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Design of Reduced-Order Observers with
Precise Loop Transfer Recovery

Moghen M. Monahemi,* Jewel B. Barlow,t and Dianne P. O'LearyJ
University of Maryland, College Park, Maryland 20742

This paper concerns the design of reduced-order observers for systems in which the number of measurements
is more than the number of controls. We develop an algorithm that applies to regular systems that have no
transmission zeros. The algorithm uses eigenstructure assignment whereas other approaches use Kalman filter
methods. The advantages of this approach are the following: 1) precise loop transfer recovery rather than
approximate loop transfer recovery, 2) finite observer gain rather than asymptotic observer gain, and 3) modest
computational tools and operations counts. Case studies are presented illustrating these features.

Introduction

T HE problem of designing an observer that can achieve
loop transfer recovery (LTR) has received continuous at-

tention since Doyle1 presented an example with a Kalman-fil-
ter-based observer [linear quadratic Gaussian (LQG)] design
lacking robustness even though the full-state feedback [linear
quadratic regulator (LQR)] controller had impressive robust-
ness properties, namely gain margins of - 6 dB to + oo dB and
phase margins of ±60 deg.2 To alleviate this problem, Doyle
and Stein3 developed a robustness recovery procedure in which
fictitious process noise is added to the input in the design
model. The LQR robustness properties are preserved with the
loop open at the input since the loop transfer function is re-
covered asymptotically as the intensity of the fictitious pro-
cess noise is increased. Stein and Athans4 call this procedure
LQG/LTR. There have been further developments and appli-
cations of LQG/LTR by a number of workers. Madiwale and
Williams5 extended the theory to reduced-order observer-
based LQG designs for nonsquare, minimum phase, and left
invertible plants. Calise and Prasad6 developed an approach
for designing a fixed-order compensator and obtained an ap-
proximate LTR for nonsquare, minimum phase systems. It is
similar to the full-order compensator design of ordinary LQG/
LTR. Fu7 developed the necessary and sufficient condition
for exact LTR employing a general feedback structure for
model matching control that includes the observer-based state
feedback control as a special case. He formulated the prob-
lem of model matching by assigning certain stable matrices
such that the desired loop transfer function became equal to
the associated loop transfer function of the closed-loop input-
output transfer function. He claimed that exact LTR is achiev-
able under the conditions for strong stabilization of systems.
Tsui8'9 introduced a theoretical analysis of an entirely new
approach to the problem of loop transfer recovery. His ap-
proach was to minimize the observer gain to the system input
by observer pole selection. Furthermore, he claimed that this
new approach aimed directly at achieving the necessary and
sufficient condition of LTR.

The purpose of this paper is to present a computational
algorithm for the solution of the constrained matrix Sylves-
ter equation that arises in Tsui's approach for designing ro-
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bust reduced-order Luenberger observers.10 Precise LTR is
achieved with finite observer gain for regular nonsquare plants
with no transmission zeros, for which the number of sensors is
greater than the number of controls. Other approaches have
been unable to attain these results. The method developed here
provides freedom to select eigenvalues and eigenvectors for
the observer.

Formulation of the Loop Transfer Recovery Problem
for Reduced-Order Observers

Consider a nonsquare controllable and observable (linear
time invariant) state-space model of a system,

(1)

(2)

(3)

x=Ax+Bu, x£Rnxl,

y = Cx, p <m<n

and its full-state feedback control law

u = -Kcx

This Kc can be separately designed to provide both stability
robustness and performance robustness of the corresponding
state feedback system using standard state-space control tech-
niques (e.g., LQR, pole placement, direct eigenspace assign-
ment/full-state feedback).

Because the state x is ordinarily not completely measurable,
we usually need an estimator. We design an observer z of fixed
order n - m satisfying

z=Fz+ (TB)u + Kfy

u = -Kcx = Nz + My

(4)

(5)

The observer-based feedback system (1-4) is shown in Fig. 1.
Equation (4) is the general form of a Luenberger observer10

that takes the system input u and output y as its inputs, and
that estimates Kcx. The familiar Kalman filter, in which the
parameters (F, T, N, M) are fixed to be (A -KfC, 7, Kc, O)
is one example of a Luenberger observer. The generalization to
MVO has also been made,10 but up until now the generaliza-
tion to TV/ and N^KC has not been successful.

