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Abstract. Numerical solution of ill-posed problems is often accomplished by discretization
(projection onto a finite dimensional subspace) followed by regularization. If the discrete problem
has high dimension, though, typically we compute an approximate solution by projecting the discrete
problem onto an even smaller dimensional space, via iterative methods based on Krylov subspaces.
In this work we present a common framework for efficient algorithms that regularize after this second
projection rather than before it. We show that determining regularization parameters based on the
final projected problem rather than on the original discretization has firmer justification and often
involves less computational expense. We prove some results on the approximate equivalence of this
approach to other forms of regularization, and we present numerical examples.
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1. Introduction. Linear, discrete ill-posed problems of the form

min
x

‖Ax− b‖2(1.1)

arise, for example, from the discretization of first-kind Fredholm integral equations
and occur in a variety of applications. We shall assume that the full-rank matrix A is
m×n withm ≥ n. In discrete ill-posed problems, A is ill-conditioned and there is often
no gap in the singular value spectrum. Typically, the right-hand side b contains noise
due to measurement and/or approximation error. This noise, in combination with the
ill-conditioning of A, means that the exact solution of (1.1) has little relationship to
the noise-free solution and is worthless.

Instead, we use a regularization method to determine a solution that approximates
the noise-free solution. We replace the original operator by a better conditioned but
related one in order to diminish the effects of noise in the data. Sometimes this
regularized problem is too large to solve exactly. In that case, we typically project the
problem onto an even smaller dimensional space, perhaps via iterative methods based
on Krylov subspaces. Sometimes this projection provides enough regularization to
produce a good approximate solution, but often (see, for example, [28, 15]) additional
regularization is needed.

A fundamental decision to be made in such cases is whether to regularize before
or after the projection. One subtle issue is that the regularization parameter that
is optimal for the discretized problem may not be optimal for the lower-dimensional
problem actually solved by the iteration, and this leads to the research discussed in
this paper.
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At first glance, there can appear to be a lot of work associated with the selection
of a good regularization parameter, and many algorithms proposed in the literature
are needlessly complicated, repeating a Krylov iteration multiple times. By regular-
izing after projection by the iterative method, so that we are regularizing the lower
dimensional problem that is actually being solved, this difficulty vanishes.

The purpose of this paper is to present a common framework for parameter se-
lection techniques applied to the problem resulting from iterative methods such as
Krylov subspace techniques. We show that by determining regularization parameters
based on the final projected problem rather than on the original discretization, we
can better approximate the optimal parameter and reduce the cost of solution.

Our paper is organized as follows. In section 2 we survey some methods for
choosing the corresponding regularization parameters. In section 3, we show how
any standard parameter selection technique for the original problem can be applied
instead to a projected problem obtained from an iterative method, greatly reducing
the cost without much degradation in the solution. We give experimental results in
section 4 and conclusions in section 5.

In the following we shall assume that b = btrue + e, where btrue denotes the
unperturbed data vector and e denotes zero-mean white noise. We will also assume
that btrue satisfies the discrete Picard condition; that is, the spectral coefficients of
btrue decay faster, on average, than the singular values.

Let ÛΣV̂ ∗ denote the singular value decomposition (SVD) ofA, where the columns
of Û and V̂ are the singular vectors, and the singular values are ordered as σ1 ≥ σ2 ≥
· · · ≥ σn. Then the solution (1.1) is given by

x =

n∑
i=1

û∗i b
σi
v̂i =

n∑
i=1

(
û∗i btrue
σi

+
û∗i e
σi

)
v̂i.(1.2)

As a consequence of the white noise assumption, |û∗i e| is roughly constant for all i,
while the discrete Picard condition guarantees that |û∗i btrue| decreases with i faster
than σi does. The matrix A is ill-conditioned, so small singular values magnify the
corresponding coefficients û∗i e in the second sum, and it is this large contribution of
noise that renders the exact solution x defined in (1.2) worthless. The following four
classes of regularization methods try in different ways to lessen the contribution of
noise. For further information on these methods, see, for example, [19, 15].

