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A BLOCK-GTH ALGORITHM FOR FINDING THE STATIONARY
VECTOR OF A MARKOV CHAIN*

DIANNE P. O’LEARY AND YUAN-JYE JASON WU$

Abstract. Grassman, Taksar, and Heyman have proposed an algorithm for computing the
stationary vector of a Markov chain. Analysis by O’Cinneide confirmed the results of numerical
experiments, proving that the GTH algorithm computes an approximation to the stationary vector
with low relative error in each component. In this work, we develop a block form of the GTH
algorithm, more efficient on high-performance architectures, and show that it too produces a vector
with low relative error. We demonstrate the efficiency of the algorithm on vector processors and on
workstations with hierarchical memory.
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1. Introduction. We consider the problem of computing the steady state dis-
tribution of a finite, discrete time, irreducible Markov chain. Equivalently, we seek
the left eigenvector r corresponding to the eigenvMue 1 of a stochastic matrix P:

(1) P =r, e= 1, Pe=e, 0 <_ pij, i,j 1,2,...,n,

where e is the column vector of ones.
Grassman, Taksar, and Heyman [3] used probability theory to develop an algo-

rithm (the GTH algorithm) for computing by successively reducing the state space.
The algorithm works with the generator matrix G P I having zero row sums. It
proved to be surprisingly accurate in numerical experiments and was later recognized
as a variant of Gaussian elimination. The key difference is that the main diagonal
element of the triangular factor is computed as the negative sum of the computed off-
diagonal elements, and thus the row sum property is preserved. O’Cinneide [4] later
analyzed the GTH algorithm, showing that the computed vector r has low relative
error in each component.

No single algorithm runs at peak efficiency on each of the wide variety of computer
architectures in current use. For some architectures, a simple count of arithmetic op-
erations provides an accurate prediction of performance. For machines with vector
pipelines and multilevel memories, however, the number of loads and stores of data
can be a more critical factor. For parallel architectures, the data layout and commu-
nication patterns are crucial.

A common approach to algorithm design is to consider a parameterized family
of algorithms that can be tuned to different architectures. Block-matrix algorithms
provide one such parameterization, and their use is widespread in portable libraries
such as LAPACK. There is a considerable body of literature on the error analysis
of such block algorithms. Backward error bounds are established, for example, in
[2]. The O’Cinneide bounds for GTH are much stronger than these results, since
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BLOCK-GTH FOR MARKOV CHAINS 471

properties of the matrix G allowed him to obtain forward error bounds independent
of the condition number of the matrix.

The purpose of our work is to define a block-GTH algorithm (2), analyze its error
properties (3) to obtain results analogous to those of O’Cinneide, and determine the
performance of the algorithm on various architectures (4).

2. The block-GTH algorithm. Consider an irreducible generator G of dimen-
sion n n; i.e., G is a matrix with nonnegative off-diagonal elements and row sums
equal to zero. We seek the row vector satisfying

G=0, re=l.

The GTH algorithm reduces G to lower triangular form. It is an iterative process,
working with a matrix Gk of dimension (n-k) (n-k) at the kth stage--a generator
from which k states have been eliminated. Let Go G, and partition as

Ak B 1(2) G- C D

where Ak is the (1, 1) element of G and B is the remaining part of the first row.
Then if pkGk 0, it is also true that

O pG
0 I pk C D CA-IB

Define

(3) Gk+I D CA-IBk.
Note from (2) that [C D]e 0 and [Ak B]e 0, and so

[0, Gk+]e [C Dc]e CkA-I[Ak Bc]e O.

Furthermore, the.sign pattern is preserved, and G+I is a generator [4].
If we have a nonzero row vector p+ satisfying p+Gk+ 0, then the nonzero

row vector defined by

(4) Pk- -pk+lCkA- pk+l

satisfies pkG 0. Thus, we have reduced the original problem to that of solving
pk+iG+ 0, a problem with one fewer state.

The main difference between the GTH algorithm and standard Gaussian elimina-
tion is in the computation of A. In Gaussian elimination, this element is accumulated
as a result of the updates (3). In the GTH algorithm, Ak is computed as the neg-
ative sum of the off-diagonal elements in the first row of Gk. A minor difference
between the algorithms is that the GTH algorithm is usually formulated so that the
last state (rather than the first one) is the first to be eliminated, but in this work we
will eliminate the first state first, as in Gaussian elimination.

