
OVERCOMING INSTABILITY IN COMPUTING
THE FUNDAMENTAL MATRIX FOR A MARKOV CHAIN∗

DANIEL P. HEYMAN† AND DIANNE P. O’LEARY‡

SIAM J. MATRIX ANAL. APPL. c© 1998 Society for Industrial and Applied Mathematics
Vol. 19, No. 2, pp. 534–540, April 1998 015

Abstract. We present an algorithm for solving linear systems involving the probability or rate
matrix for a Markov chain. It is based on a UL factorization but works only with a submatrix of
the factor U. We demonstrate its utility on Erlang-B models as well as more complicated models of
a telephone multiplexing system.

Key words. Markov chains, fundamental matrix, decision process

AMS subject classifications. 65F05, 62M05

PII. S0895479896301753

1. Introduction. Markov chain models can lend insight into the behavior of
many physical systems, such as telephone networks, highway systems, and ATM
switching networks. These models are based on properties of a matrix P whose
entries depend on the probabilities of transition from one state to another, or on the
arrival and departure rates for customers. The matrix P is nonnegative. If we define
D to be a diagonal matrix whose diagonal entries are the rowsums for P , then the
matrix D − P has zero rowsums. In other words

(D − P)e = 0,

where e is the column vector of all ones. Thus, D − P has a zero eigenvalue, and
we denote its left eigenvector, normalized so that its entries sum to one, as the row
vector πT :

πT (D − P) = 0T , πT e = 1 .

The vector π gives information about the long-term behavior of the system; for ex-
ample, if the entries in P are transition probabilities (so that D = I), then π is the
stationary vector for the chain.

Systems analysts are interested in other computational quantities that give in-
formation about the short-term behavior of the chain. The fundamental matrix is
defined to be

F = (D − P − eπT)−1,

and the group generalized inverse of A = D − P is

A# ≡ F − eπT .

(See, for example, [6].) The entries in these matrices are useful in computing mean
first passage times, in computing biases in the entries in π as approximations to

∗Received by the editors April 10, 1996; accepted for publication (in revised form) by D. Calvetti
April 10, 1997.

http://www.siam.org/journals/simax/19-2/30175.html
†AT&T Labs, 101 Crawfords Corner Road, Holmdel, NJ 07733 (Daniel.Heyman@att.com).
‡Department of Computer Science and Institute for Advanced Computer Studies, University of

Maryland, College Park, MD 20742 (oleary@cs.umd.edu). The research of this author was supported
by National Science Foundation grant CCR-95-03126.

534

FUNDAMENTAL MATRIX FOR MARKOV CHAIN 535

expected number of visits, and in determining decision rules to govern the control of
the system. See [2] and [5] for some discussion of these applications.

The Grassmann, Taksar, and Heyman (GTH) algorithm [1] is an efficient algo-
rithm for determining a factorization of the matrix D − P . From this factorization,
all the other quantities can easily be computed.

The GTH algorithm can be interpreted as a variant of Gauss elimination that
differs from the usual LU form in two ways:

1. The elimination proceeds from the bottom of the matrix to the top (rather
than top-to-bottom) and thus produces factors

D − P = UL,

where U is an upper triangular matrix with diagonal elements equal to −1,
and L is a lower triangular matrix, with top row zero.

2. Since the rowsums of D − P are zero, so are the rowsums of the matrix L.
We compute the main diagonal elements of L to satisfy this constraint, rather
than using the usual Gaussian elimination formulas. This modification has
been shown to provide a very strong form of numerical stability when making
use of these factors to compute the stationary vectors [7].

We assume that the rows of the matrix (one for each state of the chain) are
numbered {0, 1, . . . , n}, we let P(i:j,k:l) denote the submatrix of P consisting of
elements in rows i, i + 1, . . . , j and columns k, k + 1, . . . , l, and we let sum(P(i,j:k))
denote the sum of the elements in row i and columns j through k. Then the GTH
algorithm computes UL = D−P . It can be done using no additional matrix or vector
storage as follows:

For i=n, n-1, ... , 1,
s=sum(P(i,0:i-1))
P(i,i)=-s
P(0:i-1,i)=P(0:i-1,i)/s
P(0:i-1,0:i-1)=P(0:i-1,0:i-1) + P(0:i-1,i)*P(i,0:i-1)

end for
P(0,0)=0

Then the matrix L is stored in the lower triangular part of P (including the main
diagonal), and U is in the upper triangular, with main diagonal elements understood
to be equal to −1. The entire factorization process takes 2/3 n3 + O(n2) operations.