In Tikhonov regularization, (1.1) is replaced by

min
x

‖Ax− b‖2
2 + λ

2‖Lx‖2
2,(1.3)

where λ is a positive scalar regularization parameter, and we choose L to be the
identity matrix I. Solving (1.3) is equivalent to solving

(A∗A+ λ2I)xλ = A∗b.(1.4)

In analogy with (1.2) we have

xλ =

n∑
i=1

(
σi û

∗
i btrue

σ2
i + λ

2
+
σi û

∗
i e

σ2
i + λ

2

)
v̂i.(1.5)

In truncated SVD we compute the regularized solution by truncating the ex-
pansion in (1.2) as

x	 =

	∑
i=1

û∗i b
σi
v̂i.(1.6)
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Here the regularization parameter is �, the number of terms retained in the sum. Rust
[33] introduced a related truncation strategy, including in the sum (1.2) only those
terms corresponding to a spectral coefficient û∗i b whose magnitude is greater than or
equal to some tolerance ρ, which can be regarded as the regularization parameter.

Solving (1.4) or (1.6) can be impractical if n is large, but fortunately, regular-
ization can be achieved through projection onto a k-dimensional subspace; see, for
example, [9]. The truncated SVD (TSVD) is one example, but projection is often
achieved through the use of iterative methods such as conjugate gradients, GMRES,
QMR, and other Krylov subspace methods [28, 1]. Krylov subspace algorithms tend
to produce, at early iterations, solutions that resemble xtrue more than later iterates.
Therefore, the choice of the regularization parameter k, the stopping point for the
iteration and the dimension of the subspace, is very important.

Another important family of regularization methods, termed hybrid methods
[19, 15], was introduced by O’Leary and Simmons [28]. These methods combine a
projection method with a direct regularization method such as TSVD or Tikhonov
regularization. Since the dimension k is usually small relative to n, regularization of
the restricted problem is much less expensive, but the end results can be very similar
to those achieved by applying the same direct regularization technique to the original
problem; see section 3.5.

2. Existing parameter selection methods. In this section, we discuss three
parameter selection techniques that have been proposed in the literature. They differ
in the amount of a priori information required as well as in the decision criteria.

The discrepancy principle [26] says that if δ is the expected value of ‖e‖2,
then the regularization parameter should be chosen so that the norm of the residual
corresponding to the regularized solution xreg is τδ; that is,

‖Axreg − b‖2 = τδ,(2.1)

where τ > 1 is some predetermined real number. Note that as δ → 0, xreg → xtrue.
Other methods based on knowledge of the variance are given, for example, in [3, 13, 7].

Generalized cross-validation (GCV) [11] does not depend on a priori knowl-
edge about the noise variance. We find the parameter λ that minimizes the GCV
functional

G(λ) =
‖(I −AA�

λ)b‖2
2

(trace(I −AA�
λ))

2
,(2.2)

where A�
λ denotes the matrix that maps the right-hand side b onto the regularized

solution xλ. In Tikhonov regularization, for example, A�
λ is (A∗A+ λ2I)−1A∗.

The L-curve, the plot of the norm of the regularized solution versus the cor-
responding residual norm for each of a set of regularization parameter values, was
introduced by Lawson and popularized by Hansen [17, 25]. Intuitively, the best reg-
ularization parameter should lie on the corner of the L-curve, since for values higher
than this, the residual increases without reducing the norm of the solution much,
while for values smaller than this, the norm of the solution increases rapidly without
much decrease in residual. In practice, only a few points on the L-curve are computed
and the corner is located by estimating the point of maximum curvature [20].

The appropriate choice of regularization parameter—especially for projection
algorithms—is a difficult problem, and each method has severe flaws. The discrep-
ancy principle is convergent as the noise goes to zero, but it relies on information that
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Table 2.1
Summary of additional flops needed to compute the regularization parameter for each of four

regularization methods with various parameter selection techniques. Notation: q is the cost of mul-
tiplication of a vector by A; p is the number of discrete parameters that must be tried; k is the
dimension of the projection; m and n are problem dimensions.