These relations form the basis for the GTH algorithm, which we now state more
formally.



472 DIANNE P. O’LEARY AND YUAN-JYE JASON WU

ALGORITHM GTH

FACTORIZATION PHASE

1. Let G0=G.
2. Fork=0,1,...,n-2

2.1. Partition Gk as in (2), where Ak is calculated as Ak -Bke.
2.2. Define Gk+l by (3).

End for.
BACKSUBSTITUTION PHASE

3. Let Pn-1 1.
4. For k n- 2,n- 3,...,0

4.1 Define p by (4).
End for.

5. Renormalize 7r po/(poe).
The LU factors of G can be defined using quantities computed in the factorization

phase of the algorithm:

Ao 0

A1 0

CO C1 ""

and we will make use of this fact later.

1 AIBo
1 A-IB1

The GTH algorithm is easy to implement andnumericMly stable, but its efficiency
on certain computer architectures can be disappointing. Notice, for example, that the
(n, n) element of G is accessed and updated n- 1 distinct times. It is well known that
block-oriented algorithms can reduce the memory traffic for elimination algorithms,
so we now direct our attention to developing a block-GTH algorithm.

The basis of the block-GTH algorithm is a block partitioning of the matrix G:
we partition as in (2), but now A is an matrix, rather than a single element.
Similarly, B has rows. The block size can be tuned to achieve improved efficiency
on various architectures, as discussed in 4. The generator Gk+z and its eigenvector
pk+z are expressed in terms of Gk and Pk by formulas similar to (3) and (4):

Gk+t Dk CkA-IBk
(6) Pk-- --Pk+lCkA- Pk+l

Rather than division by a scalar, (5) and (6) now require solution of linear systems
involving the blocks Ak. This can easily be done using an LU factorization of these
blocks.

The other main implementation issue is the correction of the main diagonal ele-
ments of A. To avoid memory traffic, we wish to do this with minimal access to the
elements of B. Notice that the matrix

(7) Hk=[ AO Bke10
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is also a generator, and the diagonal corrections that would be generated in step 2
Of the GTH algorithm applied to this matrix are the same as those that GTH would
generate for the original problem at the corresponding steps. For instance, after
elimination in the first row of Ht:, the elements hi =- (Bt:e)i are updated as

(8) i hi ilhl
all

il Ej bljE bij
all

il blj )(9) E. bij
11

where ,il is the updated value of ail, j ranges over the column indices in Bt:, and
i 2,..., 1. Equation (9) shows that the update to the row sum vector Bt:e in (8)
is mathematically equivalent to taking the row sum after correcting the matrix B in
(9).

This is the bsis for the block-GTH algorithm. For convenience in notation, we
assume that evenly divides n, Mthough vrying block sizes can be esily hndled.

ALGORITHM BLOCK-GTH-I

FACTORIZATION PHASE

1. Let Go G. Given an integer between 1 and n, let n/1.
2. Fork=0,/,...,(-l)/

2.1. Partition Gt: as in (2), where At: is an matrix.
2.2. Apply the factorization phase of algorithm GTH to the matrix Ht: de-

fined by (7).
2.3. If k - (- 1)/, define Gt:+t by (5):

ak+t Dt: Ct:(A-IBt:),

where the factors from 2.2 are used to compute the expression in paren-
theses.

End for.

BACKSUBSTITUTION PHASE

3. Let P(-l)l be computed from the backsubstitution phase of the GTH algo-
rithm applied to G(_1)r

4. For k ( 2)/, (- 3)/,..., 0
4.1. Define pt: by (6), again using the factors of At:.

End for.
5. Renormalize r po/(poe).

As an alternative to block-GTH-I, which relies on a block lower triangular factor
with At: on the main diagonal, we can compute a standard LU factorization of G:
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L0 0

Lt 0

[L(.,,1)/

U L’[-1B

This algorithm takes the following form.