Once the UL factors of D−P are determined, it is easy to compute the stationary
vector from

πT U = z,

where z is the first row of the identity matrix. Then the fundamental matrix can be
computed from

ULF = I − eπT ,

with normalization πT F = πT , or the group generalized inverse from

ULA# = I − eπT

with normalization πT A# = 0T .

536 DANIEL P. HEYMAN AND DIANNE P. O’LEARY

TABLE 2.1
Algorithm results on the examples of section 2.

n rorig rimproved cond(U) cond(D − P)
5 4.2e-15 1.0e-15 2.4e+02 8.1e+00

10 3.6e-13 3.0e-15 5.4e+04 2.0e+01
15 1.3e-12 9.0e-15 1.1e+07 3.4e+01
20 4.4e-09 1.5e-14 1.9e+09 5.0e+01
25 1.3e-06 1.7e-14 3.3e+11 6.6e+01
30 2.5e-04 2.9e-14 5.6e+13 8.2e+01
35 2.8e-02 3.2e-14 9.2e+15 9.9e+01
40 2.5e+00 3.3e-14 1.5e+18 1.2e+02
45 4.1e+00 3.8e-14 Inf 1.3e+02
50 1.1e+05 5.5e-14 Inf 1.5e+02

Clearly, the lower triangular matrix L is singular, since its first row is zero. Con-
ventional wisdom says that the matrix U is usually well conditioned, but occasionally
this fails to be true, even if the nonzero singular values of D − P are well behaved.

The purpose of this note is to exhibit examples of this phenomenon and to propose
a more stable way to use the UL factors to compute the fundamental matrix and other
quantities.

2. A troublesome family of examples. Consider an Erlang-B model of tele-
phone traffic. Calls arrive as a Poisson process at rate λ to be served by n parallel
servers at unit rate. A call that finds all servers busy is discarded.

This model yields a continuous-time Markov chain with states {0, 1, . . . , n}. Let
pij be the rate of passage from state i to state j. Then the only nonzero rates are

pi,i+1 = λ, for 0 ≤ i < n,

pi,i−1 = i, for 0 < i ≤ n.

Let the matrix P = (pij) and let D be the diagonal matrix whose entries are the
rowsums of P .

Then it is easy to compute the UL factors of D−P : both U and L are bidiagonal
matrices with nonzero entries

uii = −1, i = 0, . . . , n,

ui,i+1 =
λ

i + 1
, i = 0, . . . , n − 1,

lii = −i, i = 0, . . . , n,

li,i−1 = i, i = 1, . . . , n.

The unnormalized steady-state probabilities are

πi =
λi

i!
, i = 0, . . . , n.1

If we set λ = n and use this data to compute the last column of the fundamental
matrix, we get the results in Table 2.1.

1Pete Stewart observes that this growth in the elements of the stationary vector can only occur
if there is ill conditioning in one of the UL factors. Thus, it may be worthwhile in practice to reorder
the states so that the stationary probabilities are decreasing.

FUNDAMENTAL MATRIX FOR MARKOV CHAIN 537

These results were computed using double-precision IEEE arithmetic (approxi-
mately 16 decimal digits) in MATLAB.

The column labeled rorig gives the norm of the residual vector when the last
column of F is computed using the UL factors, i.e.,

rorig = ‖en − πne − (D − P)forig‖,

where en is the last column of the identity matrix and forig is the result of using
forward and back substitution on the linear system

ULforig = en − πne.

We see that rorig grows rapidly as n grows, although in exact arithmetic rorig would
be zero.

Such large residuals are a symptom of ill conditioning or instability, so the table
also gives the condition number of U and the condition number of D − P . Here we
define the condition number as the ratio of the largest to the smallest singular value
of the matrix, although, since D − P is singular, we leave out its zero singular value
in computing this ratio. Clearly, the matrix U is rapidly approaching singularity, and
thus when we use U to solve for the last column of F , accuracy can be lost.

In the next section we describe an improved algorithm that produces the residuals
labeled rimproved in the table.

3. A more stable way to use the UL factors. To see what went wrong, we
need to look at the null spaces of our various matrices.

Suppose we are solving (D − P)z = b, where b is in the range of D − P . Then
the solution vector z satisfies

Lz = y,

where y is the solution to

Uy = b.

