
BFGS WITH UPDATE SKIPPING AND VARYING MEMORY∗

TAMARA G. KOLDA† , DIANNE P. O’LEARY‡ , AND LARRY NAZARETH§

SIAM J. OPTIM. c© 1998 Society for Industrial and Applied Mathematics
Vol. 8, No. 4, pp. 1060–1083, November 1998 012

Abstract. We give conditions under which limited-memory quasi-Newton methods with exact
line searches will terminate in n steps when minimizing n-dimensional quadratic functions. We show
that although all Broyden family methods terminate in n steps in their full-memory versions, only
BFGS does so with limited-memory. Additionally, we show that full-memory Broyden family methods
with exact line searches terminate in at most n + p steps when p matrix updates are skipped. We
introduce new limited-memory BFGS variants and test them on nonquadratic minimization problems.

Key words. minimization, quasi-Newton, BFGS, limited-memory, update skipping, Broyden
family

AMS subject classifications. 65K10, 65H10

PII. S1052623496306450

1. Introduction. The quasi-Newton family of algorithms remains a standard
workhorse for minimization. Many of these methods share the properties of finite
termination on strictly convex quadratic functions, a linear or superlinear rate of
convergence on general convex functions, and no need to store or evaluate the second
derivative matrix. In general, an approximation to the second derivative matrix is
built by accumulating the results of earlier steps. Descriptions of many quasi-Newton
algorithms can be found in books by Luenberger [17] and Dennis and Schnabel [8].

Although there are an infinite number of quasi-Newton methods, one method
surpasses the others in popularity: the BFGS algorithm of Broyden, Fletcher, Gold-
farb, and Shanno; see, e.g., Dennis and Schnabel [8]. This method exhibits more
robust behavior than its relatives. Many attempts have been made to explain this
robustness, but a complete understanding has yet to be obtained [24]. One result of
the work in this paper is a small step toward this understanding, since we investigate
the question of how much and which information can be dropped in BFGS and other
quasi-Newton methods without destroying the property of quadratic termination.

We answer this question in the context of exact line search methods, those that
find a minimizer on a one-dimensional subspace at every iteration. (In practice,
inexact line searches that satisfy side conditions such as those proposed by Wolfe (see
section 4.3) are substituted for exact line searches.) We focus on modifications of
well-known quasi-Newton algorithms resulting from limiting the memory, either by
discarding the results of early steps (section 2) or by skipping some updates to the
second derivative approximation (section 3). We give conditions under which quasi-
Newton methods will terminate in n steps when minimizing quadratic functions of n
variables. Although all Broyden family methods (see section 2) terminate in n steps

∗Received by the editors July 10, 1996; accepted for publication (in revised form) October 3, 1997;
published electronically September 23, 1998.

http://www.siam.org/journals/siopt/8-4/30645.html
†Computational Methods, Building 6012, P.O. Box 2008, Oak Ridge National Laboratory, Oak

Ridge, TN 37831-6367 (kolda@msr.epm.ornl.gov). This work was supported in part by the National
Physical Science Consortium, the National Security Agency, and the University of Maryland.
‡Department of Computer Science and Institute for Advanced Computer Studies, University of

Maryland, College Park, MD 20742 (oleary@cs.umd.edu). This work was supported by the National
Science Foundation under grant NSF CCR-95-03126.
§Department of Pure and Applied Mathematics, Washington State University, Pullman, WA

99164 (nazareth@amath.washington.edu).

1060

LIMITED-MEMORY BFGS VARIATIONS 1061

in their full-memory versions, we show that only BFGS has n-step termination under
limited-memory. We also show that the methods from the Broyden family terminate
in n + p steps even if p updates are skipped, but termination is lost if we both skip
updates and limit the memory.

In section 4, we report the results of experiments with new limited-memory
BFGS(L-BFGS) variants on problems taken from the constrained and unconstrained
testing environment (CUTE) [3] test set, showing that some savings in time can be
achieved.

Notation. Matrices and vectors are denoted by boldface uppercase and lowercase
letters, respectively. Scalars are denoted by Greek or Roman letters. The superscript
“T” denotes transposition. Subscripts denote iteration number. Products are always
taken from left to right:

k∏
i=j

Bj =

{
Bj ·Bj+1 · · ·Bk if j ≤ k,
I otherwise.

The notation span{x1,x2, . . . ,xk} denotes the subspace spanned by x1,x2, . . . ,xk.
Whenever we refer to an n-dimensional strictly convex quadratic function, we assume
it is of the form

f(x) =
1

2
xTAx− xTb,

where A is a positive definite n× n matrix and b is an n-vector.

2. Limited-memory variations of quasi-Newton algorithms. In this sec-
tion we characterize full-memory and limited-memory methods that terminate in n
iterations on n-dimensional strictly convex quadratic minimization problems using ex-
act line searches. Most full-memory versions of the methods we will discuss are known
to terminate in n iterations. Limited-memory methods store the quasi-Newton ma-
trix implicitly and require less memory; furthermore, the computation of the search
direction is often less expensive since it involves the implicitly stored matrix. L-BFGS
was shown by Nocedal [23] to terminate in n steps. The preconditioned conjugate
gradient method, which can be cast as a limited-memory quasi-Newton method, is
also known to terminate in n iterations; see, e.g., Luenberger [17] or Golub and Van
Loan [12]. Little else is known about termination of limited-memory methods.

Let f(x) denote the strictly convex quadratic function to be minimized, and let
g(x) denote the gradient of f . We define gk ≡ g(xk), where xk is the kth iterate and
denote the change in iterate and gradient by

sk = xk+1 − xk,

yk = gk+1 − gk.

We present a general result that characterizes quasi-Newton methods (see Figure 2.1)
that terminate in n iterations. We restrict ourselves to methods with an update of
the form

Hk+1 = γkP
T
kH0Qk +

mk∑
i=1

wikz
T
ik.(2.1)

Here,
1. H0 is an n× n symmetric positive definite matrix that remains constant for

all k, and γk is a nonzero scalar that can be thought of as an iterative rescaling of
H0;

1062 T. G. KOLDA, D. P. O’LEARY, AND L. NAZARETH

Let x0 be the starting point, and let H0 be the initial inverse Hessian approximation.
For k = 0, 1, . . .

1. Compute dk = −Hkgk.
2. Choose αk > 0 such that f(xk + αdk) ≥ f(xk + αkdk) for all α > 0.
3. Set sk = αkdk.
4. Set xk+1 = xk + sk.
5. Compute gk+1.
6. Set yk = gk+1 − gk.
7. Choose Hk+1.

Fig. 2.1. General quasi-Newton method.

2. Pk is an n× n matrix that is the product of projection matrices of the form

I− uvT

uTv
,(2.2)

where u ∈ span{y0, . . . ,yk} and v ∈ span{s0, . . . , sk+1}1, and Qk is an n× n matrix
that is the product of projection matrices of the same form where u is any n-vector
and v ∈ span{s0, . . . , sk};

3. mk is a nonnegative integer, wik (i = 1, 2, . . . ,mk) is any n-vector, and zik
(i = 1, 2, . . . ,mk) is any vector in span{s0, . . . , sk}.

We refer to this form as the general form. The general form fits many known
quasi-Newton methods, including the Broyden family and the L-BFGS method. We
do not assume that these quasi-Newton methods satisfy the secant condition

Hk+1yk = sk,

nor that Hk+1 is positive definite and symmetric. Symmetric positive definite updates
are desirable since this guarantees that the quasi-Newton method produces descent
directions. Note that if the update is not positive definite, we may produce a dk such
that dTk gk > 0, in which case we choose αk over all negative α rather than all positive
α.

Example 1. The method of steepest descent [17] fits the general form (2.1). For
each k we define

γk = 1, mk = 0, and Pk = Qk = H0 = I.(2.3)

Note that neither w nor z vectors are specified since mk = 0.
Example 2. The (k + 1)st update for the conjugate gradient method with pre-

conditioner H0 fits the general form (2.1) with

γk = 1, mk = 0, Pk = I− yks
T
k

sTk yk
, and Qk = I.(2.4)

Example 3. A full-memory quasi-Newton method can be converted into a limited-
memory method in the following way. Define Hk+1 to be the result of applying the

1The vector sk+1 has not yet been explicitly calculated but is needed here only for the theoretical
framework, not for the computational algorithms. In fact, it may also be available computationally
in algorithms such as the limited memory DFP; see the proof of Proposition 2.1.