ALGORITHM BLOCK-GTH-II

FACTORIZATION PHASE

1. Let Go G. Given an integer between 1 and n, let n/1.
2. For k=0,/,...,(- 1)/

2.1. Partition Gk as in (2), where Ak is a matrix.
2.2. Apply the factorization phase of algorithm GTH to the matrix Hk de-

fined by (7), applying the same updates to Ck (i.e., computing CkU[I).
2.3. If k (- 1)/, define Gk+ by (5):

Gk+ Ok (CkUI)(L;Bk).
End for.

BACKSUBSTITUTION PHASE

3-5. Use the backsubstitution phase of algorithm GTH, organizing the compu-
tations by single rows or by blocks of rows.

3. Error analysis. As we mentioned before, the left eigenvector computed by
the GTH algorithm has a small entry-wise relative error bound. Our next task is a
rounding error analysis for the block-GTH algorithm in order to demonstrate that it
preserves this error property.

Let us introduce some notation first. We use the special symbols (7> from Ap-
pendix 3 of [5]. Let u be the unit roundoff in floating-point arithmetic. Then we
write

(I + a)(1 + a2)" "-(I + a)
(1 + bl)(1 H- b2)"" (I + b#)

whenever lal < u, Ibl <_ u, and a + # 7. The <’),> symbols satisfy the relations

and

+

and make floating-point expressions simple and clear. Let us denote the floating-point
operators with a "hat." The error analysis of floating-point operations is based on the
following rules:

I.
2. <a>aS<Z>b=<a+Z+l>a.b,
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Note that these rules also hold if we interchange the operators on the left-hand side
with those on the right-hand side. A fundamental property upon which we heavily
rely is that if no cancellation occurs in forming a sum or difference (i.e., if the two
operands have the same sign), then

(a) a -- (} b (max(a, ) + 1} (a b).

The following theorem gives the error bounds for the GTH algorithm.
THEOREM 1 (see O’Cinneide [4]). For any stochastic matrix P of order n with

stationaw vector , the accuracy of the le eigenvector computed by the GTH
algorithm using floating-point arithmetic is characterized by

#i (2(n)+n)i, i= 1,...,n,

where (n) (2n3 + 6n2 8n)/3. Fuhermore, g (2(n) + n)u .1, then

+

The formula for (n) is derived by induction [4] and makes use of a theorem of
Tweedie [6], which says that if two irreducible generators G and G of order m have
the property that .j (a/gj, j, then their eigenvectors satisfy

(2mR) pi 1,...,m.

The proof strategy is shown in Figure 1.

(0) (2(n-

rue pl of1 .true pl of 01,- /computed
he true Gy

(2(n2 1)) computed)]
((n 1))

L for G1 /
step 2, k 0 step 4, k 0

The bound for step 2 comes from verifying that given a generator Go in algorithm
GTH, the relative error for the off-diagonal entries of the computed generator G1 is
(n + 1). Since the generator G1 is of order n- 1, then by Tweedie’s result the true
eigenvector of computed G1 has component-wise error bounded by

<2(n+l)(n-1)> =<2(n2-1)>.
The bound for step 4 results from direct calculation. Combining these error bounds
gives the recursion

(10) (n) (n- 1) + 2n2 + 2n- 4,
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with the initial condition (1) 0.
This proof strategy yields a valid although far too pessimistic bound for the block-

GTH algorithm. Suppose that we eliminate states instead of 1. By an error analysis
similar to [4], the error introduced into the eigenvector pt in step 2 for the block
algorithm is bounded by

</2(3t 1)2 + 0(/23)>.

We denote the error bound by (- 1). With the initial condition (1) (/), we
have

which is not tight for large block size because of the exponential term. Therefore, a
more delicate analysis is necessary.

We obtain a polynomial error bound for the computed eigenvector in GTH by
repeatedly applying Tweedie’s theorem to the generators resulting from eliminating
one state only. This suggests reconsidering the error bound for one iteration in step
2 of block-GTH by accumulating error bounds when one state is eliminated instead
of calculating the error bound for the eigenvector after eliminating states. Our
next task is to define the generators that are implicit in the intermediate steps of the
block-GTH algorithm and determine the error bound for their off-diagonal entries.
The proof strategy for block-GTH is shown in Figure 2.