The loop transfer function at the break point x in Fig. 1 is

(LTF)U =
(6)

The loop transfer function of the direct-state feedback system,
the regulator loop transfer function RLTF, is

RLTF = Kc(sI-A)~lB (7)
1320
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Fig. 1 Observer-based feedback control system.

The objective of precise LTR is to make (LTF)U =RLTF.
Recently, Tsui8'9 has proven that a necessary and sufficient

condition for LTR at all frequencies is

N(sI-F)-lTB = 0 (8)

for every s, where TV satisfies the equation

Kc = NT + MC (9)

and T satisfies the Sylvester matrix equation

TA - FT = KfC (10)
m^n satis-Condition (8) can be achieved if we find

fying

TB =0 (11)

Thus, Eqs. (9-11) are sufficient conditions for LTR. It is clear
that Eq. (11) cannot be achieved by the Kalman filtering algo-
rithms that have the restriction T = I. These algorithms aim
for approximate LTR by using conditions less restrictive than
Eq. (II).3'11 Commonly, the Doyle-Stein identity is employed,
an identity that can be only approximately achieved in the limit
as system input noise is increased. Each Kalman filter pole is
required to approach a system zero or negative infinity. There-
fore, this approach produces a Kf with infinite gain. This
approach breaks down when nonminimum-phase plants are
present, since the Kalman filter poles would approach the
unstable region of the 5 plane and produce an unstable com-
pensator. This situation is very undesirable from a robustness
point of view.

In the next section we construct a more general observer
with TV/that does achieve precise LTR with finite gain for
regular nonsquare plants having m>p and having no trans-
mission zeros, either minimum-phase or nonminimum-phase.
This last constraint is not very restrictive, since nonsquare
plants rarely exhibit transmission zeros.12 Generically, non-
square transfer functions have no zeros.13

Designing an Observer
Given A, B, C, Kc in Eqs. (1-3) and the observer dynamic

matrix F, we wish to calculate the observer gain matrix Kf
of the observer (4) and the associated matrices M and N. The
observer dynamic matrix F may be chosen with wide latitude;
however, its eigenvalues must not overlap those of A.14 The
flexibility in selection of observer poles can be used to meet
other performance requirements.

The following algorithm uses readily available software
modules to compute Kf, M, and TV: matrix multiplication
routines, computation of QR factors of a matrix (orthogonal
matrix times a triangular one), triangular system solvers (see,
e.g., Linpack15), and a Sylvester equation solver (see, e.g.,
Ref. 16). The algorithm is quite economical, requiring a con-
stant times n3 operations. Following the algorithm, we discuss
conditions under which the Luenberger observer Kf achieves
precise loop transfer recovery.

Algorithm: 1) Perform a QR factorization of B: [W,S]
= qr(B):

r P -.
P n~p P \S\\W = n[Wl W2}, S= M (12)

n-p\ 0

2) Let

9 A2=W%AW2

3) Perform QR factorization, [ Q 9 R ] = qr(Cl):
r p ~\p m~p P \ R\\Q = m[Ql G2], R= M (13)

m-p\ 0

4) Let

= QTCW2 =

5) Solve the Sylvester equation:

Z(A2-AlRl~lEl)-FZ=L2E2 (14)

where the elements of L2 are chosen at random (see Remark).
6) Set

Kf=[ZAlR^1 L2]QT and T =

7) Solve

[TV M}=K

Recall that a transmission zero of the system (A , B, C, 0)
is a value of s for which the transmission matrix

A -si B
C 0 (15)

has less than full rank. The success of the algorithm is related
to the existence of transmission zeros.

Theorem 1: If m >p and if the system [A, B, C, 0] is reg-
ular (i.e., CB has full rank p), then the algorithm pro-
duces a solution to Eqs. (10) and (11) if the reduced system
[A2-AiR^lEi,E2] is observable and the eigenvalues of
A2-AiR^lEi are distinct from those of F.

