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Abstract. Restoration of images that have been blurred by the effects of a Gaussian blurring
function is an ill-posed but well-studied problem. Any blur that is spatially invariant can be ex-
pressed as a convolution kernel in an integral equation. Fast and effective algorithms then exist
for determining the original image by preconditioned iterative methods. If the blurring function is
spatially variant, however, then the problem is more difficult. In this work we develop fast algorithms
for forming the convolution and for recovering the original image when the convolution functions are
spatially variant but have a small domain of support. This assumption leads to a discrete problem
involving a banded matrix. We devise an effective preconditioner and prove that the preconditioned
matrix differs from the identity by a matrix of small rank plus a matrix of small norm. Numerical
examples are given, related to the Hubble Space Telescope (HST) Wide-Field/Planetary Camera.
The algorithms that we develop are applicable to other ill-posed integral equations as well.
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1. Introduction. An ideal camera or recording device would record an image
so that the intensity of a small piece (pixel) of the recorded image was directly pro-
portional to the intensity of the corresponding section of the scene being recorded.
Real cameras violate this model in two ways:

• The recorded intensity of a pixel is related to the intensity in a larger neigh-
borhood of the corresponding section of the scene. This effect in visual images
is called blurring.

• The recorded intensities are contaminated by random noise.
The natural mathematical model of the recording operation is an integral equation

of the first kind: ∫
Ω

k(s, t)f∗(t)dt = g(s)− η(s) = g∗(s).

Here the spatial coordinates are s ∈ R2 and t ∈ R2, and Ω is a closed region contain-
ing the domain of the image. The blurring of the unknown true image f∗ : R2 → R
is modeled by convolution with the point spread function (PSF ; kernel) k : R2 → R2

plus the addition of noise η : R2 → R. The function g : R2 → R is the measured im-
age, usually known only for certain discrete values of s, while g∗ is the unknown exact
blurred image. Since the number of measurements is finite, the model is discretized
into a matrix equation

Kf ≈ g,
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where K ∈ Rn×n. (Our algorithms also have natural extensions to overdetermined
systems, but we prefer to keep the notation simple by assuming that K is square.)
We order the equations and unknowns in a natural way, with the second component
of s changing the fastest.

Most often, the PSF k is assumed to be spatially invariant: k(s, t) = k(s − t).
This assumption is popular for two reasons:

• The matrix K is then a block Toeplitz matrix with Toeplitz blocks, and
matrix-vector multiplication can be accomplished quite quickly by making
use of fast Fourier transforms (cf. section 3).

• The PSF is often determined by an idealized model, and spatial dependence is
usually ignored. Alternatively, the PSF can be determined experimentally by
aiming the camera at a point source and recording the result. Of course, this
approach is prone to error because of the added noise and the departure of
the point source from a delta function, so data from multiple trials are usually
averaged to reduce noise rather than used to determine spatial dependence.

There are situations, though, in which it is important to take account of the spatial
variation of the PSF. For example, the PSF for the original HST Wide-Field/Planetary
Camera had a large amount of spatial variation because of errors in the shaping of
the mirrors [1]. As another example, if the scene contains two objects moving with
different velocities relative to the recording device, then the PSF is effectively different
for each [12].

Problems like these provided motivation for our project; our goal was to develop
algorithms for deblurring an image with a spatially variant PSF with cost comparable
to that for spatially invariant ones.

There are many issues that must be addressed in developing practical algorithms
for image deblurring. These include identification of the blurring operator and appli-
cation of regularization techniques to reduce the influence of noise. The identification
problem is an active area of current research [11, 12], but we do not address that
issue in this work. Instead, we develop regularization algorithms that are modeled on
certain efficient ones that have been developed for spatially invariant blur. Sezan and
Tekalp [17] note that the current difficulties in image restoration are due in part to
a lack of general efficient algorithms for the restoration of space-variant blurs. Some
recent work along these lines can be found in [18, 15, 13].

The basic tool in our work is the use of the conjugate gradient algorithm to
find an approximate solution to Kf = g; see Björck [2]. Regularization is achieved
by stopping the iteration early, before the noise in the observations has much effect
on the resulting image. This is a well-known regularization technique used for the
classical Landweber iterations as well as for the conjugate gradient method; see, for
example, the survey paper by Hanke and Hansen [14] and the references therein.