Suppose that we have a given generator Go of order n. We need to determine an
error bound Ct() with polynomial growth in each iteration in step 2, where [n/l.
Let Go Go. The generator Gt is defined by the block-GTH algorithm, so we need
to define the following generators.

k, the generator of size n-k that has the same eigenvector as Gk-1,
for k= 1,...,/.
(k, the computed generator of size n k, k 1,..., 1.

Since the block-GTH algorithm is closely related to GTH, it is useful to define Gk
to be the generator resulting from eliminating the first state from Gk- by GTH using
exact arithmetic. Note that the definition of G is the same for GTH and block-GTH
(since Go is the same for both), but generators G2,..., Gt differ for the two algorithms
because they are defined in terms of the computed quantities (,..., (t_. Our goal,
then, is to study Gk for the block-GTH algorithm and show that its eigenvector is
close to the eigenvector of Gk.

Throughout the following paragraphs, index k will vary between 1 and 1- 1. A
scalar with superscript k will denote a result after eliminating k states from Go. An
operator with a "hat" uses floating-point arithmetic. Since the error bound strongly
depends on the specific computational formulas, we analyze the error by strictly fol-
lowing the order of operations in the block-GTH algorithm. We will derive an error
bound for block-GTH-II. The bound for block-GTH-I is derived in the appendix.

Suppose that we partition the generator (k (including Go) as

A Bk Jk-- Ck Dk
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ue Po of G
(0)

.he true G
Strue Pl of (1,(O1) e computed

ttrue p2 of 2, Strue P2 of 2,
..he true G2/]

(c2/ e computed

computed
for 0 J

forG1 J

for G2 J

_.truept of(t. cm   dZ{ot}-ecomputedG {(’)} ,x. forG j

step 2, k 0 step 4, k 0

FIG. 2.

where Ak is of order k. Note that we define the order of Ak in a different way
from the partition (2) for block-GTH in 2. It is convenient to index the elements of
Ak as

(11)

k k
ak+l,k+ ak+l,

akl,k+l

Let h Boe. In step 2.2, we apply GTH to the matrix

Ho- A00 h]0
using the following computations: for k < i, j _< l,

(12)

(13)

(14)

and st--atti-1
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The next task is to determine error bounds for the off-diagonal entries of Ak
relative to corresponding entries of Gk. Let (/) be the error bound for sk. From (12)
we see that this bound arises from the error bound for hkk-1 plus k additions, and
from (13) we conclude that the error for the off-diagonal entries of Ak is bounded by
(/k / 3/ (since the entries in Ak-1 have no error relative to G). We determine y by
studying the h. Initially, h has a component-wise error bound (n- l- 1) coming
from n- l- 1 additions. om (12), we have an error bound (n- 2) for s relative to
the sum of the off-diagonal entries of the first row of G0. om (14), we have

0 ; ( 7 )h h ai

o;

where the summation is tken over the n- column indices of Bo. By using the rules
of floting-point operations, we have

0(6) I {n ) , {( ) + ) , (/)

((n -l- 1) + 5} [bi + ail

=((n-l-i)+6) [bi ail

Let us define the entries of B by
0 ; (q 7 ).bi bi ai()

Then we obtain

For 2, the above equation and (12) imply that s2, the (1,1) entry of G1, has error
bound ((n 3) + 6} relative to the (1,1) entry of G1.

For the next update, we have

h/2 h/ - ai2

(/)=((n-l-I)+6} b${(n-l-1)+8} a2,

which is similar to the first line of (15), so we can define B2 and directly derive

((n- - 1)+ .
Then s3, the (1,1) entry of G2, has error bound {(n 4) + 2 6} relative to the (1,1)
entry of G2. Continuing this process, we define mtrix B as

bk+,_
(17) "..

b kbn_l,n_
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and we have an error bound for sk (including st) as ((n- k- 1)+ 6(k- 1)) _= 7k.
Therefore, we have shown that there is an error bound (- + 3) for each off-diagonal
entry of A and for each entry of B, relative to the corresponding element in G.
The matrix Co has been updated in a similar way during step 2.2, and by defining

(18) Ck
Cl,k+l

k k
Cn_l,k+ Cn_l,

to be the matrix after k updates, it is easy to see that the entry-wise relative error
between C and the corresponding entries of G is also bounded by (’ + 3/.