LIMITED-MEMORY BFGS VARIATIONS 1063

update formula to H0 m times using the m most recent (s,y) pairs. The L-BFGS
update (see Nocedal [23]) with limited-memory constant m can be written as

Hk+1 = VT
k−mk+1,kH0Vk−mk+1,k +

k∑
i=k−mk+1

VT
i+1,k

sis
T
i

sTi yi
Vi+1,k,(2.5)

where mk = min{k + 1,m} and

Vik =
k∏
j=i

(
I− yis

T
i

sTi yi

)
.

L-BFGS fits the general form (2.1) if at iteration k we choose

γk = 1, mk = min{k + 1,m},(2.6)

Pk = Qk = Vk−mk+1,k, and

wik = zik =
(Vk−mk+i+1,k)T (sk−mk+i)√

(sk−mk+i)T (yk−mk+i)
.

Observe that Pk,Qk, and zik all obey the constraints imposed on their construction.
Example 4. We define limited-memory DFP (L-DFP) in a similar way: Hk+1 =

Ĥ
(mk)
k+1 , where, for i = 0, . . . ,mk,

Ĥ
(0)
k+1 = H0

and

Ĥ
(i)
k+1 = Ĥ

(i−1)
k+1 + UDFP(Ĥ

(i−1)
k+1 , sk−mk+i,yk−mk+i),

with

UDFP(H, s,y) = −HyyTH

yTHy
+

ssT

sTy
.

To simplify our description, note that Ĥ
(i)
k+1 can be rewritten as

Ĥ
(i)
k+1 =

(
I− Ĥ

(i−1)
k+1 yk−mk+iy

T
k−mk+i

yTk−mk+iĤ
(i−1)
k+1 yk−mk+i

)
Ĥ

(i−1)
k+1 +

sk−mk+is
T
k−mk+i

sTk−mk+iyk−mk+i

=
(
V̂

(i)
0k

)T
H0 +

i∑
j=1

(
V̂

(i)
jk

)T sk−mk+js
T
k−mk+j

sTk−mk+jyk−mk+j
,

for i ≥ 1, where

V̂
(i)
jk =

i∏
l=j+1

I−
yk−mk+l

(
H

(l−1)
k+1 yk−mk+l

)T
yTk−mk+lH

(l−1)
k+1 yk−mk+l

 .
Thus Hk+1 can be written as

Hk+1 = VT
0kH0 +

mk∑
i=1

(
VT
ik

sk−mk+is
T
k−mk+i

sTk−mk+iyk−mk+i

)
,(2.7)

1064 T. G. KOLDA, D. P. O’LEARY, AND L. NAZARETH

where

Vik =

mk∏
j=i+1

I−
yk−mk+j

(
Ĥ

(j−1)
k+1 yk−mk+j

)T
yTk−mk+jĤ

(j−1)
k+1 yk−mk+j

 .
Equation (2.7) looks very much like the general form given in (2.1). L-DFP fits the
general form with the following choices:

γk = 1, Pk = V0k, Qk = I,(2.8)

wik = VT
iksk−mk+i/(s

T
k−mk+iyk−mk+i), and zik = sk−mk+i.

Except for the choice of Pk, it is trivial to verify that the choices satisfy the general
form. To prove that Pk satisfies the requirements, we need to show

Ĥ
(i−1)
k+1 yk−mk+i ∈ span{s0, . . . , sk+1}, for i = 1, . . . ,mk and all k.(2.9)

Proposition 2.1. For L-DFP, the following three conditions hold for each value
of k:

Ĥ
(i−1)
k+1 yk−mk+i ∈ span{s0, . . . , sk} for i = 1, . . . ,mk − 1,(2.10)

Ĥ
(i−1)
k+1 yk−mk+i ∈ span{s0, . . . , sk,H0gk+1} for i = mk, and(2.11)

span{H0g0, . . . ,H0gk+1} ⊆ span{s0, . . . , sk+1}.(2.12)

Proof. We will prove this via induction. Suppose k = 0. Then m0 = 1. We have

Ĥ
(0)
k+1yk = H0y0 = H0g1 −H0g0 ∈ span{s0,H0g1}.

(Recall that span{s0} is trivially equal to span{H0g0}.) Furthermore,

s1 = −α1H1g1

= −α1

[
H0g1 − yT0 H0g1

yT0 H0y0
(H0g1 −H0g0) +

sT0 g1

yT0 s0
s0

]
.

So we can conclude(
1− yT0 H0g1

yT0 H0y0

)
H0g1 = −

[
1

α1
s1 +

yT0 H0g1

yT0 H0y0
H0g0 +

sT0 g1

yT0 s0
s0

]
.

Hence, H0g1 ∈ span{s0, s1}, and so the base case holds.
Assume that

Ĥ
(i−1)
k yk−1−mk−1+i ∈ span{s0, . . . , sk−1} for i = 1, . . . ,mk−1 − 1,

Ĥ
(i−1)
k yk−1−mk−1+i ∈ span{s0, . . . , sk−1,H0gk} for i = mk−1, and

span{H0g0, . . . ,H0gk} ⊆ span{s0, . . . , sk}.

Using the induction assumption, we will show that (2.10)–(2.12) holds for (k+1). We
show (2.10) for i = 1, . . . ,mk − 1. For i = 1 (assume mk > i),

Ĥ
(0)
k+1yk−mk+1 = H0yk−mk+1 = H0gk−mk+2 −H0gk−mk+1.

LIMITED-MEMORY BFGS VARIATIONS 1065

Using the induction hypothesis, we get that

Ĥ
(0)
k+1yk−mk+1 ∈ span{s0, . . . , sk}.

Assume that

Ĥ
(j)
k+1yk−mk+j+1 ∈ span{s0, . . . , sk}(2.13)

for j between 1 and i− 2, i ≤ mk − 2. Then

Ĥ
(i−1)
k+1 yk−mk+i =

(
V̂

(i−1)
0k

)T
H0yk−mk+i

+
i−1∑
j=1

sTk−mk+j−1yk−mk+i

sTk−mk+j−1yk−mk+j−1

(
V̂

(i−1)
jk

)T
sk−mk+j−1.

For values of i ≤ mk − 1,
(
V̂

(i−1)
jk

)T
maps any vector v into

span{v, Ĥ(0)
k+1yk−mk+1, . . . , Ĥ

(i−2)
k+1 yk−2},

and so Ĥ
(i−1)
k+1 yk−mk+i is in

span{H0yk−mk+i, Ĥ
(0)
k+1yk−mk+1, . . . , Ĥ

(i−2)
k+1 yk−2, sk−mk+1, . . . , sk−2}.

Using the induction hypothesis and (2.13), we get

Ĥ
(i−1)
k+1 yk−mk+i ∈ span{s0, . . . , sk},

and we can conclude that (2.10) is true for i = 1, . . . ,mk − 1 in the (k + 1)st case. If
i = mk, then

Ĥ
(mk−1)
k+1 yk ∈ span{H0yk, Ĥ

(0)
k+1yk−mk+1, . . . , Ĥ

(mk−2)
k+1 yk−1, sk−mk+1, . . . , sk−1},

so

Ĥ
(mk−1)
k+1 yk ∈ span{s0, . . . , sk,H0gk+1}.

Hence (2.11) is true for (k + 1).
Now, consider

sk+1 = −αk+1Hk+1gk+1

= VT
0kH0gk+1 +

mk∑
i=1

sTk−mk+igk+1

sTk−mk+iyk−mk+i
VT
iksk−mk+i.

Using the structure of Vjk and (2.10) we see that H0gk+1 ∈ span{s0, . . . , sk+1}.
Hence, (2.12) also holds for (k + 1).

Example 5. The Broyden family is the class of quasi-Newton methods whose
matrices are linear combinations of the DFP and BFGS matrices:

Hk+1 = φHBFGS
k+1 + (1− φ) HDFP

k+1 , φ ∈ R;

1066 T. G. KOLDA, D. P. O’LEARY, AND L. NAZARETH

see, e.g., Luenberger [17, Chap. 9]. The parameter φ is usually restricted to values
that are guaranteed to produce a positive definite update, although recent work with
SR1, a Broyden family method, by Khalfan, Byrd, and Schnabel [15] may change this
practice. No restriction on φ is necessary for the development of our theory. The
Broyden family update can be expressed as

Hk+1 = Hk +
sks

T
k

sTk yk
− Hkyky

T
k Hk

yTk Hkyk

+ φ (yTk Hkyk)

(
sk

sTk yk
− Hkyk

yTk Hkyk

)(
sk

sTk yk
− Hkyk

yTk Hkyk

)T
.