The main problem with iterative methods, especially when K is poorly condi-
tioned, is that the effects of noise may be seen before the image is reconstructed, so
that stopping the iteration early does not achieve good reconstruction of the image.
Therefore, it is essential to develop a preconditioning scheme that produces a good
reconstruction in only a few iterations while delaying the onset of noise effects. This
has been accomplished for spatially invariant blurs [16]; the focus of this work is to
extend these techniques to spatially varying PSFs.

Although we phrase our results in terms of deblurring, it is clear that our methods
are applicable to more general integral equations of the first kind with spatially variant
kernel functions. They will be efficient when the support of the function k(s, t) (for
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each fixed value of s) is significantly smaller than the domain of integration and when
k can be approximated well by a small number of spatially invariant kernels. Our
results can also be interpreted as approximation results relating a spatially varying
kernel to a combination of spatially invariant ones.

In the next section we describe our mathematical model for the PSF. We discuss
fast matrix-vector products in section 3, and we develop effective preconditioning
matrices in section 4. Numerical results and final remarks can be found in sections 5
and 6.

2. The model for the PSF. We assume that we have been given the PSF k(s, t)
for several different values s1, . . . , sp. This corresponds to knowledge of p different
rows of the matrix K or, alternatively, p different PSFs ki(t) ≡ k(si, t), i = 1, . . . , p.
Our first task is to define the other rows of K (or n− p other PSFs) in a reasonable
way.

The easiest way to extend the data is to define regions of influence for each of
these measured PSFs: we will partition our domain into p nonoverlapping regions
and assume that in the ith region the PSF is spatially invariant, so that k(s, t) =
ki(t− s+ si). Thus we have constructed a kernel defined by

k(s, t) ≡ δ1(s) k1(t− s+ s1) + · · ·+ δp(s) kp(t− s+ sp),

where δj(s) is the indicator function for the jth region, 1 if s is in the region and 0
otherwise.

In matrix terms, a spatially invariant PSF on a two-dimensional domain corre-
sponds to a block Toeplitz matrix with Toeplitz blocks [9]. Our partitioning of the
image leads to a matrix K defined by

K ≡ D1K1 + · · ·+DpKp,(2.1)

where Di is a diagonal matrix whose jth diagonal element is 1 if the jth point is in
region i, and 0 otherwise.

This set of definitions leads to a discontinuous kernel function k. This is easily
remedied, however: rather than approximating k by a piecewise constant function, we
can choose weights δi(s) to achieve higher-order interpolation between the measured
kernel functions. For example, we can evaluate k(s, t) by performing piecewise linear
interpolation among the functions k1(t), . . . , kp(t) using a triangulation of 2-space
with nodes s1, . . . , sp. This corresponds to a choice of nonnegative diagonal matrices
Di so that D1 + · · ·+Dp = I. Higher-order interpolation could also be used.

We remark that a similar partitioning of the image was proposed in [18], and
adapted to HST problems in [13]. However, there is a fundamental difference in the
algorithmic details of these restoration schemes and what we propose. In particular,
previous schemes apply a spatially invariant restoration algorithm on each region,
and then “sew” the individual restorations together. This has the disadvantage that
visible discontinuities can occur at the region boundaries of the restored image. Our
approach, on the other hand, is to sew together the PSFs and restore the image
globally.

It is clear that matrix-vector products involving these matrices K can be accom-
plished in about p times the amount of time required for multiplication by a spatially
invariant point spread matrix. In the next section we will see that we can do much
better than this if the support of each kernel function is reasonably small, resulting
in small bandwidth in the Toeplitz blocks.
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3. Fast matrix-vector products. In this section we present a scheme for ef-
ficiently forming matrix-vector multiplies with K. Algorithms for multiplication by
KT are similar. Since notation for two-dimensional image domains can be a bit cum-
bersome, we begin by establishing the basic ideas for one-dimensional problems and
then extend these to two dimensions. Note that the matrix-vector product DiKiz
amounts to needing only a portion of the vector Kiz. Thus, the following discussion
focuses on portions (blocks of contiguous rows) of Toeplitz matrices and shows how
to exploit this structure for fast matrix-vector multiplications.