Theorem 2: If the system [A, B, C, 0] is regular (i.e., CB
has full rank p), then the system has no transmission zeros if
and only if the reduced system [A2 — A\ R\ 1E\, E2] is observ-
able; i.e., the only vector .y satisfying [A2 — AiR{~lEi]y = py
and E2y = 0 must be the vector y = 0.

The proofs of these results are given in the Appendix.
Remark: The matrix Kf produced by the algorithm will be

a Luenberger observer that achieves precise loop transfer re-
covery provided that the matrix

3 = (16)

has full rank, so that Eq. (9) can be satisfied. We are interested
only in regular systems, since we have proven in Ref. 14 that
regularity is a necessary condition for 3 to be full rank. We
believe that under the assumptions of the theorem, 3 will have
full rank for almost every choice of F and L2. Although our
numerical experience supports this belief, we have not proven
it. The suggestion to use a random choice of L2 in step 5 of the
algorithm avoids deficiencies in rank caused by certain unfor-
tunate but natural choices, such as a matrix of all ones that is
rank deficient.

Recently Chen, Saberi, and Sannuti17 gave conditions simi-
lar to those of theorem 1, guaranteeing that reduced-order
observers can achieve precise LTR.
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Fig. 2 Target loop transfer function (dashed line) and control system Fig. 3 Target loop transfer function (dashed line) and control system
loop transfer function (open circles). loop transfer function (open circles).

Control System Development
We shall now focus on the design of the compensator using

the separation principle.18 The closed-loop system, comprising
the process under control together with the compensator, com-
bines the dynamics of the closed-loop system designed for
full-state feedback with that of the reduced-order observer.
The poles of the overall system are those for the system with
full-state feedback plus those for the reduced-order observer.
Each is designed independently. Friedland19 showed that
the poles of the closed-loop system, when a reduced-order
observer is used in the compensator, are the eigenvalues of
A - BKC and those of F. Thus there can be as many as 2n - m
poles, the roots of the equation

det[sI-A +BKC] det[s/-F] = 0 (17)

A =

-4.9320^-001
0

1.0000e+000
l.OOOOe+000

1.2900^-004
-5.0770e-002
-1.1700s-003

0

On the basis of the separation principle, the control law
when the compensator is based on a reduced-order observer is
given by Eq. (5) as u = Kcx = Nz +My. The transfer function
of the compensator is obtained by the use of Eq. (5) with
ra^OandEq. (1). Thus

z = Fz + Kfy
or

(18)

(19)

In implementation, there is certainly a basic limit to the
performance and robustness of the control system. It appears
that, whereas performance at low frequency can be satisfacto-
rily attained, there might exist problems at high frequencies.
To overcome these problems one can make the bandwidth of
the compensator larger than that of the plant by a factor of 10;
however, the actuator and the actuation constraints will be
affected by this large bandwidth and may prove to be inade-
quate. Whether this is acceptable or not depends on the spe-
cific application and the importance of robustness. We simply
want to point out that the tradeoff exists and should be consid-
ered when selecting the operating frequencies of the control
system.

Case Studies
In this section, the use of the algorithm will be demonstrated

via two case studies: two aircraft flight dynamic problems
taken from Refs. 20 and 21, respectively. The computational
results were obtained using MATLAB.22

Case Study I20

The example aircraft is a linearized approximation to the
AFTI/F-16 on landing approach with V= 139 kt. The objec-
tive is to design feedback configurations using both an angle-
of-attack sensor and an attitude gyro. The state space matrices
corresponding to the small perturbation longitudinal-vertical
equations of motion (1) are given by

(20)

1.4168e + 000
3.8610^+000
5.1640^-001

0

0
-3.2170^+001

0
0

B =

-1.6450e+000
0

-7.1700^-002
0

(21)

C =
0 0 1 0
0 0 0 1

(22)

where x = [q, u, a, B]' and u = dE. The states are the perturba-
tions in pitch rate, speed, angle of attack, and pitch attitude,
respectively. The control is elevator deflection.