Since the top row of L is zero, the top element of y must also be zero in order for
the system to have a solution. Thus, before we begin the back substitution on U , we
already know the top component of y.

If, due to round-off error and ill conditioning of U , the top component of the
computed y fails to be close to zero, then our computation will not produce a good
solution.

This insight also leads to a remedy. Instead of solving Uy = b, we can solve a
system that involves only the last n components of y, knowing that the top one is
zero. If we let Ū be the matrix formed by deleting the zeroth column of U , and let ȳ
be the vector formed by deleting the zeroth element of y, then we can compute ȳ by
solving the linear system

Ū ȳ = b.

The matrix Ū is not upper triangular (in fact, it is zero above the main diagonal for
the examples in section 2, since U is bidiagonal). But Ū is always upper Hessenberg,
with zeros below the first subdiagonal. A sequence of n row operations reduces it to
upper triangular form, at a cost of at most O(n2) floating point operations. Since the

538 DANIEL P. HEYMAN AND DIANNE P. O’LEARY

system is compatible, the same sequence of operations reduces the last component of
b to zero, permitting back substitution starting with equation n − 1.

We choose to reduce the matrix Ū to upper triangular form using the LU algorithm
with partial pivoting. Just as in the GTH algorithm, only additions and divisions are
being performed and no cancellation can occur, and the factorization can be done in-
place, except for an auxiliary integer vector of permutation indices. Assume that we
apply the LU algorithm to obtain the factorization Ū = L̃Ũ and, for ease of notation,
assume that no interchange of rows is needed in the LU algorithm. Then we have
factored U as

[
e1 L̃

] [
e1

0T

Ũ

]
.

From this equation we can see the two reasons why the algorithm performs well: we
have effectively decoupled the top component of y from the others and can set it to
zero without introducing error. Further, the projection of b onto the range of D − P
is done using the diagonally dominant bidiagonal matrix L̃, which is guaranteed to
be full rank.

In the following code fragment, we factor the matrix Ū = L̃Ũ , assuming that Ū
is stored in the array P . We store Ũ in the upper triangle of P , rows 1 through n,
and we store the multipliers (off-diagonal elements of the L factor) in the zeroth row
of P . None of this disturbs the lower triangular factor L stored below the diagonal of
P .

Initialize two row vectors of length n+1:
all entries in ipos are zero,
and the i-th entry of ind is i.

for i=1, ... , n,
if |u(0,i)| > 1,

Interchange ind(0) with ind(i)
and P(0,i:n) with P(i,i:n).

Set ipos(i-1)=i.
end if
The pivot element is P(0,i)=-P(0,i)/P(i,i).
Update row 0 as

P(0,i+1:n)=P(0,i+1:n)+ P(0,i) *P(i,i+1:n).
end

This takes n2 + O(n) operations. The vector ipos is redundant but
included for clarity.
We use these factors as follows to solve the linear system ULz = b.
First we solve L̃q = b in O(n) operations, by using the multipliers
and the permutation information:

Let q be the vector b reordered
as indicated by ind.

for i=1, ... , n,
Set ispot=ipos(i).
Let q(ispot)=q(ispot)+P(0,i)*q(i).

end

FUNDAMENTAL MATRIX FOR MARKOV CHAIN 539

Then we solve Ũ ȳ = q using back substitution. This takes n2 +O(n)
operations.
Finally, we solve Lz = ȳ, setting z1 = 0. This takes n2 + O(n)
operations.

Applying this algorithm to the examples in section 2 yields the results labeled
rimproved in Table 2.1. The improved algorithm yields a small residual for all of the
examples. Since the residual norm divided by the condition number of D − P is close
to machine precision, we see that we have achieved attainable accuracy using this
algorithm.

4. An application. This work was motivated by difficulties encountered in com-
puting solutions to the telecommunications model described in Krishnan and Huebner
[5]. In their model, there are n channels that serve C classes of calls. Class j calls
arrive according to a Poisson process at rate λj , have exponential service times with
mean 1/µj , and each call requires rj channels. The classes represent different types of
applications, such as voice, data, and video. The problem is to construct an admission
rule that optimizes a given performance criterion, e.g., minimize the loss rate of calls.
To illustrate the nature of the problem, suppose r1 > r2, and exactly r1 channels are
free when a class 1 job arrives. Accepting this job may preclude accepting several
class 2 calls that might arrive soon. The class 1 job should be accepted when µ1
is sufficiently large and λ2 is sufficiently small so that the expected number of lost
calls is less than one. This expected value depends on which calls are currently in
progress (because some of them may finish soon enough to allow some class 2 calls to
be admitted in the near future) as well as on which type of call is under consideration.