3.1. Matrix-vector multiplication involving banded Toeplitz matrices.
Fast matrix-vector multiplication with Toeplitz matrices is accomplished by exploiting
the relationship between Toeplitz and circulant matrices. A ρ̂× ρ̂ circulant matrix C
is a Toeplitz matrix whose rows and columns are periodic. That is, each row (column)
of C is a circular shift of its previous row (column). It is well known (cf. Davis [6])
that the eigenvectors of a circulant matrix are the Fourier vectors, and the eigenvalues
can be computed by Fourier transform of the first column of the matrix. Thus, fast
Fourier transforms (FFTs) can be used to compute matrix-vector products of the
form z = Cr in O(ρ̂ log ρ̂) operations, using only linear storage. Specifically, if c is
the first column of C, then z can be computed as

z = ifft(fft(c) ◦ fft(r)),

where ◦ is used to denote componentwise multiplication and fft(·) and ifft(·) are
used to denote, respectively, forward and inverse FFTs. Optimal efficiency of FFTs
is attained when ρ̂ is a power of 2.

If T is a ρ× ρ̂ Toeplitz matrix (with ρ ≤ ρ̂), then products of the form z = Tr can
also be computed in O(ρ̂ log ρ̂) operations using FFTs by embedding T into a circulant
matrix of larger dimension. Since our focus is on banded matrices, we illustrate this
by considering the ρ× ρ̂ banded Toeplitz matrix

T =




tβ · · · t0 · · · t−β
. . .

...
. . .

. . .

tβ
. . . t−β

. . .
. . .

...
. . .

tβ · · · t0 · · · t−β



,(3.1)

where β is the bandwidth of T and ρ̂ = ρ + 2β. Then 2β rows can be appended to
T to create a ρ̂ × ρ̂ circulant matrix C, and the vector z = Tr can be computed by
forming Cr . Alternatively, rows and columns can be added to T to make a circulant
whose dimensions are a power of 2, allowing the use of faster FFTs.

We now turn to the two-dimensional problem. Suppose that K̂ is a ρ× ρ̂ banded
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block Toeplitz matrix with ρ× ρ̂ banded Toeplitz blocks:

K̂ =




Tβ · · · T1 T0 · · · T−β
. . .

...
...

. . .
. . .

Tβ Tβ−1
. . .

. . .

Tβ
. . . T−β

. . .
. . . T1−β T−β

. . .
...

...
. . .

Tβ · · · T0 T−1 · · · T−β




,(3.2)

with each Toeplitz block T
(i)
l having the same form as (3.1).

Matrix-vector multiplications involving a block Toeplitz matrix with Toeplitz
blocks, such as K̂, can be done efficiently using two-dimensional FFTs by a straight-
forward generalization of the one-dimensional case. That is, K̂ is embedded into a
ρ̂× ρ̂ block circulant matrix, C, with ρ̂× ρ̂ circulant blocks. If r is a vector of length
ρ̂2, then z = K̂r can be computed by using two-dimensional FFTs to form C r̂ and
stripping off the appropriate pieces. Once again, if ρ̂ is not a power of 2, we can
embed K̂ into an m×m block circulant matrix with m×m circulant blocks, m > ρ̂.

3.2. Matrix-vector multiplication involving Toeplitz-related sums. Now
we return to our problem of forming matrix-vector products involving the PSF

K = D1K1 + · · ·+DpKp,

where each Ki is a banded block Toeplitz matrix.

3.2.1. Piecewise-constant convolution functions. We first consider the piece-
wise constant case: the jth element of the diagonal matrix Di is 1 if the jth point is
in region i and zero otherwise, and

∑
Di = In.

To form matrix-vector products z = Kr, one could use the techniques described
above to form zi = Kir, and obtain z as z =

∑
Dizi. However, a substantial amount

of work can be saved by taking better advantage of our partitioning of the image
domain Ω. Suppose, for illustration, that we have partitioned our image domain into
p = 9 rectangular pieces (Figure 3.1).

1 2 3

4 5 6

7 8 9

Fig. 3.1. Example of image domain partitioning.