Basic cost Added cost
Disc. GCV L-curve

Tikhonov O(mn2) O(p(m+ n)) O(p(n+m)) O(p(m+ n))
TSVD O(mn2) O(m) O(m) O(m+ n)
Rust’s TSVD O(mn2) O(m logm) O(m logm) O(m logm)
Projection O(qk) 0 O(q) O(q)

is often unavailable or erroneous. Even with a correct estimate of the variance, the
solutions tend to be oversmoothed [21, p. 96]. (See also the discussion in section 6.1 of
[17].) One noted difficulty with GCV is that G can have a very flat minimum, making
it difficult to determine the optimal λ numerically [37]. The L-curve is usually more
tractable numerically, but its limiting properties are nonideal. The solution estimates
fail to converge to the true solution as n→ ∞ [38] or as the error norm goes to zero
[8]. All methods that assume no knowledge of the error norm— including GCV—have
this latter property [8].

For further discussion and references about parameter choice methods, see [7, 19].
The cost of these methods is tabulated in Table 2.1.

2.1. Previous work on parameter choice for hybrid methods. At first
glance, it appears that for Tikhonov regularization, multiple systems of the form
(1.4) must be solved in order to evaluate candidate values of λ for the discrepancy
principle or the L-curve.

Chan and Ng [5] note that the systems involve matrices C(λ) = A∗A + λI,
which they solve using a Galerkin projection method on a sequence of “seed” systems.
Although economical in storage, this is unnecessarily expensive in time because they
do not exploit the fact that for each fixed k, the Krylov subspace Kk(A

∗b, C(λ)) is
the same for all values of λ.

Frommer and Maass [10] propose two algorithms for approximating the λ that
satisfies the discrepancy principle (2.1). The first is a “truncated conjugate gradient
(CG)” approach, solving k systems of the form (1.4), truncating the iterative process
early for large λ, and using previous solutions as starting guesses for later problems.
Like Chan and Ng, this algorithm does not exploit the redundant Krylov subspaces.
In the second method, however, they update the CG iterates for all k systems simul-
taneously, stopping their “shifted CG” algorithm when ‖Axλ − b‖2 ≤ τδ for one of
their λ values. The methods we propose in section 3 will usually require less work
than the shifted CG algorithm because of less overhead.

Calvetti, Golub, and Reichel [4] use upper and lower bounds on the L-curve, gen-
erated by the matrices C(λ) using a Lanczos bidiagonalization process, to approximate
the best parameter for Tikhonov regularization before projection.

Kaufman and Neumaier [22] suggest an envelope guided conjugate gradient ap-
proach for the Tikhonov L-curve problem. Their method is necessarily somewhat
more expensive than ours because they maintain nonnegativity constraints on the
variables.

Substantial work has also been done on TSVD regularization of the projected
problems. Björck, Grimme, and van Dooren [2] use GCV to determine the truncation
point for the projected SVD. Their emphasis is on maintaining an accurate factor-
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ization when many iterations are needed, using full reorthogonalization and implicit
restart strategies. O’Leary and Simmons [28] take the viewpoint that the problem
should be preconditioned appropriately so that a massive number of iterations is un-
necessary. That viewpoint is echoed in this current work, so we implicitly assume that
the problem has been preconditioned [28] so that A = M−1Â and b = M−1b̂, where

Â and b̂ are the original data and M is a preconditioning matrix. See [16, 27, 24, 23]
for preconditioners appropriate for certain types of ill-posed problems.

3. Regularizing the projected problem. In this section we categorize a dozen
approaches to regularization of the projected problem that arise from using Krylov
methods, giving enough detail to make the costs apparent and to show that the ideas
are easy to program. Many Krylov methods have been proposed; for ease of exposition
we focus on just one of these: the LSQR algorithm of Paige and Saunders [30].

LSQR iteratively computes a bidiagonalization related to that introduced by
Golub and Kahan [12]. After k iterations, it has effectively computed three ma-
trices: an upper-bidiagonal matrix Bk and two matrices Uk ≡ [u1, . . . , uk] and Vk ≡
[v1, . . . , vk], with orthonormal columns, related by

b = β1u1 = β1Uk+1e1 ,(3.1)

AVk = Uk+1Bk ,(3.2)

ATUk+1 = VkB
T
k + αk+1vk+1e

T
k+1 ,(3.3)

where ei denotes the ith unit vector.
In numeric computations, the columns of Uk and Vk can fail to be orthonormal.