We sketch the explanation of how the full-memory version fits the general form
given in (2.1). The limited-memory case is similar. We can rewrite the Broyden
family update as follows:

Hk+1 = Hk + (φ− 1)
Hkyky

T
k

yTk Hkyk
Hk − φ sky

T
k

sTk yk
Hk +

sks
T
k

sTk yk

+ φ
yTk Hkyk · sksTk

(sTk yk)2
− φ Hkyks

T
k

sTk yk

=

[
I−

(
(1− φ)sTk yk ·Hkyk + φyTk Hkyk · sk

)
yTk

yTk Hkyk · sTk yk

]
Hk

+

[(
1 + φ

yTk Hkyk
sTk yk

)
sk − φHkyk

]
sTk

sTk yk
.

Hence,

Hk+1 = V0kH0 +
k+1∑
i=1

wikz
T
ik,

where

Vik =
k∏
j=i

[
I−

(
(1− φ)sTj yj ·Hjyj + φyTj Hjyj · sj

)
yTj

yTj Hjyj · sTj yj

]
,

wik = Vik

[(
1 + φ

yTi−1Hi−1yi−1

sTi−1yi−1
si−1

)
− φHi−1yi−1

]
, and zik =

sTi−1

sTi−1yi−1
.

It is left to the reader to show that Hkyk is in span{s0, . . . , sk+1}, and thus the
Broyden family updates fit the form in (2.1).

2.1. Termination of limited-memory methods. In this section we show that
methods fitting the general form (2.1) produce conjugate search directions (see Theo-
rem 2.2) and terminate in n iterations (see Corollary 2.3) if and only if Pk maps the
vectors y0 through yk into span{y0, . . . ,yk−1} for each k = 1, 2, . . . , n. Furthermore,
this condition on Pk is satisfied only if yk is used in its formation (see Corollary 2.4).

Theorem 2.2. Suppose that we apply a quasi-Newton method (Figure 2.1) with
an update of the form (2.1) to minimize an n-dimensional strictly convex quadratic
function. Then for each k before termination (i.e., gk+1 6= 0),

gTk+1sj = 0, for all j = 0, 1, . . . , k,(2.14)

sTk+1Asj = 0, for all j = 0, 1, . . . , k, and(2.15)

span{s0, . . . , sk+1} = span{H0g0, . . . ,H0gk+1},(2.16)

LIMITED-MEMORY BFGS VARIATIONS 1067

if and only if

Pjyi ∈ span{y0, . . . ,yj−1} for all i = 0, 1, . . . , j, j = 0, 1, . . . , k.(2.17)

Proof. (⇐) Assume that (2.17) holds. We will prove (2.14)–(2.16) by induction.
Since the line searches are exact, g1 is orthogonal to s0. Using the fact that P0y0 = 0
from (2.17) and the fact that zi0 ∈ span{s0} implies gT1 zi0 = 0, i = 1, . . . ,mk, we see
that s1 is conjugate to s0 since

sT1 As0 = α1d
T
1 y0

= −α1g
T
1 HT

1 y0

= −α1g
T
1

(
γ0Q

T
0 H0P0 +

m0∑
i=0

zi0w
T
i0

)
y0

= 0.

Finally, span{s0} = span{H0g0}, and so the base case is established.

We will assume that claims (2.14)–(2.16) hold for k = 0, 1, . . . , k̂ − 1 and prove

that they also hold for k = k̂.
The vector gk̂+1 is orthogonal to sk̂ since the line search is exact. Using the

induction hypotheses that gk̂ is orthogonal to {s0, . . . , sk̂−1} and sk̂ is conjugate to

{s0, . . . , sk̂−1}, we see that, for j < k̂,

gT
k̂+1

sj = (gk̂ + yk̂)T sj = (gk̂ + Ask̂)T sj = 0.

Hence, (2.14) holds for k = k̂.
To prove (2.15), we note that

sT
k̂+1

Asj = −αk̂+1g
T
k̂+1

HT
k̂+1

yj ,

so it is sufficient to prove that gT
k̂+1

HT
k̂+1

yj = 0 for j = 0, 1, . . . , k̂. We will use the

following facts:
(i) gT

k̂+1
QT
k̂

= gT
k̂+1

since the v in each of the projections used to form Qk̂ is in

span{s0, . . . , sk̂}, and gk̂+1 is orthogonal to that span.

(ii) gT
k̂+1

zik̂ = 0 for i = 1, . . . ,mk̂ since each zik̂ is in span{s0, . . . , sk̂}, and gk̂+1

is orthogonal to that span.
(iii) Since we are assuming that (2.17) holds true, for each j = 0, 1, . . . , k̂ there

exist µ0, . . . , µk̂−1 such that Pk̂yj can be expressed as
∑k̂−1
i=0 µiyi.

(iv) For i = 0, 1, . . . , k̂−1, gk̂+1 is orthogonal to H0yi because gk̂+1 is orthogonal
to span{s0, . . . , sk̂} and H0yi ∈ span{s0, . . . , sk̂} from (2.16).

Thus,

gT
k̂+1

HT
k̂+1

yj = gT
k̂+1

(
γk̂Q

T
k̂
H0Pk̂ +

mk̂∑
i=1

zik̂w
T
ik̂

)
yj

= γk̂g
T
k̂+1

QT
k̂
H0Pk̂yj +

mk̂∑
i=1

gT
k̂+1

zik̂w
T
ik̂

yj

= γk̂g
T
k̂+1

H0Pk̂yj

1068 T. G. KOLDA, D. P. O’LEARY, AND L. NAZARETH

= γk̂g
T
k̂+1

H0

k̂−1∑
i=1

µiyi


= γk̂

k̂−1∑
i=1

µig
T
k̂+1

H0yi

= 0.

Thus, (2.15) holds for k = k̂.
Finally, using (i) and (ii) from above,

sk̂+1 = −αk̂+1Hk̂+1gk̂+1

= −αk̂+1

(
γk̂P

T
k̂
H0Qk̂gk̂+1 +

mk̂∑
i=1

wik̂z
T
ik̂

gk̂+1

)
= −αk̂+1γk̂P

T
k̂
H0gk̂+1.

Since PT
k̂

maps any vector v into span{v, s0, . . . , sk̂+1} by construction, there exist
σ0, . . . , σk̂+1 such that

sk̂+1 = −αk̂+1γk̂

H0gk̂+1 +
k̂+1∑
i=0

σisi

 .

Hence,

H0gk̂+1 ∈ span{s0, . . . , sk̂+1},
so

span{H0g0, . . . ,H0gk̂+1} ⊆ span{s0, . . . , sk̂+1}.
To show equality of the sets, we will show that H0gk̂+1 is linearly independent of
{H0g0, . . . ,H0gk̂}. (We already know that the vectors H0g0, . . . ,H0gk̂ are linearly in-
dependent since they span the same space as the linearly independent set {s0, . . . , sk̂}.)
Suppose that H0gk̂+1 is not linearly independent. Then there exist φ0, . . . , φk̂, not
all zero, such that

H0gk̂+1 =
k̂∑
i=0

φiH0gi.

Recall that gk̂+1 is orthogonal to {s0, . . . , sk̂}. By our induction assumption, this
implies that gk̂+1 is also orthogonal to {H0g0, . . . ,H0gk̂}. Thus, for any j between 0

and k̂,

0 = gT
k̂+1

H0gj =

 k̂∑
i=0

φiH0gi

T

gj =
k̂∑
i=0

φig
T
i H0gj = φjg

T
j H0gj .

Since H0 is positive definite and gj is nonzero, we conclude that φj must be zero.

Since this is true for every j between zero and k̂, we have a contradiction. Thus, the
set {H0g0, . . . ,H0gk̂+1} is linearly independent. Hence, (2.16) holds for k = k̂.