Then the product D5K5r, for example, depends on the values of r in region 5,
as well as on values in other regions within a width β of the borders of region 5.
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This domain of dependence is indicated by the dotted borders. Further, if we reorder
the elements of r so that those within the dotted borders are grouped together and
ordered row by row (or, alternatively, column by column), then the matrix formed
from the nonzero columns of the matrix D5K5 has exactly the form of the matrix K̂
in (3.2).

Thus, the matrix-vector product can be formed by applying the K̂ algorithm over
each of the regions (using zero-padding along the exterior borders), and concatenating
the resulting vectors.

There are several advantages to this approach:

• Storage: To perform matrix-vector multiplies using FFTs, we need to store
the eigenvalues of the extended block circulant matrices corresponding to each
region. This can be done in (ρ̂ × ρ̂)-dimensional arrays. If the bandwidth
β ≤ ρ/2, which is often the case in image restoration, then ρ̂ ≤ 2ρ. Thus,
an upper bound on storage requirements is p arrays of size 2ρ× 2ρ, which is
equivalent to one array of size 2n × 2n. To illustrate the savings here, note
that K is an n2 × n2 matrix. Our storage requirement for a spatially variant
kernel (bandwidth satisfying β ≤ ρ/2) is no more than that needed for a
spatially invariant one!

• Work: The cost in forming a matrix-vector multiplication for a general spa-
tially invariant kernel (using FFTs) is O(n2 log n). In the scheme presented
in this section for spatially varying kernels, we need to form p ρ̂2-dimensional
spatially invariant products. Thus the total cost is O(pρ̂2 log ρ̂).
If we consider a fixed continuous kernel discretized with different values of n,
then the bandwidth β of the matrix grows linearly with n, so ρ̂ = ρ+2β also
grows linearly. Since pρ2 = n2, we must have that pρ̂2 is bounded by some
constant times n2, so the complexity as n→∞ is O(n2 log n), the same order
as that of a spatially invariant kernel.

• Parallelism: This algorithm has inherent parallelism that is worth applying
even to the more simple case of spatially invariant kernels. In this case,
the region can be partitioned into congruent pieces and all of the matrices
Ki are equal. The matrix-vector multiplies for each piece can be performed
independently, once information about the overlap regions is exchanged. The
number of pieces is limited by the need to keep β < ρ/2, but each piece can
be spread over multiple processors.

3.2.2. Linear interpolation. Suppose the convolution kernel is approximated
by a piecewise linear function (rather than a piecewise constant one). Suppose, for
illustration, that we have measured the convolution function at 9 points, the vertices
of the triangles in Figure 3.2.

Then the convolution at the jth point is determined as a weighted average of at
most three spatially invariant convolutions, those corresponding to the three vertices
of the triangle containing point j, or those corresponding to the two endpoints of its
line segment if point j happens to fall on a boundary.

To form matrix-vector products z = Kr, we partition our domain into overlap-
ping subdomains defining the regions of influence of each of the spatially invariant
convolutions. The measured convolution function corresponding to the center point
in the figure, for example, must be applied over regions 2, 3, 4, 5, 6, and 7. Matrix-
vector multiplication is then performed as in section 3.1: each region of influence is
embedded into a rectangle. (For efficiency, it might be better to partition the region of
influence and embed into multiple rectangles.) Weighted sums of the resulting point
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Fig. 3.2. Example of linearly interpolated regions.

values then give the desired matrix-vector products.

4. Preconditioning. In general, an effective preconditioning scheme for a con-
jugate gradient iteration is one in which the preconditioner matrix C is a good ap-
proximation to the matrix K; that is, the singular values of KC−1 are clustered
around one. For ill-posed problems, however, the preconditioner matrix is likely to be
severely ill conditioned, and early iterations will be highly contaminated with noise.
To avoid this, we take the approach suggested by Hanke, Nagy, and Plemmons [8].
Specifically, the aim is to construct a matrix C that clusters the large singular values
(i.e., approximates K on the signal subspace) while leaving the small singular values
(noise subspace) unchanged. As is shown in [8], this can be done if a spectral decom-
position of C is available. This is the case for matrices that are block circulant with
circulant blocks. To simplify notation in this section, we assume the matrices Ki are
n × n block Toeplitz matrices with n × n Toeplitz blocks. The notation bttb(n) is
used to represent such matrices. Similarly, bccb(n) will be used to denote matrices
that are n× n block circulant with n× n circulant blocks.