This has never given us convergence difficulties, but if it becomes troublesome, there
are well-known techniques to handle it [31, 32, 36, 6].

Now suppose we want to solve

min
x∈S

‖b−Ax‖2,(3.4)

where S denotes the k-dimensional subspace spanned by the first k vectors vi. The
solution we seek is of the form x(k) = Vky

(k) for some vector y(k) of length k. Define
r(k) = b−Ax(k) to be the corresponding residual and observe that

r(k) = β1u1 −AVky(k)

= Uk+1(β1e1 −Bky
(k)).

Since Uk+1 has, in exact arithmetic, orthonormal columns, the projected problem we
wish to solve is

min
y(k)

‖β1e1 −Bky
(k)‖2.(3.5)

Solving this minimization problem is mathematically equivalent to solving the normal
equations involving the bidiagonal matrix

B∗
kBky

(k) = β1B
∗
ke1,(3.6)

although more stable means are used in practice. Typically k is small, so reorthogo-
nalization to combat round-off error might or might not be necessary. The matrix Bk

may be ill-conditioned because some of its singular values approximate some of the
small singular values of A. Therefore, solving the projected problem might not yield
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Table 3.1
Summary of flops for projection plus inner regularization with various parameter selection

techniques, in addition to the O(qk) flops required for projection itself. Here k is the number of
iterations (i.e., the size of the projection) taken and p is the number of discrete parameters that
must be tried.

Projection plus – Disc. GCV L-curve
Tikhonov O(pk) O(k3) O(pk)
TSVD O(k3) O(k3) O(k3)
Rust’s O(k3) O(k3) O(k3)

Table 3.2
Summary of additional storage for each of four regularization methods under each of three

parameter selection techniques. The original matrix is m × n with q nonzeros, p is the number of
discrete parameters that must be tried, k iterations are used in projection, and the factorizations are
assumed to take q̂ storage.

Basic cost Added cost
Disc. GCV L-curve

Tikhonov O(q̂) O(1) O(p) O(p)
TSVD O(q̂) O(1) O(m) O(m)
Rust’s TSVD O(q̂) O(m) O(m) O(m)
Projection O(kn) O(1) O(k) O(k)

Table 3.3
Summary of storage, not including storage for the matrix, for projection plus inner regulariza-

tion approach and various parameter selection techniques. Here p denotes the number of discrete
parameters tried. Each of these regularization methods also requires us to save the basis V or else
regenerate it in order to reconstruct x.

Projection plus – Disc. GCV L-curve
Tikhonov O(1) O(p) O(p)
TSVD O(1) O(k) O(k)
Rust’s TSVD O(k) O(k + p) O(k + p)

a good solution y(k), but we can use any of the methods of section 2 to regularize this
projected problem; we discuss options in detail below.

If we used the algorithm GMRES [35] instead of LSQR, we would derive similar
relations. Here, though, the U and V matrices are identical and the B matrix is
upper Hessenberg rather than bidiagonal. Conjugate gradients would yield similar
relationships.

For cost comparisons for these methods, see Tables 2.1 and 3.1. Storage compar-
isons are given in Tables 3.2 and 3.3.

3.1. Regularization by projection. As mentioned earlier, if we terminate the
iteration after k steps, we have projected the solution onto a k-dimensional subspace
and this has a regularizing effect that is sometimes sufficient. Determining the best
value of k can be accomplished, for instance, by one of our three methods of parameter
choice. Efficient implementation relies on LSQR recurrences for determining ‖r(k)‖
and ‖x(k)‖ cheaply, without computing either r(k) or x(k) [30, 34].

For the discrepancy principle. we stop the iteration for the smallest value of
k for which ‖rk‖ ≤ τδ.

To apply GCV, we note that in LSQR (see section 3.1), the operator AA� is

given by Uk+1BkB
†
kU

∗
k+1, where B

†
k is the pseudoinverse of Bk. Thus from (2.2), the
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GCV functional is [19]

G(k) =
‖r(k)‖2

2

(m− k)2 .

