overhead of the
iteration, and can reduce the total time needed by the algorithm. Here are
some examples of the advantages of such a preconditioning.

1. On a message-passing parallel architecture, many problems can be
partitioned so that matrix-vector multiplication requires only local communi-
cation among processors, while the accumulation of inner products for the
conjugate gradient parameters requires global communication.

POLYNOMIAL PRECONDITIONER 379

2. On a machine with memory hierarchy, bringing the matrix A into the
highest speed memory to prepare for a matrix-vector product may be a
time-consuming operation. Reducing the number of times this is done is an
important consideration, and the polynomial preconditioned algorithm is
designed to use the matrix for several multiplications at a time.

3. Polynomial preconditioning requires very little memory, since only
m + 1 numbers need to be stored for the coefficients of an mth degree
polynomial. This kind of preconditioning may be the only practical one if
storage is limited.

4. On vector processors, if matrix-vector multiplication is efficient, then
so is forming the product of a matrix polynomial with a vector, and effrcien-
ties in the matrix-vector product are automatically exploited in the precondi-
tioning.

There are many papers in the literature discussing good strategies for
polynomial preconditioning. The first use of polynomial preconditioning in
the conjugate gradient algorithm is by Rutishauser [12] in the 1959 mono-
graph. He proposed computing polynomial preconditioners resulting
from other iterative methods such as Chebyshev semiiteration. Dubois,
Greenbaum, and Rodrigue [5] proposed using the Neumann series approxi-
mation to A-’ = I- G, when A had been normalized to main diagonal
elements equal to one. This preconditioner is

I+G+G’+ **. +Gk,

and is efficient on vector processors if multiplication by G is vectorizable.
Johnson, Micchelli, and Paul [7] generalized this idea by adding parameters

Z + ylG + y2G” + -. * + ykGk.

They determined the polynomial to minimize a weighted norm of the
residual polynomial. This requires estimates of the largest and smallest
eigenvalues of the matrix. Concus, Golub, and Meurant [3] used precondi-
tioning polynomials based on the band part of the matrix. Adams [t] used a
polynomial based on an iterative method, showing that Rutishauser’s idea
was practical on current architectures. Saad [13] developed preconditioning
polynomials through least squares approximations to zero on an interval
determined by Gershgorin bounds on the eigenvalues.

Concus, Comb, and O’Leary [4] d’ rscussed the idea of exploiting the
relation between the conjugate gradient algorithm and the Lanczos algorithm
for finding eigenvalues: run conjugate gradients until good bounds are

380 DIANNE P. O’LEARY

available for the eigenvalues of A, and then switch to the Chebyshev
semiiterative algorithm, which eliminates the need for accumulation of inner
products. This amounts to using the conjugate gradient algorithm to deter-
mine a set of Chebyshev polynomial preconditioners for an iterative method.
Ashby, Manteuffel, and Saylor [2] used a related idea, determining the
bounds in a different way but using a resulting Chebyshev polynomial to
restart and precondition the conjugate gradient iteration. A third possibility is
to use the optimal polynomial determined by k iterations of conjugate
gradient iteration to restart and precondition the conjugate gradient iteration.
This idea was rejected by Rutishauser [12, p. 391 as requiring too much work,
and by Johnson et al. [7, end of $51 as not producing positive definite
preconditioners. In the remainder of this paper we will show that this
preconditioner is in fact useful.

In recent and independent work, Nachtigal, Reichel, and Trefethen [lo]
have used this polynomial as the basis for an iterative method for nonsym-
metric problems, and Joubert [8, $3.53 has done some related work.

In Section 2 we develop the algorithm and its safeguards. Numerical
experience is summarized in Section 3, and conclusions and open questions
are summarized in Section 4.

2. DEFINING AND USING THE POLYNOMIAL PRECONDITIONER

2.1. The Conjugate Gradient Polynomials
We will use the conjugate gradient iteration in its Lanczos recurrence

form (Paige and Saunders’s SYMMLQ [ll]) to compute a sequence of vectors
xi approximating the solution to AX* = b. The residual vector ri+ i =

b-Ari+r is computed in normalized form oi + 1 as

Pi+Pi+l = Awi - oivi -&vi-i, i=1,2 ,..., n-l, (3)

where va = 0, @iv1 is the initial residual,

LYE = v,rAvi,

and the p’s are chosen so that the corresponding o’s have norm 1. Thus the
vectors vi are related by a polynomial recurrence z)~ = W(A)V,, with

T(A) = ;(A%-,(A) - CX~-~K-,(A) - Pi-,y_-2(A))
E

with initial conditions W, = 0 and W, = I.