The plant is typical of a statically unstable aircraft and, for
the given arrangements of sensors, does not have any trans-
mission zeros. Satisfactory and acceptable flying qualities for
this aircraft would result if the airplane were augmented to
produce the following short period and phugoid mode charac-
teristics:

= 2.5 rad/s

o)PH = 0.1 rad/s

£SP = 0.5 (23)

(24)
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where co is natural frequency and £ is the damping ratio. The full-state feedback gain matrix, using the robust pole placement
technique23 is

Kc = [3.3853*-001 -1.4634*-002 -1.7655*+ 000 -4.2847*-002]

For the observer dynamics matrix

F = (25)

and an arbitrary L2 such as

(26)

the T matrix, the observer gain matrix Kf, and the corresponding observer matrices N, M are computed by the algorithm as

T =
8.6823*-03 -3.3698*-05 -1.9920*-01
7.6911*-03 -2.3180*-05 -1.7645*-01

-1.2791*+00 1.0000*+00l
- 1.4860* + 00 1.0000* + OOj

N= [5.8840*+01 -2.2407*+01]

M= [6.0014*+ 00 -5.9516*+ 00]

1.4270*-01
1.1103*-01

(27)

(28)

(29)

(30)

Figure 2 is a plot of singular values of the control system loop transfer function C(s)P(s). The target loop, Kc[sl
-A]~1B, is precisely recaptured. The multivariable stability margins of the observer-based system are the same as those of the
regulator, and they exhibit excellent (optimal)24 gain and phase margins:

- 6.0206 <GM< oo dB

- 60 < PM < 60 deg

(31)

(32)

Case Study 221

This case uses a model of a generic, forward-swept wing aircraft. The generic aircraft is roughly the same size as the X29. The
wings are swept forward at a 30 deg angle. The operating point used in this study is level flight at a velocity of 1000 ft/s at sea level,
which is about Mach 0.9. This corresponds to a dynamic pressure of 1189 lb/ft2. Three models were given in Ref. 21 corresponding
to three different center-of-gravity locations. The model with the center-of-mass location at 0.30 ft ahead of the wing root elastic
axis was used in this study. The aircraft data, and the structural mode data developed in Ref. 21 are all the information needed
to obtain the mathematical model of the FSW aircraft configuation under consideration. The model is in linear state variable form
where the system matrices A and B are as follows:

Columns 1-4

A =

5
-3

1

-9

3

.2660*

.6887*
0

.1648*
0

.4390*
0

.3630*

-004
-003

-004

-001

-003

9
-2

7

-5

1

.2764*

.8810*
0

.9560*
0

.4384*
0

.3106*

-002
+ 000

+ 001

+ 002

+ 000

_ 5

-4

1

-1

-2

6200*
6720*
0

4750*
0

1832*
0

7297*

-001
-004

-005

-006

-007

-2.5360* -001
1.0060* +000
1.0000* +000

-8.3110*-001
0

1.1 589* +000
0

-1.1222* -002

Columns 5-8

-1.4050* -001
4. 3699* + 000

0
-6.0447* +001

0
-3. 6240* +003

0
-7. 6250e -002

1.5070* -003
-4.6879* -002

0
1.0096* +000

0
-2.06406? +001

0
-8. 13006* -004

2.74306? +000
-8. 53136? +001

0
1.43306? + 003

0
-2.80506? + 004

0
-4.5240 6? +004

1.9840*
-6.1708*

0
8.35376?

0
3.85506?

0
-3.60006?

-005
-004

-002

-002

-002

(33)
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1324 MONAHEMI, BARLOW, AND O'LEARY: DESIGN OF REDUCED-ORDER OBSERVERS

B =

1.22966?+000
-5.55246?+000

0
-2.33286?+ 002

0
-1.2985 6?+ 003

0
2.80236?-001

4.92556?-001
-1.53246?+ 001

0
1.83996?+003

0
1.47506?+002

0
3.40296?+001

(34)

For the airplane configuration under consideration, the state vector x is

x = [u ,a ,0 ,4 , / f i , / i i , / i2 ,> i2] ' (35)

The first four states are the usual rigid body variables, as in case study 1.
The remaining four states represent flexible degrees of freedom. The first flexible mode represents the wing bending: n{

is the wing tip deflection in feet, hi is its rate of deflection in feet/second. The second flexible mode represents wing torsion, n2
is the wing rotation about the elastic axis in radians, h2 is the rate of deflection in radians/second.