We note that there are in fact two distinct definitions for A� and hence two definitions
for the denominator in G(k); for small enough k, the two are comparable, and the
definition we use here is less expensive to calculate [19, section 7.4].

To determine the L-curve associated with LSQR, values of ‖r(k)‖2 and ‖x(k)‖2

are needed for several values of k. In using this method or GCV, one must go a few
iterations beyond the optimal k in order to verify the optimum [20].

3.2. Regularization by projection plus TSVD. If projection alone does not
regularize, then we can compute the TSVD regularized solution to the projected
problem (3.6). We need the SVD of the (k + 1)× k matrix Bk. This requires O(k

3)
operations but can also be computed from the SVD of Bk−1 in O(k2) operations [14].

Clearly, we still need to use some type of parameter selection technique to find a
good value of �(k). First, notice that it is easy to compute the norms of the residual
and the solution resulting from retaining only the � largest singular values. If ξjk is
the component of e1 in the direction of the jth left singular vector of Bk, and if γj
is the jth singular value (ordered largest to smallest), then the residual and solution
2-norms are

‖r(k)
	 ‖ = β1


 k+1∑

j=	(k)+1

ξ2jk




1/2

and ‖x(k)
	 ‖ = β1


	(k)∑

j=1

(
ξjk
γj

)2



1/2

.(3.7)

Using this fact, we can use any of our three sample methods.
For the discrepancy principle we choose �(k) to be the smallest value for which

‖r(k)
	 ‖ ≤ τδ, if such a value exists. As k increases, the number of neglected singular

values will be monotonically nondecreasing (exact arithmetic).
The GCV functional for the kth projected problem is obtained by substituting

Bk for A and B�
k for A�, and substituting the expression of the residual in (3.7) for

the numerator in (2.2):

Gk(�) =
β2

1

∑k+1
j=	+1 ξ

2
jk

(k − �+ 1)2
.

We now have many L-curves, one for each value of k. The coordinate values in
(3.7) form the discrete L-curve for a given k, from which the desired value of �(k) can
be chosen without forming the approximate solutions or residuals.

3.3. Regularization by projection plus Rust’s TSVD. As in standard
TSVD, to use Rust’s version of TSVD for regularization of the projected problem
requires computing the SVD of the (k + 1)× k matrix Bk. Using the previous nota-
tion, Rust’s strategy is to set

y(k)
ρ =

∑
j∈I(k)

ρ

ξjk
γj
q
(k)
j ,

where q
(k)
j are the right singular vectors of Bk and I(k)

ρ = {i < k + 1 : |ξik| > ρ}. We
focus on three ways to determine ρ.
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For the discrepancy principle, the norm of the residual of the regularized solu-

tion is given by ‖r(k)
ρ ‖2 = β1(

∑
j �∈I(k)

ρ
ξ2jk)

1/2. According to the discrepancy principle,

we must choose ρ so that the residual is less than τδ. In practice, this would require
that the residual be evaluated by sorting the values |ξik| and adding terms in that
order until the residual norm is less than τδ.

For GCV, let card(I(k)
ρ ) denote the cardinality of the set I(k)

ρ . From (2.2), it
is easy to show that the GCV functional corresponding to the projected problem for
this regularization technique is given by

Gk(ρ) =
β2

1

∑
j∈I(k)

ρ
ξ2jk

(k + 1− card(I(k)
ρ ))2

.

In practice, for each k we first sort the values |ξik|, i = 1, . . . , k, from smallest to
largest. Then we define k discrete values ρj to be equal to these values with ρ1 being
the smallest. We set ρ0 = 0. Note that because the values of ρj , j = 1, . . . , k, are the
sorted magnitudes of the SVD expansion coefficients, we have

Gk(ρj) =
β2

1(|ξ(k+1),k|2 +
∑j

i=1 ρ
2
i )

(j + 1)2
, j = 0, . . . , k.

Finally, we take the regularization parameter to be the ρj for which Gk(ρj) is a
minimum.