POLYNOMIAL PRECONDITIONER 381

The desired preconditioning polynomial .Pk defined in (1) is

Lag =A-‘[Z-S’k(A)j,

where Sk(A) satisfies rk = Wk(A)r,. The vector formed by the product of
the polynomial gk(A) with an arbitrary vector y is defined by

Here yi is a normalization factor and a,(A) = a,(A) = 0.
Thus, the product of yi.Pi(A) with an arbitrary vector can easily be

generated without storing or computing powers of the matrix A, and this
polynomial preconditioner has the same effect on the conjugate gradient
iteration as the renormalized polynomial Pi(A).

An alternative method of computing the product has been used success-
fully by Nachtigal, Reichel, and Trefethen [lo]; they propose factoring the
polynomial and computing the product by multiplying by the factors, appro-
priately ordered to enhance stability. If the polynomial degree is sufficiently
high, this safeguard becomes necessary in order to reduce the roundoff error
accumulated in the product of the preconditioner with an arbitrary vector.

2.2. The Behavior of Conjugate Gradient Polynomials

Although the most commonly used convergence bounds for conjugate
gradients are based on the Chebyshev polynomials, the actual polynomials
are quite different from this simple model polynomial.

The Chebyshev polynomial 3-0) of degree k upon which the bounds
are based is normalized to the value 1 at zero, and equioscillates between its
upper and lower bounds on the interval [&,,, A,,] containing the eigenval-
ues of A. Its roots are clustered toward the endpoints of the interval. A
preconditioner .9(A) = A-‘[I - Y(A)] b ase on this polynomial is guaran- d
teed to be positive definite, since the polynomial never exceeds 1 on the
interval containing the eigenvalues.

Actual polynomials produced by the conjugate gradient algorithm behave
quite differently, especially for small problems (n < 100). Since optimality is
in the A-norm, errors in directions corresponding to small eigenvalues do not
contribute as much as errors in directions of large eigenvalues. If the initial
error is evenly distributed among eigendirections, the values of the residual
polynomial at the eigenvalues lie within an envelope with shape & l/x,
rather than the f 1 of the Chebyshev polynomials. Thus, oscillations closer to

382 DIANNE P. O’LEARY

zero are of higher amplitude, and roots tend to cluster toward the high end of
the spectrum. If the initial error in one eigendirection is small, a large
amplitude often appears at that eigenvalue in the low degree polynomials. If

this magnitude exceeds 1, then the matrix 9:(A) = A-‘[I - W(A)] will fail to
be positive definite.

As the size n of the problem increases, the number of points in [Amin, A,,]
at which the value must be small increases, and on intervals in which the
eigenvalues become more dense, the polynomial is not so much affected by
some small magnitude error components. The polynomials, even for low
degrees, do not usually have such high magnitude oscillations on such
intervals, and the polynomial in A is more likely to be positive definite on
the subspace corresponding to eigenvalues in these intervals. It will not
necessarily be a good preconditioner for any particular fixed value of the
degree k, however.

Thus, we are forced to seek an adaptive preconditioning algorithm, which
adjusts the degree of the polynomial to the spectrum of A.

An important diagnostic tool in this adaptive algorithm is the detection of
a nonpositive definite preconditioning matrix. The Lanczos parameters form
a sequence of tridiagonal matrices with interlacing eigenvalues, and the nth
matrix is similar to S(A)A. Thus, if the preconditioned operator is indefi-
nite, eventually this will be seen in the sequence of matrices, and in practice
this is most often seen quite early in the iteration.

2.3. Using 9(A) as a Preconditioner
Suppose we wish to solve the linear system Ax* = b using the conjugate

gradient algorithm. We could determine a preconditioning polynomial by
running the conjugate gradient iteration for k iterations, and then restart

conjugate gradients using this polynomial as preconditioner. This produces a

polynomial with predetermined degree, but there is a major problem: the

polynomial may cause the number of conjugate gradient iterations to be

greater than using no polynomial preconditioner. This can happen because

although the polynomial has reduced the component of errors in certain

eigendirections, it may have increased the error in other directions.

The polynomial defined by the conjugate gradient iteration can be used

as a preconditioner in an adaptive recursive procedure as follows. Initialize

the preconditioning polynomial &(A) = I, the initial iterate xinitial, and the

log,, of the factor by which the residual should be reduced to m-educe = 1.