LIMITED-MEMORY BFGS VARIATIONS 1069

(⇒) Assume that (2.14)–(2.16) hold for all k such that gk+1 6= 0 but that (2.17)
does not hold; i.e., there exist j and k such that gk+1 6= 0, j is between 0 and k, and

Pkyj 6∈ span{y0, . . . ,yk−1}.(2.18)

This will lead to a contradiction. By construction of Pk, there exist µ0, . . . , µk such
that

Pkyj =

k∑
i=0

µiyi.(2.19)

By assumption (2.18), µk must be nonzero. From (2.15), it follows that gTk+1H
T
k+1yj =

0. Using facts (i), (ii), and (iv) from before, (2.16), and (2.19), we get

0 = gTk+1H
T
k+1yj = gTk+1

(
γkQ

T
kH0Pk +

mk∑
i=1

zikw
T
ik

)
yj

= γkg
T
k+1Q

T
kH0Pkyj +

mk∑
i=1

gTk+1zikw
T
ikyj

= γkg
T
k+1H0Pkyj

= γkg
T
k+1H0

(
k∑
i=0

µiyi

)
= γkµkg

T
k+1H0yk

= γkµk
(
gTk+1H0gk+1 − gTk+1H0gk

)
= γkµkg

T
k+1H0gk+1.

Thus, since neither γk nor µk is zero, we must have

gTk+1H0gk+1 = 0,

but this is a contradiction since H0 is positive definite and gk+1 was assumed to be
nonzero.

When a method produces conjugate search directions, we can say something about
termination.

Corollary 2.3. Suppose we have a method of the type described in Theorem 2.2
satisfying (2.17). Suppose further that Hkgk 6= 0 whenever gk 6= 0. Then the scheme
reproduces the iterates from the conjugate gradient method with preconditioner H0 and
terminates in no more than n iterations.

Proof. Let k be such that g0, . . . ,gk are all nonzero and such that Higi 6= 0
for i = 0, . . . , k. Since we have a method of the type described in Theorem 2.2
satisfying (2.17), conditions (2.14)–(2.16) hold. We claim that the (k + 1)st sub-
space of search directions, span{s0, . . . , sk}, is equal to the (k+ 1)st Krylov subspace,
span{H0g0, . . . , (H0A)kH0g0}.

From (2.16), we know that span{s0, . . . , sk} = span{H0g0, . . . ,H0gk}. We will
show via induction that span{H0g0, . . . ,H0gk} = span{H0g0, . . . , (H0A)kH0g0}.
This base case is trivial, so assume that

span{H0g0, . . . ,H0gi} = span{H0g0, . . . , (H0A)iH0g0}

1070 T. G. KOLDA, D. P. O’LEARY, AND L. NAZARETH

for some i < k. Now,

gi+1 = Axi+1 − b = A(xi + si)− b = Asi + gi,

and from (2.16) and the induction hypothesis,

si ∈ span{H0g0, . . . ,H0gi} = span{H0g0, . . . , (H0A)iH0g0},
which implies that H0Asi ∈ span{(H0A)H0g0, . . . , (H0A)i+1H0g0}. So,

H0gi+1 ∈ span{H0g0, . . . , (H0A)i+1H0g0}.
Hence, the search directions span the Krylov subspace. Since the search directions
are conjugate (2.15) and span the Krylov subspace, the iterates are the same as those
produced by conjugate gradients with preconditioner H0.

Since we produce the same iterates as the conjugate gradient method and the
conjugate gradient method is well known to terminate within n iterations, we can
conclude that this scheme terminates in at most n iterations.

Note that we require that Hkgk be nonzero whenever gk is nonzero; this require-
ment is necessary since not all the methods produce positive definite updates and it
is possible to construct an update that maps gk to zero. If this were to happen, we
would have a breakdown in the method.

The next corollary defines the role that the latest information (sk and yk) plays
in the formation of the kth H-update.

Corollary 2.4. Suppose we have a method of the type described in Theo-
rem 2.2 satisfying (2.17). Suppose further that at the kth iteration Pk is composed
of p projections of the form in (2.2). Then at least one of the projections must have

u =
∑k
i=0 σiyi with σk 6= 0. Furthermore, if Pk is a single projection (p = 1), then v

must be of the form v = ρksk + ρk+1sk+1 with ρk 6= 0.
Proof. Consider the case of p = 1. We have

Pk = I− uvT

vTu
,

where u ∈ span{y0, . . . ,yk} and v ∈ span{s0, . . . , sk+1}. We will assume that

u =

k∑
i=0

σiyi and v =

k+1∑
i=0

ρisi

for some scalars σi and ρi. By (2.17), there exist µ0, . . . , µk−1 such that

Pkyk =
k−1∑
i=0

µiyi.

Then

yk − vTyk
vTu

u =
k−1∑
i=0

µiyi,

and so

vTyk
vTu

u = yk −
k−1∑
i=0

µiyi.(2.20)

LIMITED-MEMORY BFGS VARIATIONS 1071

From (2.15), the set {s0, . . . sk} is conjugate and thus linearly independent. Since we
are working with a quadratic, yi = Asi for all i, and since A is symmetric positive
definite, the set {y0, . . . ,yk} is also linearly independent. So the coefficient of the yk
on the left-hand side of (2.20) must match that on the right-hand side, thus

vTyk
vTu

σk = 1.

Hence, σk 6= 0 and yk must make a nontrivial contribution to Pk.

Next we will show that ρ0 = ρ1 = · · · = ρk−1 = 0. Assume that j is between 0
and k − 1. Then

Pkyj = yj − vTyj
vTu

u

= yj −
(∑k+1

i=1 ρisi

)T
yj

vTu
u

= yj −
∑k+1
i=1 ρis

T
i Asj

vTu
u

= yj −
ρjs

T
j Asj

vTu
u.

Now sjAsj is nonzero because A is positive definite. If ρj is nonzero, then the
coefficient of u is nonzero, and so yk must make a nontrivial contribution to Pkyj ,
implying that Pkyj 6∈ span{y0, . . . ,yk−1}. This is a contradiction. Hence, ρj = 0.

To show that ρk 6= 0, consider Pkyk. Suppose that ρk = 0. Then

vTyk = ρk+1y
T
k sk+1 + ρky

T
k sk

= ρk+1s
T
kAsk+1

= 0,

and so

Pkyk = yk − vTyk
vTu

u = yk.

This contradicts Pkyk ∈ span{y0, . . . ,yk−1}, so ρk must be nonzero.

Now we will discuss the p > 1 case. Label the u-components of the p projections
as u1 through up. Then

Pkyk = yk +

p∑
i=1

γiui

for some scalars γ1 through γp. Furthermore, each ui can be written as a linear
combination of {y0,y1, . . . ,yk}, so

Pkyk = yk +

p∑
i=1

k∑
j=0

γiσijyj

1072 T. G. KOLDA, D. P. O’LEARY, AND L. NAZARETH

for some scalars σ10 through σpk. Since Pkyk ∈ span{y0, . . . ,yk−1} and yk 6∈
span{y0, . . . ,yk−1}, we must have

1 +

p∑
i=1

γiσik = 0.

Thus σik must be nonzero for some i, and we can conclude that at least one ui must
have a nontrivial contribution from yk.

2.2. Examples of methods that reproduce the conjugate gradient iter-
ates. Here are some specific examples of methods that fit the general form, satisfy
condition (2.17) of Theorem 2.2, and thus terminate in at most n iterations. The con-
jugate gradient, L-BFGS, and DFP examples are well-known results, but Corollary 2.5
is original.

Example 6. The conjugate gradient method with preconditioner H0 (see (2.4))
satisfies condition (2.17) of Theorem 2.2 since

Pkyj =

(
I− yks

T
k

sTk yk

)
yj = 0 for all j = 0, . . . , k.

Example 7. L-BFGS (see (2.6)) satisfies condition (2.17) of Theorem 2.2 since

Pkyj =

{
0 for j = k −mk + 1, . . . , k,
yj for j = 0, . . . , k −mk.

Example 8. DFP (with full memory) (see (2.8)) satisfies condition (2.17) of
Theorem 2.2. Consider Pk in the full-memory case. We have

Pk =
k∏
i=0

(
I− yiyiH

T
i

yTi Hiyi

)
.

For full-memory DFP, Hiyj = sj for j = 0, . . . , i− 1. Using this fact, one can easily
verify that Pkyj = 0 for j = 0, . . . , k. Therefore, full-memory DFP satisfies condition
(2.17) of Theorem 2.2. The same reasoning does not apply to the limited-memory
case, as we shall show in section 2.3.