Next, we consider the matrix Dk. After finishing step 2.2, we have an LU factor-
ization of the matrix A0 as

Ao-LU=

--81 1

a21 -s2 0

al a2 st

(-a12 / 81) (--at / 81)
1 (-a/s2)

The computations for t can be expressed as

Do -(CoU-I)(L-1Bo).

Now, let us focus on the computation of the entry (i,j) of t, where 1 < i,j <
n- 1. We need to compute (L-Bo) first. Let b be the jth column of the matrix
B0, and let x be the jth column of the matrix (L-Bo). Then the solution to the
triangular linear system Lx b is computed as

To obtain Gt in block-GTH-II, we have

(19)

(i,j) entry of (t dij [row of (CoU-1)] " [column j of (L-1B0)I
l-1 " (bli;1di - [cil * (blj ? 81) Cil / 8l)]
1-1 ; (bll;X 7 81)1o, / +... +

If we define

(20) k k-1 k-1 , (bkk;1 / 8kdij dij nt- elk

then (19) becomes

l-1 " (blj(i, j) entry of d =/l} [d21 + % / s)]
I-1 I-1{1 + 2) Ida21 + % (bj /s)]

(21) (3’ +l + 2} (i,j) entry of ,



480 DIANNE P. O’LEARY AND YUAN-JYE JASON WU

where the ")’t comes from the error bound for st.
Note that (20) also gives us the definition of Dk as

(2)

with entry-wise error bound (’)’k + 2). From (11), (17), (18), and (22), we have defined
Gk and shown that its off-diagonal entry-wise error can be bounded by (’)’k + 3). By
applying Tweedie’s theorem, for k 1,..., 1- 1, the component-wise error bound for
the eigenvector of Gk relative to the eigenvector of is (a) (2(n- k)("/k + 3)).

From (21), we have the off-diagonM entry-wise error bound (3’ +l + 2) for (t
computed by block-GTH-II. Since Gt is of order l, by applying Tweedie’s theorem,
we have (at) _(2(n 1)(/ + + 2)) as a component-wise error bound between the
eigenvectors of Gt and {t. Therefore, the error bound accumulated in one iteration of
the factorization phase of block-GTH-II is bounded by

(23)

Ea= 2(n-k)(7k+3) +2(n-1)(Tt+l+2)
k---1 kk-I

1-[61n + (12/2 -61- 6)n- (10/3 + 91 13/)]3

As for the backsubstitution phase, we can also express the computations in the
form

q=pt(CoU-1)

where pt is the computed eigenvector of (t. Note that Po [qL-1 Pt] is the eigen-
vector of Go.

The type II process uses the same backsubstitution process as the GTH algorithm.
Thus the component-wise error bound (/3) between the computed vectors/Sk and 15-1
in block-GTH-II is (3’ + (n- k + 1)), where the bound {n- k + 1) comes from one
multiplication, n-k- 1 additions, and one division. The error bound for one iteration
in step 4 of block-GTH-II is

(24)

+-_ +
k--1 k=l

21n + 2(/2 2/).

Combining (23) and (24), we have established a polynomial error bound for block-
GTH-II: we have

(25) = 2na+ 91- -(3/2+31+ n-

with Ct(1) (/).
Therefore, we have the following analogue to Theorem 1.
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THEOREM 2. For any stochastic matrix P of order n with stationary vector
the accuracy of the left eigenvector computed by the block-GTH algorithms I and II
with block size (1 <_ <_ n) using floating-point arithmetic is characterized by

i (2t(n)+ n i, i= 1,...,n,

where Ct(n) is defined by (25) or (A.31). Furthermore, if (2t(n) + n)u<_ .1, then

I 71 _< 1.06(2,(n) + n)u.

Note that for 1 n, Ct(n) (n), with equality holding at 1 and n.

However, we can sharpen (n) in several places. For example, if does not evenly
divide n, then the initial value Ct(1) is less than (/). For <_ n/2, the error bound
(/k} for sk can be reduced to (n-/}, which is independent of k, by summing (12)
from left to right.