PO L y c s(.&A), rinitial): Initialize the conjugate gradient iteration using

x current = Xinitial’

POLYNOMIAL PRECONDITIONER 383

For i= 1,2,...,

1. perform a step of polynomial preconditioned conjugate gradients, updat-

ing x,,,,t.
2. If the convergence criteria are satisfied, then return success with x =

x currt%nt .
3. If the iteration based on & is determined to be slowly convergent

(measured by the rate of decrease of the residual norm), then return
failure with x = xinitid.

4. If the residual norm has been reduced by a factof; of 10nreduce, let the
resulting preconditioning polynomial be 9(9’(A)), and perform

PO 1 y c &9’@(A), rcurren$.
5. If PO t ycg returns success with x, then return success with x.
6. If P o I y c g returns failure, then increase m-educe and continue.

End for.

In practice, a small limit should be set on the number of levels of
recurrence, since the polynomial degree builds up quite rapidly, but the
recurrence is bounded even without an explicit limit:

1. At c levels of recurrence, the norm of the residual has been reduced
by at least lo”, so the depth of the recurrence is finite.

2. At every failure, nreduce is increased, and further recursion does not
take place until the residual is reduced by an additional factor of 10.

Thus there is a limit on the depth of recursion, and each recursive cycle
(rooted at any level) reduces the residual by at least a factor of 10, so
termination is guaranteed.

2.4. Indefinite Problems
If the matrix A is indefinite, then all the results above apply, except that

the error function (2) is no longer minimized. (Instead, we compute a
stationary point of that function.) The SYMMLQ algorithm is stable for indefi-
nite problems, and thus we can apply P o t y c g even when the initial matrix
or the previously preconditioned matrix is indefinite.

3. NUMERICAL EXPERIENCE

It is well known that the convergence of the conjugate gradient iteration
(under exact arithmetic) is not affected by similarity transformations of the
matrix and a corresponding change of basis in the right hand side. It is both

384 DIANNE P.O'LEARY

more convenient and more illuminating to study examples which have been
transformed to diagonal form. Since roundoff problems are less severe for
diagonal matrices, asymptotic properties are more easily seen.

Experiments were performed on Matlab with diagonal matrices A having
four kinds of eigendistributions:

1. The diagonal elements were chosen to be 1,2,. . . , n.
2. The diagonal elements were chosen to be equally spaced on a

logarithmic scale between certain powers of 10.
3. The inverses of the diagonal elements were chosen to be equally

spaced on a logarithmic scale between certain powers of 10.
4. The diagonal elements were the eigenvalues of the five-point finite

difference approximation to the two dimensional Laplacian operator on a
uniform mesh on the unit square. (These results were confirmed by addi-
tional experiments using the five-point operator itself.)

To investigate the variation in performance with the right hand side used
to determine the polynomial, three kinds of right hand sides were generated:

rhsl. b = Al/’ e, where e is a vector of all ones.
rhs2. b = u.
rhs3. b = A-'u.

Here u is a vector with elements chosen from a normal distribution on
[- I, I]. The third right hand side was selected to provide an indication of
possible bad behavior; the conjugate gradient iteration loses accuracy due to
premature convergence of the extreme eigenvalues, and thus the precondi-
tioning polynomial is far from the one obtained under exact arithmetic.

Each right hand side was used to generate a polynomial, and each
polynomial was then used to precondition the three problems. In step 3 of

POlYCcL “slow convergence” was interpreted as more than 15 iterations to
reduce the residual by a factor of 10. Typical results are shown in Tables 1
and 2. Experiments were run with no preconditioning, one level of recursion
(Poly PCG), and two levels of recursion (Compound PCG). Some compar-
isons with least squares polynomial preconditioning are given in Table 2.