As with standard TSVD, we now have one L-curve for each value of k. For fixed
k, if we define the ρj , j = 0, . . . , k, as we did for GCV above and we reorder the γi in
the same way that the |ξik| were reordered when sorted, then we have

‖x(k)
ρj

‖2
2 = β

2
1

k∑
i=j+1

(
ρi
γi

)2

; ‖r(k)
ρj

‖2
2 = β

2
1

(
|ξ(k+1),k|2 +

j∑
i=1

ρ2i

)
, j = 0, . . . , k.

When these solution and residual norms are plotted against each other as functions
of ρ, the value of ρj corresponding to the corner is selected as the regularization
parameter.

3.4. Regularization by projection plus Tikhonov. Finally, let us consider
using Tikhonov regularization to regularize the projected problem (3.5) for some in-
teger k. Thus, for a given regularization parameter λ, we would like to solve

min
y

‖β1e1 −Bky‖2
2 + λ

2‖y‖2
2.(3.8)

The solution y
(k)
λ satisfies

(V ∗
k A

∗AVk + λ2I)y
(k)
λ = V ∗

k A
∗b.(3.9)

We need to address how to choose a suitable value of λ.
For the discrepancy principle, note that in exact arithmetic, we have

r
(k)
λ = b−Ax(k)

λ = U∗
k+1(β1e1 −Bky

(k)
λ ).(3.10)

Hence ‖Bky
(k)
λ −β1e1‖2 = ‖r(k)

λ ‖2. Therefore, to use the discrepancy principle requires

that we choose λ so that ‖r(k)
λ ‖2 ≤ τδ with p discrete trial values λj . For a given k,
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we take λ to be the largest value λj for which ‖r(k)
λ ‖2 < τδ, if it exists; if not, we

increase k and test again.
For GCV, let us define (Bk)

†
λ to be the operator mapping the right-hand side of

the projected problem onto the regularized solution of the projected problem:

(Bk)
†
λ = (B∗

kBk + λ
2I)−1B∗

k .

Given the SVD of Bk as above, the denominator in the GCV functional defined for
the projected problem (refer to (2.2)) is


k + 1−

k∑
j=1

γ2
j

γ2
j + λ

2




2

.

The numerator is simply ‖r(k)
λ ‖2

2. For values of k � n, it is feasible to compute the
singular values of Bk.

The L-curve is comprised of the points (‖Bky
(k)
λ − β1e1‖2, ‖y(k)

λ ‖2). But using
(3.10) and the orthonormality of the columns of Vk, we see these points are precisely

(‖r(k)
λ ‖2, ‖x(k)

λ ‖2). For p discrete values of λ, λi, 1 ≤ i ≤ p, the quantities ‖r(k)
λi

‖2

and ‖x(k)
λi

‖2 can be obtained by updating their respective estimates at the (k − 1)st

iteration.1

3.5. Correspondence between direct regularization and projection plus
regularization. In this section, we demonstrate why the projection plus regulariza-
tion approaches can be expected to yield regularized solutions nearly equivalent to
the direct regularization counterpart. The following theorem, a simple corollary of
the invariance of Krylov sequences under shifts, establishes the desired result for the
case of Tikhonov vs. projection plus Tikhonov.

Theorem 3.1. Fix λ > 0 and define x
(k)
λ to be the kth iterate of conjugate

gradients applied to the Tikhonov problem

(A∗A+ λ2I)x = A∗b.

Let y
(k)
λ be the exact solution to the regularized projected problem

(B∗
kBk + λ

2I)y = B∗
k(βe1),

where Bk, Vk are derived from the original problem A∗A = A∗b, and set z
(k)
λ = Vky

(k)
λ .

Then z
(k)
λ = x

(k)
λ .

Proof. See [15, p. 301].
Let us compare TSVD regularization applied to the original problem to the pro-

jection plus TSVD approach. Direct computation convinces us that the two methods
compute the same regularized solution if k = n and arithmetic is exact. An approxi-
mate result holds in exact arithmetic when we take k iterations, with � ≤ k ≤ n. Let
the SVD of Bk be denoted by Bk = ZkΓkQ

T
k , and define the s× � matrix Ws,	 as

Ws,	 =

[
I
0

]
.