The control vector u is
u = [^/TjSc1]' (36)

where dF(t) is the perturbation deflection from trim of the full-span flaperon in radians, and dc(t) is the perturbation deflection
from trim of the canard in radians. The aircraft under consideration has an unstable pole corresponding to the short period mode
(ASP = 7.308, -11.918 rad/s).

A full-state feedback regulator is designed to stabilize the pitch rate and control the wing tip bending rate in the face of a wind
gust.

[4.93936?-04 -7.69336^+01 -6.35296?-01 -4.87296?-01 -5.5159e-01 5.15136?-03 0 ol
c [5.65336?-05 -6.34506?+01 7.72276?+01 2.978l6?-01 -1.34666?-01 -2.2119e-04 0 Oj

Given this matrix, the multivariable phase and gain margins are found to be21

info[l + Kc(sI-A)-lB] = a = 0.59 (38)

-4<GM<7.72dB (39)

- 34.26 deg < PM < 34.26 deg (40)

when the full-state feedback is included in the flight control system.
For the given configuration of sensors, the measurements are

j> = [«,«, Mil' (41)

For the observer dynamics matrix and matrix

F =

- 7 - 4 0 0
4 - 7 0 0
0 0 - 9 - 5
0 0 5 - 9

(42)

6.7886e-01 5.1942^-01
6.7930e-01 8.3097^-01
9.3469^-01 3.4572e-02
3.8350^-01 5.3462^-02

(43)

the algorithm produces T and the observer gain Kf, with associated TV, M matrices as follows:
Columns 1-4

1.12886? +00
3. 05726? + 00
4.37386? -01
1.82696? +00

-1.49526? -01
4.8747 6? -01
6.44536? -02
2.73516? -01

-1.42776? -01
2.6094e -01
3. 3707 6? -02
1.75436? -01

-9.28496? -04
3.23756? -03
4. 1684e -04
1.77886? -03

Columns 5-8

-8.8686e-03
1.7045 e- 02
1.4784e-03
1.1394e-02

-2.6270e-04 6.8523e-04
2.2871 e-04 6.7291 e- 03
6.3663e-05 3.5590e-03
2.40826?-04 3.83446?-03

3.47696?-04
-7.72186?-04
-1.20166?-04
-4.97606?-04

(44)
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MONAHEMI, BARLOW, AND O'LEARY: DESIGN OF REDUCED-ORDER OBSERVERS 1325

4.3271 e+00 1.2987e + 00 6.7886^-01 5.1942^-01
2.5915^+01 3.0218e+00 6.7930^-01 8.3097e-01
1.3071^+01 1.8009e+00 9.3469e-01 3.4572e-02
1.4255^+01 1.5307^+00 3.8350e-01 5.3462^-02

(45)

N =
2.0750e+05 -1.4364e+05 -2.2264e+05 4.2166e+05~|

-1.3105^ + 05 9.0701^ + 04 1.4062e+05 -2.6628^+05]
(46)

M =
4.1057e+02 -5.2786e+00 6.3758e+02 -1.8704e+02

-2.5469^+02 -1.0739^+02 -3.2603e+02 1.1764e+02j
(47)

The minimum return difference matrix of control system, loop transfer function mf<r[I + C(s)P(s)] = (l = Q.59. Therefore, the
multivariable stability margins,24 gain margin and phase margin, are precisely the same as those of the regulator when the observer
is included in the flight control system. Figure 3 shows the target loop and control system loop transfer function.

Conclusions
We have given an algorithm that achieves precise loop trans-

fer recovery and provides freedom of eigenstructure assign-
ment for nonsquare plants in a situation in which the number
of sensors exceeds the number of controls. It is important to
note that the algorithm yields finite observer gain, a critical
requirement for pragmatic design. This approach is computa-
tionally simple, requiring on the order of n3 operations, and
works for regular systems with no transmission zeros.