Krishnan and Huebner formulate this problem as a Markov decision process. This
involves constructing a Markov chain to model the number of occupied channels at any
time, so there is an underlying continuous-time Markov chain with states {0, 1, . . . , n}.
The nonzero elements in the rate matrix P for this chain are defined by

pi,i+rk
= λk for 0 ≤ i ≤ C − rk, k = 1, . . . , C,

pi,i−rk
= µkE(mk|i) = λkq(i−rk)

q(i) for rk ≤ i ≤ n, k = 1, . . . , C.

The state probabilities q(i) are computed recursively using a method of Kaufman
[4].

The examples of section 2 are special cases of this model with C = 1 class.
Let cj be the “cost” per unit time of being in state j; e.g., the loss rate if the

objective is to minimize the loss rate of calls. This model is described in continuous
time, but it can be converted into a discrete-time model where transitions occur at
times 1, 2, . . . by “uniformizing” the model; see, e.g., Heyman and Sobel [3, section
8-7] for details. Let P be the transition matrix of the discrete-time Markov chain; P
inherits the state space {0, 1, 2, . . . , n} and has elements pij . If some rj = 1, then P is
irreducible and aperiodic and has no transient states. Otherwise, some states may not
be reachable (e.g., state 1 when starting empty); these states should be eliminated.

Krishnan and Huebner show that when i channels are occupied and a class j call
arrives, that call should be admitted if and only if

t(i) < t(i + rj),

where

t(k) =
n∑

j=0

A#
kjcj , k = 0, 1, . . . , n .

540 DANIEL P. HEYMAN AND DIANNE P. O’LEARY

From this equation (a variant of the one used by Krishnan and Huebner) we see that
we need to compute the jth column of A# when cj 6= 0.

Example. Suppose we have n = 100 trunk lines, with C = 3 classes of traffic
defined by mean arrival times (λi), mean holding time (1/µi), and ri trunks required
per call as follows:

i λi µi ri

1 20 1 1
2 20 1/2 2
3 5 1/3 3

.

Using the standard algorithm, we obtain a residual of size 9.4e+12 for j = n. The
condition number of U is computationally infinite, even though the condition number
of D−P is only 83. Using the algorithm from section 3, however, we obtain a residual
of size 9.6e-14.

5. Conclusions. We have presented an improvement to algorithms that use the
UL factors to compute quantities related to Markov chains. For a dense matrix, it
requires only O(n2) additional operations compared to the standard O(n3) algorithm
but improves the accuracy obtained in the results. The same approach could be used
on sparse matrices arising from Markov chains.

REFERENCES

[1] W. K. GRASSMANN, M. I. TAKSAR, AND D. P. HEYMAN, Regenerative analysis and steady state
distributions, Oper. Res., 33 (1985), pp. 1107–1116.

[2] D. P. HEYMAN AND D. P. O’LEARY, What is fundamental for Markov chains: First passage
times, fundamental matrices, and group generalized inverses, in Proc. Second International
Workshop on Markov Chains, W. Stewart, ed., Kluwer Academic Publishers, Norwell, MA,
1995, pp. 151–161.

[3] D. P. HEYMAN AND M. J. SOBEL, Stochastic Models in Operations Research, Vol. I, McGraw–
Hill, New York, 1982.

[4] J. S. KAUFMAN, Blocking in a shared resource environment, IEEE Trans. Comm., COM-29
(1981), pp. 1474–1481.

[5] K. R. KRISHNAN AND F. HUEBNER, Admission control for multirate CBR traffic: A Markov
decision criterion, in Teletraffic Contributions for the Information Age, V. Ramaswami and
P. E. Wirth, eds., Elsevier, New York, 1997, pp. 1043–1054.

[6] C. D. MEYER, JR., The role of the group generalized inverse in the theory of Markov chains,
SIAM Rev., 17 (1975), pp. 443–464.

[7] C. A. O’CINNEIDE, Entrywise perturbation theory and error analysis for Markov chains, Numer.
Math., 65 (1993), pp. 109–120.