The next corollary gives some ideas for other methods that are related to L-BFGS
and terminate in at most n iterations on strictly convex quadratics.

Corollary 2.5. The L-BFGS (2.5) method with exact line search will terminate
in n iterations on an n-dimensional strictly convex quadratic function even if any
combination of the following modifications is made to the update:

1. Vary the limited-memory constant, keeping mk ≥ 1.
2. Form the projections used in Vk from the most recent (sk,yk) pair along with

any set of m− 1 other pairs from {(s0,y0), . . . , (sk−1,yk−1)}.
3. Form the projections used in Vk from the most recent (sk,yk) pair along with

any m− 1 other linear combinations of pairs from {(s0,y0), . . . , (sk−1,yk−1)}.
4. Iteratively rescale H0.

Proof. For each variant, we show that the method fits the general form in (2.1),
satisfies condition (2.17) of Theorem 2.2, and hence terminates by Corollary 2.3:

1. Let m > 0 be any value which may change from iteration to iteration, and
define

Vik =
k∏
j=i

(
I− yjs

T
j

sTj yj

)
.

LIMITED-MEMORY BFGS VARIATIONS 1073

Choose

γk = 1, mk = min{k + 1,m},
Pk = Qk = Vk−mk+1,k, and

wik = zik =
(Vk−mk+i+1,k)T (sk−mk+i)√

(sk−mk+i)T (yk−mk+i)
.

These choices fit the general form. Furthermore,

Pkyj =

{
0 if j = k −mk, k −mk + 1, . . . , k,
yj if j = 0, 1, . . . , k −mk − 1,

so this variation satisfies condition (2.17) of Theorem 2.2.
2. This is a special case of the next variant.

3. At iteration k, let (ŝ
(i)
k , ŷ

(i)
k) denote the ith (i = 1, . . . ,m− 1) choice of any

linear combination from the span of the set

{(s0,y0), . . . , (sk−1,yk−1)},

and let (ŝ
(m)
k , ŷ

(m)
k) = (sk,yk). Define

Vik =
m∏
j=i

(
I− (ŷ

(i)
k)(ŝ

(i)
k)T

(ŝ
(i)
k)T (ŷ

(i)
k)

)
.

Choose

γk = 1, mk = min{k + 1,m},
Pk = Qk = V1,k, and

wik = zik =
(Vi+1,k)T (ŝ

(i)
k)√

(ŝ
(i)
k)T (ŷ

(i)
k)

.

These choices satisfy the general form (2.1). Furthermore,

Pkyj =

{
0 if yj = y

(i)
k for some i,

yj otherwise.

Hence, this variation satisfies condition (2.17) of Theorem 2.2.
4. Let γk in (2.1) be the scaling constant and choose the other vectors and

matrices as in L-BFGS (2.6).
Combinations of variants are left to the reader.
Remark 1. Part 3 of the previous corollary shows that the “accumulated step”

method of Gill and Murray [11] terminates on quadratics.
Remark 2. Part 4 of the previous corollary shows that scaling does not affect

termination in L-BFGS. In fact, for any method that fits the general form, it is easy
to see that scaling will not affect termination on quadratics.

2.3. Examples of methods that do not reproduce the conjugate gradi-
ent iterates. We will discuss several methods that fit the general form given in (2.1)
but do not satisfy the conditions of Theorem 2.2.

1074 T. G. KOLDA, D. P. O’LEARY, AND L. NAZARETH

Example 9. Steepest descent (see (2.3)) does not satisfy condition (2.17) of The-
orem 2.2 and thus does not produce conjugate search directions. This fact is well
known; see, e.g., Luenberger [17].

Example 10. L-DFP (see (2.8)) with m < n does not satisfy the condition on Pk

(2.17) for all k, and so the method will not produce conjugate directions. This fact
was previously unknown.

For example, suppose that we have a convex quadratic with

A =

 1 0 0
0 2 0
0 0 4

 and b =

 1
1
1

 .
Using a limited-memory constant of m = 1 and exact arithmetic, it can be seen that
the iteration does not terminate within the first 20 iterations of L-DFP with H0 = I.
The MAPLE notebook file used to compute this example is available on the World
Wide Web [10].

Remark 3. Using the above example, we can easily see that no limited-memory
Broyden family method except L-BFGS terminates within the first n iterations.

3. Update-skipping variations for Broyden family quasi-Newton algo-
rithms. The previous section discussed limited-memory methods that behave like
conjugate gradients on n-dimensional strictly convex quadratic functions. In this
section, we are concerned with methods that skip some updates. The average com-
putation cost per iteration is reduced and memory can be saved if the quasi-Newton
matrix is stored implicitly. We establish conditions under which finite termination is
preserved but delayed for the Broyden family.

3.1. Termination when updates are skipped. It was shown by Powell [27]
that if we skip every other update and take direct prediction steps (i.e., steps of length
one) in a Broyden family method, then the procedure will terminate in no more than
2n+1 iterations on an n-dimensional strictly convex quadratic function. An alternate
proof of this result is given by Nazareth [22].

We will prove a related result. Suppose that we are doing exact line searches using
a Broyden family quasi-Newton method on a strictly convex quadratic function and
decide to “skip” p updates to H (i.e., choose Hk+1 = Hk on p occasions). Then the
algorithm terminates in no more than n + p iterations. The algorithm is somewhat
more robust than using direct prediction steps; it does not matter which updates are
skipped or if multiple updates are skipped in a row.

Theorem 3.1. Suppose that a Broyden family method using exact line searches
is applied to an n-dimensional strictly convex quadratic function and p updates are
skipped. Let

J(k) = {j ≤ k : the update at iteration j is not skipped}.
Then for all k = 0, 1, . . .

gTk+1sj = 0 for all j ∈ J(k)(3.1)

and

sTk+1Asj = 0 for all j ∈ J(k).(3.2)

Furthermore, the method terminates in at most n + p iterations at the exact mini-
mizer.

LIMITED-MEMORY BFGS VARIATIONS 1075

Proof. We will use induction on k to show (3.1) and

Hk+1yj = sj for all j ∈ J(k).(3.3)

Then (3.2) follows easily since, for all j ∈ J(k),

sTk+1Asj = −αk+1g
T
k+1Hk+1yj

= −αk+1g
T
k+1sj

= 0.

Let k0 be the least value of k such that J(k) is nonempty; i.e., J(k0) = {k0}.
Then gk0+1 is orthogonal to sk0

since line searches are exact, and Hk0+1yk0
= sk0

since all members of the Broyden family satisfy the secant condition. Hence, the base
case is true. Now assume that (3.1) and (3.3) hold for all values of k = 0, 1, . . . , k̂− 1.

We will show that they also hold for k = k̂.
Case 1. Suppose that k̂ 6∈ J(k̂). Then Hk̂+1 = Hk̂ and J(k̂ − 1) = J(k̂), so, for

any j ∈ J(k̂),

gT
k̂+1

sj = 0(3.4)

and

Hk̂+1yj = Hk̂yj = sj .

Case 2. Suppose that k̂ ∈ J(k̂). Then Hk̂+1 satisfies the secant condition and

J(k̂) = J(k̂−1)∪{k̂}. Now gk̂+1 is orthogonal to sk since the line searches are exact,
and it is orthogonal to the older sj by the argument in (3.4). The secant condition

guarantees that Hk̂+1yk̂ = sk̂, and, for j ∈ J(k̂) but j 6= k̂, we have

Hk̂+1yj = Hk̂yj +
sk̂s

T
k̂

sT
k̂
yk̂

yj −
Hk̂yk̂y

T
k̂

Hk̂

yT
k̂

Hk̂yk̂
yj

+ φ (yT
k̂

Hk̂yk̂)

(
sk̂

sT
k̂
yk̂
− Hk̂yk̂

yT
k̂

Hk̂yk̂

)(
sk̂

sT
k̂
yk̂
− Hk̂yk̂

yT
k̂

Hk̂yk̂

)T
yj

= sj +
sT
k̂
Asj

sT
k̂
yk̂

sk̂ −
Hk̂yk̂y

T
k̂

sj

yT
k̂

Hk̂yk̂

+ φ (yT
k̂

Hk̂yk̂)

(
sk̂

sT
k̂
yk̂
− Hk̂yk̂

yT
k̂

Hk̂yk̂

)(
sT
k̂
Asj

sT
k̂
yk̂
− yT

k̂
sj

yT
k̂

Hk̂yk̂

)
= sj .