4.1. Preconditioning piecewise-constant convolution functions. There are
several possible schemes for approximating a bttb(n) matrix with one that is bccb(n);
see, for example, the recent survey paper by Chan and Ng [4]. In our work, we con-
sider the one proposed by Chan and Olkin [5], which is simply the best Frobenius
norm approximation over all bccb(n) matrices. This is the approach used in [8] for
spatially invariant PSFs, and we discuss next the necessary modifications to make it
applicable to the spatially varying kernels we are considering in this paper.

Several options exist for approximating K. For example, if we have a parametric
model that relates Ki, for each value of n, to a block Toeplitz matrix with Toeplitz
blocks, then this can be used to construct C.

Although this situation may occur in some applications, it may be difficult to
obtain the necessary parametric model. Another approach is to form a weighted
average of the Ki, from which C can be constructed. The weights could be determined
by the size of the image pieces influenced by Ki or by weighting “important” regions
of the image more heavily.

A third approach is to construct bccb(n) approximations of K restricted to each
region. Suppose (for notational convenience only) that each region is ρ×ρ, and define

K̃ = D1K1D1 +D2K2D2 + · · ·+DpKpDp.(4.1)
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If the equations and unknowns are appropriately ordered, K̃ has the form

K̃ =




K̃1 0 · · · 0

0 K̃2 · · · 0
...

...
. . .

...

0 0 · · · K̃p


 ,

where each K̃i is a bttb(ρ) matrix. We use this matrix to construct a preconditioner
as follows. Let Ci denote the optimal bccb(ρ) approximation to K̃i, and define C as

C =




C1 0 · · · 0
0 C2 · · · 0
...

...
. . .

...
0 0 · · · Cp


 .

Since each Ci is bccb(ρ), we can write Ci = F∗ΛiF , where F is the unitary two-
dimensional Fourier transform matrix. Hence, a spectral decomposition of C is given
by

C = (I ⊗F)∗




Λ1

Λ2

. . .

Λp


 (I ⊗F).

Using this spectral decomposition, we can apply the technique suggested in [8] for sep-
arating the signal and noise subspaces: a particular truncated spectral decomposition
of C, which we denote as Cτ , is constructed and used as a preconditioner. Specifically,
a truncation parameter τ is chosen, and the eigenvalues of C with magnitude less than
τ are replaced by 1.

In order to show that Cτ is a good preconditioner, we need to show that the large
singular values of KC−1

τ are clustered around 1, while the small singular values remain
unchanged (i.e., cluster around 0). To get to this point, we first need to consider
the difference K − K̃, which depends on the differences DiKi −DiKiDi. Note that
premultiplication with Di ensures that this difference is zero in all rows corresponding
to variables not in region i. Using (3.2), we see that in the rows corresponding to
region i, nonzeros occur only in columns corresponding to points in the neighboring
regions that are coupled to the ith region. Referring to Figure 3.1, this means that
the nonzeros for block 5, for example, occur only for those points that are outside the
boundary of region 5 but inside the dotted borders. Since there are fewer than 4βρ̂
of these points, there are at most 4βρ̂ nonzero columns, and we have

rank(DiKi −DiKiDi) ≤ 4βρ̂.

Assuming that pρ̂2 < γ2n2 for some constant γ, the following lemma has been estab-
lished.

Lemma 4.1. Let K be given as in (2.1) and K̃ be defined by (4.1) with pρ̂2 < γ2n2.
Then

K − K̃ = U,
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where rank(U) ≤ 4βγn
√
p.

We note that in most image processing applications, the extent of the PSF is
small compared to the image dimensions; thus, β � n. Even if β is large, it is often
the case that the PSF is large only within a small radius of the center point, meaning
that the large nonzero elements in the matrix are few in number. In this case, we
would obtain results of the form

K − K̃ = U + V,

where U has bandwidth β̂ � n wide enough to contain the large elements of the
difference matrix. Then V has small norm and rank(U) = O(β̂n). In view of these
remarks, we assume, as is done in [8] for the spatially invariant case, that the entries

k
(i)
µ,ν of Ki are obtained from an infinite sequence {k(i)

µ,ν} satisfying

∞∑
i=−∞

∞∑
j=−∞

|k(i)
µ,ν | ≤M <∞.