1The technical details of the approach are found in [29, pp. 197–198], from which we obtain

‖r(k)
λ

‖ =
√

‖r̄(k)
λ

‖2 − λ2‖x(k)
λ

‖2. The implementation details for estimating ‖x(k)
λ

‖ and ‖r̄(k)
λ

‖ were

taken from the Paige and Saunders algorithm at http://www.netlib.org/linalg/lsqr.
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Then the regularized solution obtained from the TSVD regularization of the projected
problem is

x(k)
reg = Vk(QkWk,	Γ

−1
k,1W

T
k+1,	Z

T
k U

T
k b),

where Γk,1 denotes the leading � × � principal submatrix of Γk. If k is taken to be

sufficiently larger than � so that VkQkWk,	 ≈ V̂ Wn,	, W
T
k+1,	Z

T
k U

T
k+1 ≈WT

n,	Û
T , and

Γk,1 ≈ Σ1 with Σ1 the leading principal submatrix of Σ, then we expect x
(k)
reg to be a

good approximation to x	. This is made more precise in the following theorem.

Theorem 3.2. Let k ≥ � such that

(VkQkWk,	) = V̂1 + E1 with ‖E1‖ ≤ δ1 � 1,

(Uk+1ZkWk+1,	) = Û1 + E2 with ‖E2‖ ≤ δ2 � 1,

where V̂1 and Û1 contain the first � columns of V̂ and Û , respectively. Let D =
diag(d1, . . . , d	) satisfy

Γk,1 = Σ1 +D with |di| ≤ δ3 � 1.

Then

‖x(k)
reg − x	‖ ≤ max

1≤i≤	

1

σi + di

(
δ3
σ	

+ 3max(δ1, δ2)

)
‖b‖.

Proof. Using the representations x	 = V̂1Σ
−1
1 ÛT

1 b and x
(k)
reg = (V̂1+E1)Γ

−1
k,1(Û

T
1 +

ET
2 )b, we obtain

‖x(k)
reg − x	‖ ≤ (‖Γ−1

k,1 − Σ−1
1 ‖+ ‖Γ−1

k,1‖ ‖E2‖+ ‖E1‖ ‖Γ−1
k,1‖+ ‖E1‖ ‖Γ−1

k,1‖ ‖E2‖)‖b‖ ,

and the conclusion follows from bounding each term.

Note that typically σ	 � σn so that 1/σ	 is not too large. The bound says that the
better LSQR captures the first � singular values and vectors, the more we are assured
the solution obtained by projection plus TSVD is close to the TSVD regularized
solution to the original problem. For some results relating to the value of k necessary
for the hypothesis of the theorem to hold, refer to the theory of Kaniel-Paige and
Saad [31, section 12.4]. There is no universal recipe, but if k is large enough that the
projected problem satisfies the discrete Picard condition, then this is some indication
that the approximability property holds.

4. Numerical results. In this section, we present three numerical examples. All
experiments were carried out using Matlab with IEEE double precision floating point
arithmetic. Where noted, we made use of certain routines in Hansen’s Regularization
Tools [18]. Since the exact, noise-free solutions were known in these examples, we
evaluated the methods using the relative, 2-norm difference between the regularized
solutions and the exact solutions. When we applied Rust’s method to the original
problem, the ρi were taken to be the magnitudes of the spectral coefficients of b sorted
in increasing order.
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Table 4.1
Example 1: comparison of ‖xtrue − xreg‖2/‖xtrue‖2 for each of four regularization methods

on the original problem, where the regularization method was chosen using methods indicated. The
parameter values selected for each method are indicated in parentheses.

Disc. GCV L-curve Optimal
Tikhonov (1.6E−1) 2.2E−2 (8.0E−2) 2.2E−2 (4.0E−2) 4.3E−2 (1.3E−1) 2.1E−2
TSVD ( 6) 1.1E−1 ( 9) 1.6E−2 ( 10) 1.6E−2 ( 9) 1.6E−2
Rust’s TSVD (1.6E−2) 2.5E−2 (5.3E−5) 2.2E + 4 (1.6E−2) 2.5E−2 (1.6E−2) 2.5E−2
Projection (5) 2.5E−2 (5) 2.5E−2 (10) 2.2E−2 (9) 2.2E−2

4.1. Example 1. The 200 × 200 matrix A and true solution xtrue for this ex-
ample were generated using the function phillips in Hansen’s Regularization Tools.
We generated btrue = Axtrue and then computed the noisy vector b as b + e, where
e was generated using the Matlab randn function and was scaled so that the noise

level, ‖e‖
‖btrue‖ , was 5× 10−3. The condition number of A was on the order of 4× 107.