The flexibility in selection of observer eigenvalues can be
used to meet other performance requirements. In particular, in
the case of flight control problems this flexibility can be used
to meet handling and flying quality requirements. Much work
can be done in the area of exploring the selection of observer
poles needed to achieve certain desired handling qualities and
better performance in general.

The situation in which the number of actuators exceeds the
number of sensors is dual to this case, and corresponds to
loop transfer recovery at the output. This dual version of
loop transfer recovery has been explained by a number of
researchers.4'8'11 Tsui8 states that the necessary and sufficient
conditions for dual loop transfer recovery are CT = 0 and A T
- TF = BKC. In this case, the state feedback system does not
have a reduced-order version. There exists no full rank matrix
Tto exactly satisfy these dual conditions.14 One can conclude
that, in this case, precise loop transfer recovery is not possible.

Equation (A2) can be rewritten as

Z[Al A2]-FZ[0 7]=JK /[C1 CW2}

which is equivalent to the two conditions

and

ZA2-FZ=KfCW2

(A3)

(A4)

(A5)

We now verify that the matrices Z and Kf determined by the
algorithm satisfy these relations. By step 6,

and by steps 5, 4, and 6,

ZA2 -FZ =

L2]

= [ZAlRl~l L2]

L2E2

E,

= ZAl

(A6)

(A7)

(A8)

Appendix
Proof of Theorem 1

The assumption on the rank of CB is sufficient to guaran-
tee the existence of the QR factors in steps 1 and 3 and
the invertibility of R\. The distinct eigenvalue hypothesis guar-
antees that the Sylvester equation in step 5 has a unique
solution. Thus, all of the indicated computations in steps
1-6 can be performed. We now verify that we have satis-
fied Eqs. (11) and (10). In step 6, we set T = ZW2

r, so that
TB = (ZW?)(WiSl) = 0, since W^FTi = 0, and so Eq. (11) is
satisfied. Now, the matrix T satisfies the Sylvester equation
(10) if and only if

(Al)

(A2)

1 L2}QTCW2

or, when we multiply by the nonsingular matrix W,

ZW^AW - FZW^W = KfCW

= KfCW2

(A9)

(A10)

as desired. D
The second theorem concerns the meaning of transmission

zeros. We will use several facts about the rank of a matrix. A
matrix Y with at least as many rows as columns has full rank
if and only if there exists no nonzero vector h such that Yh = 0.
The rank of a matrix is unchanged if 1) the matrix is multiplied
by a square, nonsingular matrix, 2) row operations are per-
formed, adding a multiple of one row to another, and 3) rows
or columns are reordered.

Finally, if

Y = (All)

where Y\ is square, then Y is full rank if and only if YI and Y3
are full rank.
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Proof of Theorem 2
We multiply the transmission matrix by square nonsingular matrices to produce the following product:

P
P

n-p
m

I
0
0

n-p

0
/
0

m

0
0

QT

p
n-p

m

wl o
Wl 0 n \A-sI

m

p p
B\n\Wl
0\p[o

p n-p p

W2 0

0 /

p
p

= n-p
m

I
0
0

n-p

0

/
0

m
0 "
0

QT

P
n-p

m

W^AW^-sI

P n-p

P

= n-p
m

I 0
0 7
0 0

m
0 "
0

QT

P
n-p

m
A,

W^AW2-sI
CW2

P
Si

A2-sI 0
C2 0

(A12)

(A13)

p
n-p

P
m -p

Sl

A2-sI 0
El 0
E2 0

(A14)

After permutation, and subtraction of AiRj~l times the third
block of rows from the second block, we obtain the following
matrix, whose rank is the same as that of the transmission
matrix:

P
P

n-p
m -p

p
Si
0
0
0

0

0

A2-AlRl~lEl-sI
E2

(A15)

Since, by regularity, R{ and Si are full rank, we see that there
are no transmission zeros if and only if the reduced system is
observable. D
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