Several trends were evident:

1. If a polynomial gave good performance for one right hand side, that
same polynomial virtually always gave good performance for the other right
hand sides as well. There may be a large variation in the number of iterations
it takes to reduce the error by a factor of 10 for the various right hand sides,
but there is very little variation in the number of iterations to reduce the

POLYNOMIAL PRECONDITIONER 385

TABLE 1

NUMBER OF ITERATIONS AND DEGREE OFTHE PRECONDITIONER USED TO REDUCE

THE RESIDUAL FOR rhsl BY A FACTOR OF lo-'

n Eigendistribution Problem CC Poly PCG Comp. PCG

100

500

332

l,...,n

logsp(l, 2)

invlogsp(l,Z)

I,...,n

logsp(1, 2)

invlogsp(l,Z>

Laplacian

rhsl 41,o

rhs2 41,o

rhs3 41,0

rhsl 18,O

rhs2 18,O

rhs3 18,O

rhsl 18,O

rhs2 18,0

rhs3 18,O

rhsl 86,O

rhs2 86,O

rhsl 18,O

rhs2 18,O

rhs3b 18,O

rhsl 18,0

rhs2 18,0

rhs3b 18,O

rhsl 75,o

rhs2 75,0

13,3” 2,279

8,6 2,36

8,20” 2,120”

5,3” 2,6”

7,3” 2,12”

8,4 2,20”

5,3” 2,6”

8,3” 2,15”

10,3” 2,18”

28,3” 2,63”

10,ll” 2,66”

5,3” 2,6”

7,3” 2,9”

4,7” 1,21”

5,3” 2,6”

8,3” 2,12”

4,7” 1,21”

24,3 9,15”

13,7 4,63”

“Indefinite preconditioner.

bnreduce = 2.

error by a factor of 105. Thus the tables report the number of iterations for
solving only one of the three right hand sides.

2. A high degree preconditioner can be indefinite even if a lower order
one was positive definite, and vice versa.

3. As the ill-conditioning increases, so does the degree of an effective
preconditioning polynomial, and other techniques may be more appropriate.
Fortunately, this situation can be diagnosed automatically.

4. The least squares polynomial preconditioner often provides a saving
in matrix-vector multiplications, but not much saving in number of iterations.
The residual polynomial preconditioner has the advantages of being adaptive
in its degree and of not requiring Gershgorin bounds on the eigenvalues.
Such bounds are not generally available in realistic problems. A user may be

386 DIANNE P. O’LEARY

TABLE 2

NUMBER OF ITERATIONS AND DECREE OF PRECONDITIONER USED TO REDUCE

THE RESIDUAL FOR rhsl BY A FACTOR OF lo-”

n Matrix CG Poly PCG Least squares PCG

500 logsp(L2) 18,O 7,3 7,2 5,lO

logsp(L3) 45,o 8,13 22,2 6,lO

logsp(L4) 157,0 14,48 68,2 21,lO

332 Laplacian” 63,0 37,2 26,2 8,10

Laplacian” 63,O 10,ll

“For the Laplacian (nondiagonal) experiments, the right hand side was

taken to be Au.

unable to provide the bounds, since the matrix A may be in unassembled
finite element form, or may be in product form, already preconditioned by an
incomplete factorization or a related operator. The Gershgorin bounds cannot
be computed at run time, since the matrix A is generally available only to
form matrix-vector products. Thus, general use of the least squares polyno-
mial would involve using the conjugate gradient iteration to compute eigen-
bounds, just as in the Chebyshev preconditioner.

5. Except for deficient right hand sides, the polynomial .Pk(A) is a good
preconditioner for values of k much smaller than necessary to get good
estimates of the eigenvalues of A. Table 3 tabulates the condition number of

TABLE 3

CONDITION NUMBERS OF PREcONDITIoNED PROBLEMS AND PERCENTACE OF

EIGENINTERVAI. COVERED BY CHEBYS~IEV ESTIMATES FOR PROBLEMS WITH

E,cENVAL"ES EQUALLY SPACED ON A LOGARITHMIC SCALE

K(A) Deg. of 9 K(~(A)A) Cheby. % Deg. of 9 K(~(A)A) Cheby. 9%

10 3 1.8 64 3 B 71

7 1.0 86 7 1.3 89

10 1.0 91 10 1.0 94

100 13 5.7 69 13 B 83

25 1.1 86 25 il 92

36 1.0 92 37 2.3 96

1000 48 67. 73 50 B 86

82 1.2 87 83 B 94

112 1.1 92 116 B 97

“The preconditioner was indefinite.

POLYNOMIAL PRECONDITIONER 387

the preconditioned matrix gk(A)A for matrices of various condition num-
bers from Table 2. It also indicates the goodness of the Chebyshev precondi-
tioning polynomial for the interval containing the extreme eigenvalues of the
tridiagonal matrix Tk. The adaptive technique allows the use of polynomials
of order much smaller than is necessary for methods based on determining
eigenestimates. It is interesting, however, that the eigenestimates tend to be
quite good when the residual polynomial leads to an indefinite precondi-
tioner, so it would be possible to switch to the Chebyshev or least squares
approach if the preconditioner failed to be effective.