4. Performance of the block-GTH algorithm. In this section, we consider
the implementation of the block-GTH algorithm and discuss some numerical results
comparing the performance of GTH and block-GTH. Experiments were performed
with single precision IEEE arithmetic on a DECstation 3100 (DEC) and a SUN
SPARCstation 2 (SUN), each with a 64k byte cache memory; a Convex C3820 (Con-
vex); and a Cray Y-MP4D/2/16 (CRAY).

We implemented the algorithm using standard software as much as possible, pri-
marily the basic linear algebra subroutines from the BLAS collection [1]. On the SUN
and DEC machines, we used Fortran versions of the BLAS; on the Convex and Cray,
we used the manufacturer-supplied versions. The standard Fortran compilers (f77,
f77, fc, and cf77) were used with default levels of optimization. We summarize the
machine configurations and computing environments in Table 1.

TABLE

Machine Operating system Processor Compiler Word length
DEC ULTRIX V4.1 1 f77 V3.2 32-bit
SUN SUN4c_OS413A 1 f77 SC2.0.1 32-bit

Convex ConvexOS 10.1 1 fc version 7.0 64-bit
CRAY UNICOS 7.0.4.3 1 cf77 Release 6.0 64-bit

The principal implementation task is SGTHLU, which computes the LU factor-
ization of the matrix Ak for type I block-GTH ([AT C[]T for type II). Note that this
subroutine performs the standard GTH algorithm when the block size equals the
order n of the original generator.

The major time-consuming modules of the algorithm are shown in Table 2.

TABLE 2

Step Routine Source Function
2.2 SGTHLU Uses Level-1 BLAS Apply GTH
2.3 STRSM Level-3 BLAS Update Bk
2.3 SGEMM Level-3 BLAS Update Dk

Since the block-GTH algorithm is a variant of Gaussian elimination, the complex-
ity is of order n3 and the factorization phase dominates the computational time. In
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our implementation, the cost of factorization is

1(4n3 + 3n2 7n)
6

independent of the block size 1.
For our numerical experiments, we defined the generator of order n to be a cir-

culant matrix

with

-0.01,
0.0002,
0.0098/(n 2).

It can be shown that this generator has a simple eigenvalue 0 with left eigenvector

=(1/n)e.

We tested only the type II block-GTH algorithm.
First we examined the accuracy of the block-GTH algorithm. We set n 400 and

varied the block size as 1, 2,..., 49, 50 and then 60, 80,..., 400. Table 3 shows
the resulting rounding errors. As predicted by the theory, the errors do not have
strong dependence on block size: the errors produced by the block-GTH algorithm
varied between .87 and 1.5 times the errors produced by the GTH algorithm.

TABLE 3
Rounding errors resulting from use of the block-GTH algorithm with different block sizes for a

generator of order 400.

size
2O
4O
60
8O
100
120
140
160
180
2O0
400

Average
difference
3.5700e’-09
3.8925e-09
4.2275e-09
3,9475e-09

5.1225e-09
3.4000e-09
3.3600e-09
3.0025e-09
3.2050e-09
3.1250e-09
3.415eL09

Largest
difference
1.8000e-08
1,8000e-08

1.7000e-08
2.2000e-08
2,0000e-08

1.9000e-08
1,8000e-08

1.6000e-08
,1.9000e--08

1.9000e-08
1.7000e-08

Largest rela.
difference
7.2000e-06
7.2000e-06
6.8000e-06
8.8000e-06
8.0000e-06
7.6000e-06
7.2000e-06
6.4000e-06
7.6000e-06
7.6000e-06
6.8000e-06

Figure 3 shows the total CPU times for our implementation of the factorization
phase of the block-GTH algorithm and the time taken by its three dominant sub-
routines (SGTHLU, STRSM, and SGEMM) as the block size changes. Although the
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number of operations is independent of block size, the total execution time on the
SUN and DEC machines had a significant drop around block size 40, due to efficient
utilization of the cache memory. This timing phenomenon is primarily due to the
behavior of SGEMM. This routine computes the matrix ( column-wise by comput-
ing linear combinations of columns of the matrix Ck. Since Fortran stores matrices
column by column, we can expect that SGEMM will perform best if for all k, the
matrix Ck and some portion of Dk and Bk fit in the cache memory.