In either case, the induction result follows.
Suppose that we skip p updates. Then the set J(n − 1 + p) has cardinality n.

Without loss of generality, assume that the set {si}i∈J(n−1+p) has no zero elements.
From (3.2), the vectors are linearly independent. By (3.1),

gTn+psj = 0 for all j ∈ J(n− 1 + p),

and so gn+p must be zero. This implies that xn+p is the exact minimizer of f .

1076 T. G. KOLDA, D. P. O’LEARY, AND L. NAZARETH

3.2. Loss of termination for update skipping with limited-memory. Un-
fortunately, updates that use both limited-memory and repeated update-skipping do
not produce conjugate search directions for n-dimensional strictly convex quadratics,
and the termination property is lost. We will show a simple example.

Example 11. Suppose that we have a convex quadratic with

A =

 1 0 0
0 2 0
0 0 4

 and b =

 1
1
1

 .
We apply L-BFGS with limited-memory constant m = 1 and H0 = I and skip every
other update to H. Using exact arithmetic in MAPLE, we observe that the process
does not terminate even after 100 iterations [10]. Note that, according to Corollary 2.4,
we would still be guaranteed termination if we used the most recent information in
each update.

4. Experimental results. Thus far we have only given results for convex qua-
dratic functions. While termination on quadratics is beautiful in theory, it does not
necessarily yield insight into how these methods will do in practice. In this section,
we develop and compare some of the new methods. We describe the collection of test
problems in section 4.2. Complete numerical results, many graphs of the numerical
results, and the original FORTRAN code are available [10].

4.1. Motivation. We will not present any new results relating to convergence
of these algorithms on general functions; however, many of these can be shown to
converge using the convergence analysis presented in section 7 of [16]. In [16], Liu
and Nocedal show that an L-BFGS method implemented with a line search that
satisfies the strong Wolfe conditions (see section 4.3 for a definition) is R-linearly
convergent on a convex function that satisfies a few modest conditions.

4.2. Test problems. For our test problems, we used the CUTE by Bongartz,
Conn, Gould, and Toint. The package is documented in [3] and can be obtained via
the World Wide Web [2] or via ftp [1]. The package contains a large collection of
test problems as well as the interfaces necessary for using the problems. We chose
a collection of 22 unconstrained problems. The problems ranged in size from 10 to
10,000 variables, but each took L-BFGS with limited-memory constant m = 5 at
least 60 iterations to solve. Table 4.1 enumerates the problems, giving the SIF file
name, the dimension (n), and a description for each problem. The CUTE package
also provides a starting point (x0) for each problem.

4.3. Test environment. We used FORTRAN77 code on an SGI Indigo2 to
run the algorithms, with FORTRAN BLAS routines from NETLIB. We used the
compiler’s default optimization level.

Figure 2.1 outlines the general quasi-Newton implementation that we followed.
For the line search, we use the routines cvsrch and cstep written by Jorge J. Moré
and David Thuente from a 1983 version of MINPACK. This line search routine finds an
α that meets the strong Wolfe conditions

f(x + αd) ≤ f(x) + ω1αg(x)Td,(4.1)

|g(x + αd)Td| ≤ ω2|g(x)Td|;(4.2)

see, e.g., Nocedal [24]. We used ω1 = 1.0 × 10−4 and ω2 = 0.9. Except for the first
iteration, we always attempt a step length of 1.0 first and only use an alternate value

LIMITED-MEMORY BFGS VARIATIONS 1077

Table 4.1
Test problem collection. Each problem was chosen from the CUTE package.

No. SIF name n Description and reference
1 EXTROSNB 10 Extended Rosenbrock function (nonseparable

version) [30, Problem 10].
2 WATSONS 31 Watson problem [18, Problem 20].
3 TOINTGOR 50 Toint’s operations research problem [29].
4 TOINTPSP 50 Toint’s PSP operations research problem [29].
5 CHNROSNB 50 Chained Rosenbrock function [29].
6 ERRINROS 50 Nonlinear problem similar to CHNROSNB [3].
7 FLETCHBV 100 Fletcher’s boundary value problem [9, Prob-

lem 1].
8 FLETCHCR 100 Fletcher’s chained Rosenbrock function [9, Prob-

lem 2].
9 PENALTY2 100 Second penalty problem [18, Problem 24].
10 GENROSE 500 Generalized Rosenbrock function [19, Problem 5].
11 BDQRTIC 1000 Quartic with a banded Hessian with bandwidth =

9 [6, Problem 61].
12 BROYDN7D 1000 Seven diagonal variant of the Broyden tridiagonal

system with a band away from diagonal [29].
13 PENALTY1 1000 First penalty problem [18, Problem 23].
14 POWER 1000 Power problem by Oren [26].
15 MSQRTALS 1024 The dense matrix square root problem by No-

cedal and Liu (case 0) seen as a nonlinear equa-
tion problem [4, Problem 204].

16 MSQRTBLS 1025 The dense matrix square root problem by No-
cedal and Liu (case 1) seen as a nonlinear equa-
tion problem [4, Problem 201].

17 CRAGGLVY 5000 Extended Cragg and Levy problem [30, Prob-
lem 32].

18 NONDQUAR 10000 Nondiagonal quartic test problem [6, Prob-
lem 57].

19 POWELLSG 10000 Extended Powell singular function [18, Prob-
lem 13].

20 SINQUAD 10000 Another function with nontrivial groups and rep-
etitious elements [13].

21 SPMSRTLS 10000 Liu and Nocedal tridiagonal matrix square root
problem [4, Problem 151].

22 TRIDIA 10000 Shanno’s TRIDIA quadratic tridiagonal problem
[30, Problem 8].

if 1.0 does not satisfy the Wolfe conditions. In the first iteration, we initially try a
step length equal to ‖g0‖−1. The remaining line search parameters are detailed in
Table 4.2.

We generate the matrix Hk by either the limited-memory update or one of the
variations described in section 4.4, storing the matrix implicitly in order to save both
memory and computation time.

Table 4.2
Line search parameters.

Variable Value Description
STP 1.0 Step length to try first.
XTOL 1.0× 10−15 Relative width of interval of uncertainty.

STPMIN 1.0× 10−15 Minimum step length.
STPMAX 1.0× 1015 Maximum step length.
MAXFEV 20 Maximum number of function evaluations.

1078 T. G. KOLDA, D. P. O’LEARY, AND L. NAZARETH

We terminate at iteration k if any of the following conditions is met:

1. the iterate satisfies

‖gk‖
‖xk‖ < 1.0× 10−5;

2. the line search fails to satisfy both (4.1) and (4.2); or
3. the number of iterations exceeds 3000.

We say that the iterates have converged if the first condition is satisfied. Otherwise,
the method has failed.

4.4. L-BFGS and its variations. We tried a number of variations to the stan-
dard L-BFGS algorithm. L-BFGS and these variations are described in this subsection
and summarized in Table 4.3.

Table 4.3
Description of numerical algorithms.

No. Reference Brief Description
0 Section 4.4.1 L-BFGS with no options.
1 Section 4.4.2, Variation 4 Allow m to vary iteratively, basing the choice of m on

‖g‖/‖x‖ and allowing m to decrease.
2 Section 4.4.3 Dispose of old information if the step length is greater

than one.
3 Section 4.4.4, Variation 1 Back up if the current iteration is odd.
4 Section 4.4.4, Variation 3 Back up if a step length of 1.0 was used in the last

iteration.
5 Section 4.4.5, Variation 2 Merge the 2nd and 3rd most recent (s,y) pairs if the

corresponding step lengths were 1 and neither pair is
the result of a previous merge.

6 Section 4.4.6, Variation 1 Skip update on odd iterations.
7 Algorithm 2 and Algorithm 4 Dispose of old information and back up on the next

iteration if the step length is greater than one.
8 Algorithm 6 and Algorithm 1 Merge if we did not do a merge in the last iteration

and there are at least two old s vectors to merge, and
allow m to vary iteratively, basing the choice of m on
‖g‖/‖x‖ and allowing m to decrease.