Since the entries of K̃i come from these same generating sequences, the following
lemma holds (cf. [3, Cor. 1]).

Lemma 4.2. For all ε > 0, there exists an N > 0, such that for all n > N ,

K̃i − Ci = Ui + Vi,

where rank(Ui) = O(ρ) and ||Vi|| < ε.
Using the above lemma, the following corollary is easily established.
Corollary 4.3. For all ε > 0, there exists an N > 0, such that for all n > N ,

K̃ − C = U + V,

where rank(U) = O(n) and ||V || < ε.
We now say how well C approximates K.
Theorem 4.4. For all ε > 0, there exists an N > 0, such that for all n > N ,

K − C = U + V,

where rank(U) = O(n) and ||V || < ε.
Proof. Let ε > 0 be given. Then, from Corollary 4.3 and the remarks following

Lemma 4.1, there exists an N > 0 such that for all n > N ,

K − C = K − K̃ + K̃ − C

= U1 + V1 + U2 + V2

= U + V,

where

rank(U) ≡ rank(U1 + U2) = O(n)

and

||V || ≡ ||V1 + V2|| < ε.
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The above theorem implies that, asymptotically, C is a good approximation to K.
To show Cτ is a good preconditioner, we establish the previously discussed clustering
property of the singular values in the following theorem.

Theorem 4.5. Let a tolerance τ > 0 be given, and define Cτ as above. Then
given ε > 0, there exists an N > 0 such that for all n > N , at most O(n) singular
values of KC−1

τ lie outside the interval

(1− ε− τ, 1 + ε+ τ) ∪ [0, ε+ τ).

The details of the proof follow exactly the same lines as those given in [8, Thm.
6.1] and are therefore omitted. As in [8], for moderately ill-posed problems with little
noise, we can take τ ≈ 0. In this case, standard convergence analysis of the conjugate
gradient algorithm implies that at most O(n) iterations are needed to compute an
accurate solution, rather than the O(n2) implied by the size of the problem. We note
that in our numerical tests (see section 5) the preconditioned iteration converged in
far fewer iterations than predicted by this analysis.

4.1.1. Preconditioning piecewise linear convolution functions. In the case
of piecewise linear convolution, we have

K̃ = D̃1K1D1 + D̃2K2D2 + · · ·+ D̃pKpDp,(4.2)

where Di is still a segment of the identity but the D̃i are general nonnegative diagonal
matrices that sum to the identity.

We still get

K̃ =




K̃1 0 · · · 0

0 K̃2 · · · 0
...

...
. . .

...

0 0 · · · K̃p


 ,

but now each K̃i is a sum of three terms, each of them a diagonal matrix times a
bttb(n) matrix.

Each K̃i needs to be approximated by a bccb(ρ) matrix so that the difference
has small rank plus small norm. This can be done if each matrix Ki differs from its
neighboring ones by a matrix of small rank plus a matrix of small norm. In this case,
Lemma 4.2 applies. We can construct the circulant approximation on each subregion
based on one of the three vertex kernels or on an average of the three. We obtain the
following result.

Theorem 4.6. Suppose that there exists an N > 0 such that for all n > N and
for all ε > 0, for each pair of neighboring vertices i and j in the triangulation of
Figure 3.2, the corresponding kernel matrices Ki and Kj satisfy

Dk(Ki −Kj) = Uij + Vij ,

where Dk is a diagonal matrix with ones corresponding to rows in the regions contain-
ing the two vertices and zeros elsewhere, and where rank(Uij) = O(ρ) and ‖Vij‖ < ε.
Then we can construct a block circulant matrix C so that

K − C = U + V,

where rank(U) = O(n) and ||V || < ε.
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5. Numerical results. In this section we present numerical results using con-
jugate gradients (CG) and preconditioned conjugate gradients (PCG) for image de-
blurring. We illustrate the effectiveness of using multiple PSFs, and we study the
behavior of our preconditioning scheme.