DECstatlon 3100 SUN SPARCstatlon
30 12

2O
TOTAL

10

’",...i’’ "’’*’.,,.
SGEMM ’". SGTHLU,,..,. .,.,

STRSN "" "’""...
,:.:’:=’"

50 100 150 200 250 300 350 400
block size

TOTAL

SGEMM ’,,, .,.,,.
.,.,,’

sss ""’"’"*
"" ....... STRSN "’-.. "’"..

,....- ......_:
50 100 150 200 250 300 350 400

block size

SGTHLU

0.g

0.8

0.7

0.6

0.4

0.3 ,
2L’.. SGEMM......

"" """ STRSM
0.1 ..: T.’.’. :.-. .....................

block size

Convex

0.91

0.71

0.61

,," SGTHLU 0.41

031

0.21

0.1l

CRAY Y-MP2D

TOTAL

SGTHLU

SGEMM

STRSM

block size

FIG. 3. Block-GTH time as a function of block size for a generator of order 400.

The biggest of the C matrices is Co, of size (n 1)l. Each column of Bk has size
l, and the Do matrix has columns of length n- I. Therefore, we predict that the
optimal block size should occur at the largest integer satisfying

(n + + (n < cache memory size

word size

For the DEC and SUN, the cache capacity is 64k/4-16k words. The actual optimal
block size also depends on other features of the machine architecture such as page
size, cache line size, etc.

Next, we ran numerical experiments on generators of different orders. We varied
the block size in increments of 1 until well past the predicted optimum, and then in
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FIG. 4. Block-GTH time as a function of block size for generators of order 400,600,800, and
1000.

increments of 20. Figure 4 shows the total time as a function of block size. Table 4
gives the timings, predicted and actual optimal block size, and the speedup, defined
by

speedup=
the time for the GTH algorithm

the best time for the block-GTH algorithm

On the SUN, the timing gain for the block-GTH algorithm over the standard
GTH algorithm is 18-20%, while it is 19-30% on the DEC machine. The predictions
of optimal block sizes were quite accurate for the DEC, but were overestimates for
the SUN. Using the predicted optimal block size on the SUN gave timing gains of
16-19%, not much less than the actual optimal.

On the Convex, a block size of 21, independent of the order of the matrix, performs
quite well, while on the Cray, the performance varies only slightly for a large range of
block sizes, with the optimal size about 12% of n.

Further timing gains could be achieved by using level-2 or level-3 BLAS in the
implementation of SGTHLU.
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TABLE 4
Timings, optimal block size, and speedup for generators of order n 400,600,800, and 1000.

Problem GTH
size time

(see)
400 18.91
600 64.18
800 151.72
1000 296.83
400 11.07
600 37.35
800 88.56
1000 172.25
400 0.92
600 2.85
800 6.61
1000 12.24
400 0.26
600 0.75
800 1.64
1000 3.06

Block Size
Predicted Actual
optimal optimal

44 41
28 27
20 20
16 16
44 25
28 19
20 17
16 16

21
24
21
40
48
60
100
120

Block-GTH
Time

14.55
50.11
122.49
249.94
9.24
31.23
74.45
145.57
0.33
0.96
2.13
3.98
0.18
0.56
1.27
2.41

Mflop
rate
2.9
2.9
2.8
2.7
4.6
4.6
4.6
4.6
130
150
160
168
238
258
269
277

Speedup

1.30
1.28
1.24
1.19
1.20
1.20
1.19
1.18
2.82
2.95
3.10
3.07
1.41
1.32
1.29
1.27

5. Conclusions. It is necessary to use block algorithms in order to attain good
utilization of vector processors and cache memory. In this work we have shown that the
GTH algorithm has a block implementation that can achieve a considerable increase
in efficiency without sacrificing accuracy. Future work will deal with the parallel
implementation of the algorithm.