4.4.1. L-BFGS: Algorithm 0. The L-BFGS update is given in (2.5) and de-
scribed fully by Byrd, Nocedal, and Schnabel [5].

The storage costs are O(mn), rather than n2 required by BFGS. The computation
of Hg takes at most O(mn) operations rather than O(n2).

We are using L-BFGS as our basis for comparison. For information on the per-
formance of L-BFGS, see Liu and Nocedal [16] and Nash and Nocedal [20].

4.4.2. Varying m iteratively: Algorithm 1. In typical implementations of
L-BFGS, m is fixed throughout the iterations; once m updates have accumulated,
m updates are always used. We considered the possibility of varying m iteratively,
preserving finite termination on convex quadratics. Using an argument similar to that
presented in [16], we can also prove that this algorithm has a linear rate of convergence
on a convex function that satisfies a few modest conditions.

We scaled m in relation to the size of ‖g‖/max{1, ‖x‖}. Let mk be the number
of iterates saved at the kth iteration, with m0 = 1. Here, think of m as the maximum
allowable value of mk. Let the convergence test be given by ‖gk‖/max{1, ‖xk‖} < ε.

LIMITED-MEMORY BFGS VARIATIONS 1079

Table 4.4
The number of failures of the algorithms on the 22 test problems. An algorithm is said to have

“failed” on a particular problem if a line search fails or the maximum allowable number of iterations
(3000 in our case) is exceeded.

Alg. No. m = 5 m = 10 m = 15 m = 50
0 1 0 0 1
1 1 0 0 1
2 0 0 0 0
3 1 0 0 1
4 0 0 0 0
5 1 0 0 1
6 12 12 12 12
7 0 0 0 0
8 3 1 0 1

Table 4.5
Function evaluations comparison. The first number in each entry is the number of times the

algorithm did as well as or better than normal L-BFGS in terms of function evaluations. The second
number is the total number of problems solved by at least one of the two methods (the algorithm
and/or L-BFGS).

Alg. No. m = 5 m = 10 m = 15 m = 50
1 12/21 17/22 15/22 16/21
2 19/22 20/22 20/22 21/22
3 21/21 22/22 22/22 21/21
4 12/22 14/22 12/22 15/22
5 3/22 4/22 4/22 4/22
6 1/21 1/22 1/22 1/21
7 12/22 13/22 12/22 14/22
8 1/22 2/22 4/22 4/22

Then the formula for mk at iteration k is

mk = min

mk−1 + 1,

(m− 1)
log ‖gk‖

max{1,‖xk‖} − log ‖g0‖
max{1,‖x0‖}

log 100ε− log ‖g0‖
max{1,‖x0‖}

+ 1

 .

We used four values of m: 5, 10, 15, and 50. The results are summarized in
Tables 4.4–4.8. More extensive results are given in [10].

Table 4.4 shows that this algorithm had the same number of failures as L-BFGS.
Table 4.5 compares the algorithm to L-BFGS in terms of function evaluations.

The number of times that the algorithm used as few or fewer function evaluations
than L-BFGS is listed relative to the total number of admissible problems. Problems
are admissible if either of the two methods solved it. This algorithm used as few or
fewer function evaluations than L-BFGS for over half the test problems.

Table 4.6 compares this algorithm to L-BFGS in terms of time. The entries are
similar to those in Table 4.5. Observe that Algorithm 1 did very well in terms of time,
doing as well or better than L-BFGS on approximately 80% of the problems.

For each problem, we computed the ratio of the number of function evaluations
for the algorithm to the number of function evaluations for L-BFGS. Table 4.7 lists
the means of these ratios. A mean below 1.0 implies that the algorithm does better
than L-BFGS on average. The average is better for the first algorithm in 2 out of 4
cases. Observe, however, that all the means are close to one.

1080 T. G. KOLDA, D. P. O’LEARY, AND L. NAZARETH

Table 4.6
Time comparison. The first number in each entry is the number of times the algorithm did as

well as or better than normal L-BFGS in terms of time. The second number is the total number of
problems solved by at least one of the two methods (the algorithm and/or L-BFGS).

Alg. No. m = 5 m = 10 m = 15 m = 50
1 17/21 18/22 20/22 18/21
2 15/22 13/22 14/22 15/22
3 16/21 19/22 15/22 15/21
4 11/22 7/22 6/22 5/22
5 5/22 10/22 13/22 17/22
6 1/21 1/22 1/22 2/21
7 11/22 8/22 5/22 4/22
8 9/22 16/22 16/22 18/22

Table 4.7
Mean function evaluations ratios for each algorithm compared to L-BFGS. Problems for which

either method failed are not used in this mean.

Alg. No. m = 5 m = 10 m = 15 m = 50
1 0.998 1.297 0.970 1.000
2 1.021 0.971 1.005 1.010
3 1.000 1.000 1.000 1.000
4 0.991 1.677 1.507 0.891
5 1.137 1.178 1.244 1.373
6 8.227 8.666 9.073 9.308
7 0.981 1.023 0.924 0.918
8 1.406 1.161 1.178 1.394

This algorithm tends to save fewer vectors than L-BFGS since mk is typically less
than m and so less work is done computing Hkgk. Table 4.8 gives the mean of the
ratios of time to solve for each value of m in each algorithm. Note that most of the
ratios are far below one.

4.4.3. Disposing of old information: Algorithm 2. We may decide that we
should stop using outdated information. For example, we may choose to keep only
the most recent information whenever we take a big step, since the old information
may not be relevant to the new neighborhood. We use the following test: If the last
step length was bigger than 1, discard all but the most recent s and y pair.

The algorithm performed nearly the same as L-BFGS. There was substantial
deviation on only one or two problems for each value of m, and this seemed evenly
divided in terms of better and worse. From Table 4.4, we see that this algorithm
successfully converged on every problem. Table 4.5 shows that it almost always did
as well or better than L-BFGS in terms of function evaluations. However, Table 4.7
shows that the differences were minor. The algorithm generally took less time than
L-BFGS (Table 4.6), but again, considering the mean ratios of time (Table 4.8), the
differences were minor.

4.4.4. Backing up in the update to H: Algorithms 3-4. As discussed in
section 2.2, if we always use the most recent s and y in the update, we preserve
quadratic termination regardless of which older values of s and y we use.

Using this idea, we created some algorithms. Under certain conditions, we discard
the next most recent values of s and y although we still use the most recent s and y
vectors and any other vectors that have been saved from previous iterations. We call

LIMITED-MEMORY BFGS VARIATIONS 1081

Table 4.8
Mean time ratios for each algorithm compared to L-BFGS. Problems for which either method

failed are not used in this mean.

Alg. No. m = 5 m = 10 m = 15 m = 50
1 0.907 1.119 0.823 0.856
2 1.041 0.969 0.993 1.004
3 1.007 0.983 0.977 0.995
4 1.057 1.421 1.426 1.425
5 1.083 1.082 0.983 0.960
6 5.008 4.046 3.527 2.646
7 1.053 1.166 1.089 1.399
8 1.258 0.927 0.859 0.974

this “backing up” because it is as if we back up over the next most recent update.
These algorithms used the following tests to trigger backing up:

1. The current iteration is odd.
2. A step length of 1.0 was used in the last iteration.

Algorithm 3 did not fail at all. See Table 4.4 for more information.

Backing up on odd iterations (Algorithm 3) seemed to have almost no effect on
the number of function evaluations (Table 4.7) and little effect on the time (Table 4.8).

In Algorithm 4, we back up if the previous step length was one. This wipes out
the data from the previous iteration after it has been used in one update. It is an
improvement over L-BFGS in terms of function evaluations; in fact, this algorithm
has the best function evaluation ratio for the m = 50 case (Table 4.7). Unfortunately,
this algorithm did not compete with L-BFGS in terms of time (Table 4.8).

4.4.5. Merging s and y information in the update: Algorithm 5. Yet
another idea is to “merge” s data to use less storage and computation time. By
merging, we mean forming some linear combination of various s vectors. The y
vectors would be merged correspondingly. Corollary 2.5 shows that as long as the
most recent s and y are used without merge, old s vectors may be replaced by any
linear combination of the old s vectors in L-BFGS.

We used this idea in the following way: we merged the 2nd and 3rd most recent
(s,y) pairs if the corresponding step lengths were 1 and neither pair was the result
of a previous merge. A merge is accomplished by adding the two pairs together and
replacing the two pairs with the single “sum” pair.