In particular, we have observed that using a preconditioner in restoring smooth
images does not reduce the number of iterations necessary to reach a given relative
error tolerance. However, if the original image has many rough contours, then the
preconditioning can be very effective. These properties are illustrated in the second
example, using a checkerboard-patterned image with varying block sizes. We begin,
though, with a more realistic problem used to study the importance of accounting for
spatial dependence in the reconstruction of HST data.

All tests were performed on images of size 256 × 256 using Matlab on a DEC
Alpha 3000/600. Displays were generated using Xv. The truncation parameter τ for
the preconditioner was always taken to be zero.

An astronomy example. As mentioned in section 1, the errors in shaping the
mirrors of the Wide-Field Planetary Camera for the HST resulted in image degra-
dation with a large amount of spatial variation. Although repairs to the HST have
been made, the importance of restoring older images has not diminished. For exam-
ple, images of particular regions of space taken at several different times are used by
astronomers to determine the distances and speeds of moving objects such as stars
and galaxies.

In this first example, we apply our scheme to data used by astronomers to test
and compare image restoration algorithms for HST images; see, for example, the
Newsletter of the STScI’s Image Restoration Project [7] and Katsaggelos, Kang, and
Banham [10]. This data, obtained via anonymous ftp from ftp.stsci.edu, in the di-
rectory /software/stsdas/testdata/restore/sims/star cluster, is intended to
simulate a star cluster image taken by the HST before the camera was fixed. Figure
5.1 displays the true star cluster, and the image as would be given by the HST.1

The bttb(n) matrices Ki can be determined from the known properties of the
camera or, somewhat more reliably, can be constructed experimentally from astro-
nomical data. Each Ki represents the effect of imaging a point source in the region
defined by Di. We approximate the point source by an isolated star in a particular
region. Figure 5.2 is a mesh plot of one of these point source images after normaliza-
tion. If we unstack this image rowwise, we obtain the central column of the banded
bttb(n) matrix Ki. The bandwidth of Ki is determined by the extent of the point
source image (the number of nonzero pixel values) and by the size of the image that
is to be restored. For this problem, the point source image in Figure 5.2 is 32 × 32,
so the bandwidth β = 16.

The degraded image in Figure 5.1 was obtained by convolving each of the 470
stars with a different PSF and adding both readout noise (essentially white Gaussian)
and Poisson noise to the blurred image; see the readme file at the abovementioned
ftp site for details. Although 470 PSFs were used to generate the blurred image, only
25 are available. These PSFs are evenly distributed in the image domain, centered at
positions (28 + 50 ∗ k, 28 + 50 ∗ l), k, l = 0, 1, 2, 3, 4. We denote them as psf00, psf01,
. . ., psf24. Figure 5.3 shows the image domain and the locations of the PSFs.

Since we are given 25 PSFs in various regions of the image, we can use any number

1 In order to avoid oversaturation in the star cluster pictures, each pixel value v was truncated
to min(max(v, 50), 500).
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Original image. Observed HST image.

Fig. 5.1. Original and HST simulated images.
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Fig. 5.2. Mesh plot of the point source image psf06 (normalized).

of them in our tests. Here we report numerical results for the following piecewise-
constant cases:

• One PSF: Since most restoration algorithms are based on spatially invariant
PSFs, we used CG and PCG to compute restorations using only one PSF. The
best solution we were able to obtain using a single PSF occurred with psf11,
and the worst solution was computed using psf04. We emphasize that, in
general, a priori knowledge of which single PSF produces the best restoration
would not be known.

• Four PSFs: Restorations using CG and PCG were computed using the four
PSFs psf06, psf08, psf16, and psf18. This corresponds to dividing the do-
main into four 128×128 regions, each having a single PSF. We note, though,
that matrix-vector multiplications (as discussed in section 3) can be done on
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Fig. 5.3. Locations of the 25 PSFs in the image domain.

smaller-sized regions. In our computations, we used 64 × 64 regions in the
multiplications.

• All PSFs: Finally, restorations using CG and PCG were computed using all 25
PSFs. In this case the image does not divide into uniformly sized regions. For
our computations, we included 52 rows in the five regions along the bottom
edge of the image (see Figure 5.3); all others had 51. Similarly, regions along
the right edge had 52 columns, and all others had 51.