Appendix A. Derivation of the error bound for the block-GTH-I algo-
rithm. The block-GTH-I differs from block-GTH-II only at step 2.3 for computing
(t and in the backsubstitution phase, so the definitions for Ak nd Bk in (11) and
(17) remain the same for k 1,..., l- 1. Thus we have an error bound ( + 3} for
each off-diagonal entry of Aa and for each entry of Bk.

The computations of (t for block-GTH-I can be expressed as

Do Co(U-I(L-1Bo))
We save the original matrix Co, so there is one more linear system to solve for com-
puting U-Ix. Let y be the jth column of the matrix U-I(L-1Bo). Applying back-
substitution to the triangular linear system U y x, we have

Yl --Xl

Ym--Xm nt- (aml / Srn) * Yl + + (am,m+1 / 8m) " Ym+l,

rn- l- 1,...,1

Note that all x, are negative, so all y, are negative and there is no cancellation. To
obtain (, we have

(i,j) entry of ( dij [row i of Co] $ [column j of U-I(L-1Bo)]
o 7Y2 $ o 7yt]di [Cil Yl -- ci2 all

o o o(A.26) (1 + 1} [di Cix Yl ci2 * Y2 Cil * Yl]

By expanding yl, we have

(i, j) entry of t
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The updated matrix C1 is not explicitly present, but we can define

(A.27) o 0
tim Cim "-Cil $ (hOlm / 81), m- 2,..., 1.

From (20) and (A.27), the update becomes

entry of ((1 + 1) + l) [dil + ci y +... + ci2 Y2],

which is similar to (A.26). Therefore, we can expand Ym, m 2,..., 1, one by one
and repeat the same process go obtain

(i, j) entry of a
I-1((1 + 1) +l +... + 2} [4; +

\m--2

l+Em [d;l+c ,(bl; /s)l
m----2

(A.28) ’ + E m (i, j) entry of ,
where the -y comes from

Note that from (A.27), the matrix Ck defined in (18) has an entry-wise error bound

@k / 1). Again, from (11), (17), (18), and (22), we have defined G and shown that
its off-diagonal entry-wise error can be bounded by (y + 3/. From (A.28), the entry-
wise error bound for ( computed by block-GTH-I relative to z.-m-1

By applying Tweedie’s theorem, the error accumulated for one iteration in step 2 of
block-GTH-I is bounded by

(A.29)

Eak= 2(n-k)(-y+3) -+-2(n-l) .y+Em
k--1 Lk--i m--1

116/n2 / (15/2 31- 12)n-- (13/3 / 12/2 19/)].
3

For the backsubstitution phase, let pt [Pll""" Pt,n-t] be the computed eigenvec-
tot of t. Then we have the vector



BLOCK-GTH FOR MARKOV CHAINS 487

resulting from computing (pC) first. Then the solution to the triangular linear system
qU pC is

ql Pli Cil

o $ / ql -7- $ (a_ / s-l) * q/-1

k- 2,...,/.

0 with 61--n-1 To find anFrom the first equation, we have ql 51 ipi cil,
error bound for qk in the second equation, suppose that we have q, (ti,) yipi
cim.-l. We know that ti, is an increasing function of m, so

Note that the floating-point additions are carried out from left to right. Using (A.27),
we have

qk (1 + 2) Pli * Cik " Pli * (aOlk / 81 *

ck-2(ek_ + 1) ,, (a:,k 8k_1)* i,k-1]

(2 + 1) li * (ak 82) * Ci] @(el + 2) Pli $ Cik

ck-2

Since all are integers and + 1 N +, we can repeat the same process and
obtain

k-1q (-1 + 2) p c

Therefore, 6 6k-1 + 2, and the solution to this recursion is 6k n- + 2(k 1).
By an analysis similar to that for block-GTH-II, we have (’k + 6k + (1 k + 1))

as the component-wise error bound () for the computed Pk for block-GTH-I. The
error bound for one iteration in step 4 of block-GTH-I is

(A.30)

Ek E["Y + n + k-11
k=l k=l

21n + 3/2 51.
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Finally, combining (A.29) and (A.30), we obtain a polynomially-growing error

bound l for block-GTH-I:

1 [2na(A.31) g

This error bound agrees with (25), the error bound for block-GTH-II, in its highest
order term.
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