Algorithm 5 is better than L-BFGS in terms of time, especially for the larger
values of m (Tables 4.6 and 4.8). Unfortunately, this reflects only a saving in the
amount of linear algebra required. The number of function evaluations generally is
larger for this algorithm than L-BFGS (Tables 4.5 and 4.7).

4.4.6. Skipping updates to H: Algorithm 6. If every other update to H
is skipped and a step length of one is always chosen, BFGS will terminate in 2n
iterations on a strictly convex quadratic function. The same holds true when doing
an exact line search. (See section 3.) Unfortunately, neither property holds in the
limited-memory case. We will, however, try an algorithm motivated by this idea.

Skipping on odd updates (Algorithm 6) did extremely well for every value of m
only on problem 1. Otherwise, it did very badly.

4.4.7. Combined methods: Algorithms 7–8. We did some experimentation
with combinations of methods described in the previous sections.

1082 T. G. KOLDA, D. P. O’LEARY, AND L. NAZARETH

In Algorithm 7, we combined Algorithms 2 and 4; we dispose of old information
and back up on the next iterations if the step length is greater than one. Essentially
we are assuming that we have stepped out of the region being modeled by the quasi-
Newton matrix if we take a long step, and we should thus rid the quasi-Newton matrix
of that information. This algorithm did well in terms of function evaluations, having
mean ratios of less than one for three values of m (Table 4.7), but it did not do as
well in terms of time.

In Algorithm 8, we combined merging (Algorithm 5) and varying m (Algorithm
1). This algorithm did well in terms of time for larger m (Table 4.8) but not in terms
of function evaluations (Table 4.7).

5. Conclusions. There is a spectrum of quasi-Newton methods, ranging from
those that require the storage of an n × n approximate Hessian (e.g., the Broyden
family) to those that require only the storage of a few vectors (e.g., conjugate gra-
dients). Limited-memory quasi-Newton methods fall in between these extremes in
terms of performance and storage. There are other methods that fall into the middle
ground; for example, conjugate gradient methods such as those proposed by Shanno
[28] and Nazareth [21], the truncated-Newton method [25, 7], and the partitioned
quasi-Newton method [14].

We have characterized which limited-memory quasi-Newton methods fitting a
general form (2.1) have the property of producing conjugate search directions on
convex quadratics. We have shown that L-BFGS is the only Broyden family member
that has a limited-memory analog with this property. We also considered update-
skipping, something that may seem attractive in a parallel environment. We show
that update skipping on quadratic problems is acceptable for full-memory Broyden
family members in that it only delays termination, but that we lose the property of
finite termination if we both limit memory and skip updates.

We have also introduced some simple-to-implement modifications of the standard
L-BFGS algorithm that seem to behave well on some practical problems.

REFERENCES

[1] I. Bongartz, A. R. Conn, N. Gould, and P. L. Toint, CUTE ftp site, ftp://thales.math.
fundp.ac.be/pub/cute.

[2] I. Bongartz, A. R. Conn, N. Gould, and P. L. Toint, CUTE home page, http://www.dci.
clrc.ac.uk/Activity.asp?CUTE.

[3] I. Bongartz, A. R. Conn, N. Gould, and P. L. Toint, CUTE: Constrained and uncon-
strained testing environment, ACM Trans. Math. Software, 21 (1995), pp. 123–160.

[4] A. Buckley, Test functions for unconstrained minimization, Tech. Report TR 1989CS-3,
Mathematics, Statistics and Computing Centre, Dalhousie University, Halifax (CDN),
1989.

[5] R. H. Byrd, J. Nocedal, and R. B. Schnabel, Representations of quasi-Newton matrices
and their use in limited memory methods, Math. Programming, 63 (1994), pp. 129–156.

[6] A. Conn, N. Gould, M. Lescrenier, and P. Toint, Performance of a multifrontal scheme for
partially separable optimization, Tech. Report 88/4, Department of Mathematics, FUNDP,
Namur, Belgium, 1988. Cited in [1, 2].

[7] R. S. Dembo and T. Steihaug, Truncated-Newton algorithms for large-scale unconstrained
optimization, Math. Programming, 26 (1983), pp. 190–212.

[8] J. Dennis and R. B. Schnabel, Numerical Methods for Unconstrained Optimization and Non-
linear Equations, Series in Computational Mathematics, Prentice-Hall, Englewood Cliffs,
NJ, 1983. Reprinted by Society for Industrial and Applied Mathematics, Philadelphia, PA,
1996.

[9] R. Fletcher, An optimal positive definite update for sparse Hessian matrices, Numerical
Analysis NA/145, Technical report, University of Dundee, 1992. Cited in [1, 2].

LIMITED-MEMORY BFGS VARIATIONS 1083

[10] T. Gibson, D. O’Leary, and L. Nazareth, L-BFGS with Variations home page,
http://www.cs.umd.edu/users/oleary/LBFGS/index.html (1996).

[11] P. E. Gill and W. Murray, Conjugate-gradient methods for large-scale nonlinear optimiza-
tion, Tech. Report SOL 79-15, Systems Optimization Laboratory, Department of Opera-
tions Research, Stanford University, Stanford, CA, 1979.

[12] G. H. Golub and C. F. Van Loan, Matrix Computations, 2nd ed., The Johns Hopkins Uni-
versity Press, Baltimore, 1989.

[13] N. Gould, Private communication to authors of [3], 1989. Cited in [1, 2].
[14] A. Griewank and P. L. Toint, Partitioned variable metric updates for large structured opti-

mization problems, Numer. Math., 39 (1982), pp. 119–137.
[15] H. Khalfan, R. Byrd, and R. Schnabel, A theoretical and experimental study of the sym-

metric rank one update, Tech. Report CU-CS-489-90, Department of Computer Science,
University of Colorado at Boulder, 1990.

[16] D. C. Liu and J. Nocedal, On the limited memory BFGS method for large scale optimization,
Math. Programming, 45 (1989), pp. 503–528.

[17] D. G. Luenberger, Linear and Nonlinear Programming, 2nd ed., Addison-Wesley, Reading,
MA, 1984.

[18] J. J. Moré, B. S. Garbow, and K. E. Hillstrom, Testing unconstrained optimization soft-
ware, ACM Trans. Math. Software, 7 (1981), pp. 17–41.

[19] S. Nash, Newton-type minimization via the Lanczos process, SIAM J. Numer. Anal., 21 (1984),
pp. 770–788.

[20] S. G. Nash and J. Nocedal, A numerical study of the limited memory BFGS method and the
truncated-Newton method for large scale optimization, SIAM J. Optim., 1 (1991), pp. 358–
372.

[21] L. Nazareth, A relationship between BFGS and conjugate gradient algorithms and its impli-
cations for new algorithms, SIAM J. Numer. Anal., 16 (1979), pp. 794–800.

[22] L. Nazareth, On the BFGS Method, unpublished manuscript, University of California at
Berkeley, Berkeley, CA, 1981.

[23] J. Nocedal, Updating quasi-Newton matrices with limited storage, Math. Comp., 35 (1980),
pp. 773–782.

[24] J. Nocedal, Theory of algorithms for unconstrained optimization, in Acta Numerica (1991),
Cambridge University Press, London, 1992, pp. 199–242.

[25] D. P. O’Leary, A discrete Newton algorithm for minimizing a function of many variables,
Math. Programming, 23 (1982), pp. 20–33.

[26] S. Oren, Self-scaling variable metric algorithms, Part II: Implementation and experiments,
Management Science, 20 (1974), pp. 863–874. Cited in [1, 2].

[27] M. J. D. Powell, Quadratic termination properties of minimization algorithms I: Statement
and discussion of results, J. Inst. Math. Appl., 10 (1972), pp. 333–342.

[28] D. F. Shanno, Conjugate gradient methods with inexact line searches, Math. Oper. Res., 3
(1978), pp. 244–256.

[29] P. Toint, Some numerical results using a sparse matrix updating formula in unconstrained
optimization, Math. Comput., 32 (1978), pp. 839–852.

[30] P. Toint, Test problems for partially separable optimization and results for the routine PSP-
MIN, Tech. Report 83/4, Department of Mathematics, FUNDP, Namur, Belgium, 1983.
Cited in [1, 2].