4. CONCLUSIONS

We have discussed an adaptive technique for constructing precondition-
ers for the conjugate gradient algorithm based on the (optimal) residual
polynomial constructed in the course of the iteration. In many cases, this
produces an effective preconditioner of rather low degree. The disadvantage
of this preconditioner is that it may fail to be positive definite (although that
is easily diagnosed). Empirical evidence shows that it works well in cases
when the eigenestimates necessary for Chebyshev or least squares precondi-
tioning are converging slowly, and, conversely, is often slow if the eigenesti-
mates converge quickly. Thus, the “new” method is a useful complement to
the old ones. The choice of degree and the related decision to use a
Chebyshev or least squares polynomial instead of the residual polynomial is
quite dependent on the particular machine architecture. Limited experi-
ments on indefinite problems show that the method can also be useful there.

Howard Elman provided useful suggestions and an initial version of a

program to plot conjugate gradient polynomials. Bob Plemmons and one of the

referees made very thought-provoking and useful comments.

REFERENCES

1 L. Adams, m-step preconditioned conjugate gradient methods, SZAM J. Sci.
Statist. Cornput. 6:452-463 (1985).

2 S. F. Ashby, T. A. Manteuffel, and P. E. Saylor, Adaptive polynomial precondi-

tioning for hermitian indefinite linear systems, BIT 29:583-609 (1989).

3 P. Concus, G. H. Golub, and G. Meurant, Block preconditioning for the conju-

gate gradient method, SUM J. Sci. Statist. Comput. 6:220-252 (1985).

4 Paul Concus, Gene H. Golub, and Dianne P. O’Leary, A generalized conjugate

gradient method for the numerical solution of elliptic partial differential equa-

388 DIANNE P. O’LEARY

5

6

7

8

9

10

11

12

13

14

tions, in Sparse Matrix Computations (James R. Bunch and Donald J. Rose, Eds.)
Academic, New York, 1976, pp. 309-332.
P. F. Dubois, A. Greenbaum, and G. H. Rodrigue, Approximating the inverse of
a matrix for use in iterative algorithms on vector processors, Computing

22:257-268 (1979).
Magnus R. Hestenes and Eduard Stiefel, Methods of conjugate gradients for
solving linear systems, J. Res. Nut. Bur. Standards 49:409-436 (1952).
0. G. Johnson, C. A. Micchelli, and G. Paul, Polynomial preconditioners for
conjugate gradient calculations, SZAM J. Numer. Anal. 20:362-376 (1983).
W. Joubert, Iterative Methods for the Solution of Nonsymmetric Systems of
Linear Equations, Technical Report CNA-242, Center for Numerical Analysis,

Univ. of Texas at Austin, 1990.

J. A. Meijerink and H. A. van der Vorst, An iterative solution method for linear
systems of which the coefficient matrix is a symmetric M-matrix, kfath. Comp.

31:148-162 (1977).
N. M. Nachtigal, L. Reichel, and L. N. Trefethen, A Hybrid GMRES Algorithm
for Nonsymmetric Linear Systems, Numerical Anah@ Report 90-7, MIT, 1990.
SlAM J. Matrix Anal. Applies., to appear.
C. C. Paige and M. A. Saunders, Solution of sparse indefinite systems of linear
equations, SIAM J. Numer. Anal. 12:617-629 (1975).

H. Rutishauser, Theory of gradient methods, in Refined Iterative Methods fir

Computation of the Solution and the Eigenvalues of Self-Adjoint Boundary Value

Problems (M. Engeli, Th. Ginsburg, H. Rutishauser, and E. Stiefel, Eds.)
Birkhauser, Basel, 1959, pp. 24-49.

Y. Saad, Practical use of polynomial preconditionings for the conjugate gradient

method, SZAM J. on Sci. Statist. Comput. 6:865-881 (19851.
Eduard Stiefel, Kernel polynomials in linear algebra and their numerical applica-

tions, in ‘Further Contributions to the Solution of Simultaneous Linear Equations

and the Determination of Eigenvalues, Appl. Math. Ser. 49, National Bureau of
Standards, U.S. Government Printing Office, Washington, 1958, pp. l-22.

Received 1 March 1990; final manuscript accepted 4 October 1990