Because the true image is available, we are able to compute the relative error
in our results by taking the Frobenius norm of the difference between the true and
computed images and dividing by the norm of the true image. Figure 5.4 plots the
relative errors vs. number of iterations for CG and PCG. These plots and the resulting
images shown in Figure 5.5 illustrate that much better restorations can be obtained
by using multiple PSFs. For example, the bright star in the upper right corner of
the image appears to be a star cluster when only one PSF is used, but is rendered
more accurately when we allow spatial variation in the PSFs. The preconditioner
substantially reduces the number of iterations needed to compute a good restoration,
but as the theory predicts (see section 4), the more bttb(n) matrices Ki that compose
K, the less effective is the preconditioner.

Piecewise linear interpolation of the PSFs for this specific problem provided no
advantages with respect to reducing the relative errors. For example, a plot of the
relative errors using either CG or PCG with linear interpolation of four PSFs would
be indistinguishable from a plot of the corresponding errors for the piecewise constant
case. In particular, PCG required only three iterations to obtain the best solutions us-
ing both piecewise constant and piecewise linear interpolation, with minimum relative
errors 0.1602 and 0.1607, respectively. This indicates that fast convergence is attain-
able when using linear interpolation and verifies the result of Theorem 4.6. However,
since there is no improvement in the solution, the computationally less expensive
piecewise constant approach should be recommended for this problem.

Checkerboard example. The star cluster example shows that using several
PSFs can considerably improve restoration. Additionally, we see that preconditioning
can have a dramatic effect on convergence rates. The star images have a large amount
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Fig. 5.4. Relative errors using CG and PCG.

of high-frequency information, so the point of our experiments with checkerboard
images was to determine the effectiveness of the preconditioner on images that are
progressively smoother: a checkerboard image with varying block sizes. Figure 5.6
shows the images and their blurred versions. The dimensions of the small blocks in the
images are 4× 4, 16× 16, and 32× 32 pixels. The degraded images were constructed
by dividing the images into four regions of size 128 × 128 and applying one of the
PSFs psf06, psf08, psf16, and psf18 to each of the regions. Normally distributed
random noise was added, scaled so that the Frobenius norm of the noise was 0.001
times the Frobenius norm of the blurred image.

We used CG and PCG, with four PSFs and the preconditioner described in section
4, to restore each of the checkerboard images. The relative error plots are shown in
Figure 5.7. We see that for smooth images (block size = 32), the preconditioner does
not perform well. However, for rougher images (block size = 4), the preconditioner is
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True image. Best single PSF solution (2 iterations).

Solution using 4 PSFs (3 iterations). Solution using 25 PSFs (39 iterations).

Fig. 5.5. Comparisons of PCG-computed solutions.

very effective in reducing the number of iterations needed to compute a good restora-
tion. Computed solutions are shown in Figure 5.8. Since the error is monotonically
decreasing as the number of iterations increases, we chose to avoid the question of
termination criteria and simply compare solutions that resulted from approximately
equal amounts of work: the PCG solutions at iteration 14 and the CG solutions at
iteration 20. Using the error plots in Figure 5.7 as a guide, for block size = 4 we
expect the 14 iterations of PCG to provide a better restoration than 20 iterations of
CG. Although at first glance this does not appear to be the case, enlargements of a
32× 32 central portion of the two solutions, shown in Figure 5.9, reveals that indeed
a better restoration is obtained by PCG.
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Fig. 5.6. Original and degraded checkerboard images.
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Fig. 5.7. CG and PCG relative errors for checkerboard images.
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Fig. 5.8. Computed solutions after 20 iterations of CG (left) and 14 iterations of PCG (right)
for each checkerboard image.
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Fig. 5.9. Enlargement of a 32 × 32 central portion of CG (left) and PCG (right) restorations
for block size = 4.

6. Final remarks. We have developed effective iterative methods for solving
convolution problems in which the matrix has piecewise-constant or piecewise-linear
spatial variance. This scheme has inherent parallelism, and in future work we will
develop parallel algorithms based on these ideas.
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