Table 4.1 displays the values of the regularization parameters chosen when the
original problem was solved using one of the three parameter selection techniques
together with one of the four regularization methods. We set τδ for the discrepancy
principle to be 8E−2, close to the value ‖e‖2 = 7.65E−2.

The last column in the table gives the value of the parameter that yielded a
regularized solution with minimum relative error. Several values of λ were tested:
log10 λ = −4,−3.9, . . . , 0. The relative error values for regularized solutions corre-
sponding to the parameters are also presented in this table. The GCV and L-curve
parameters for projection were determined after 15 iterations. Note that using GCV
to determine a regularization parameter for Rust’s TSVD resulted in an extremely
noisy solution with huge error.

The corners of the L-curves for the Tikhonov, projection, and TSVDmethods were
determined using Hansen’s lcorner function, with the modification that sometimes
points not strictly on the portion of the curve that was L-shaped (that is, points
with very large residual or very small residual) were not considered (otherwise, a
false corner resulted); this was most often a concern with the TSVD method. Since
the corner was so clearly defined for Rust’s method but the function had trouble
automatically finding the corner, the corner was picked manually.

Next, we projected using LSQR and then regularized the projected problem with
one of the other three regularization methods together with one of the three parameter
selection techniques. Results at iterations 10 and 25 are given in Tables 4.2 and 4.3,
respectively. As before, the lcorner routine was used to determine the corners of the
respective L-curves, with the modifications as mentioned above.

Comparing Tables 4.1 and 4.2, we observe that using either the discrepancy prin-
ciple or the L-curve, 10 steps of projection plus Tikhonov gives results as good as
or much better than if those techniques had been used with Tikhonov on the orig-
inal problem. A similar statement can be made for projection plus Rust’s TSVD
when any of the 3 selection methods are used and for projection plus TSVD when
the discrepancy principle is used. After 25 iterations, the errors for projection plus
Tikhonov or Rust’s TSVD closely resemble the errors in Table 4.1 with one exception.
We note that at 25 iterations, the parameters chosen for projection plus Tikhonov by
the discrepancy principle or the L-curve method and their corresponding errors are
identical to those chosen for the original problem.

In fact, the L-curve, GCV, and discrepancy methods applied to the projected
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Table 4.2
Example 1, iteration 10: comparison of ‖xtrue−xreg‖2/‖xtrue‖2 for projection plus Tikhonov,

TSVD, and Rust’s TSVD. The parameter values for each method are indicated in parentheses.

Disc. GCV L-curve Optimal
Tikhonov (1.6E−1) 2.1E−2 (2.5E−2) 2.5E−2 (2.0E−4) 2.2E−2 (2.0E−2) 2.0E−2
TSVD (7) 2.5E−2 (7) 2.5E−2 (10) 2.2E−2 (10) 2.2E−2
Rust’s TSVD (9.7E−3) 2.5E−2 (9.7E−3) 2.5E−2 (5.5E−4) 2.2E−2 (9.1E−3) 2.1E−2

Table 4.3
Example 1, iteration 25: comparison of ‖xtrue−xreg‖2/‖xtrue‖2 for projection plus Tikhonov,

TSVD, and Rust’s TSVD. The parameter values are given in parentheses.

Disc. GCV L-curve Optimal
Tikhonov (1.6E−1) 2.2E−2 (2.0E−1) 2.3E−2 (4.0E−2) 4.3E−2 (1.3E−1) 2.1E−2
TSVD (17) 2.5E−2 (17) 2.5E−2 (21) 2.4E−2 (19) 1.6E−2
Rust’s TSVD (2.0E−2) 2.5E−2 (2.0E−2) 2.5E−2 (1.5E−2) 2.5E−2 (1.5E−2) 2.5E−2

problem with Tikhonov regularization consistently chose the same parameter for fu-
ture iterations (see Figure 4.1, for instance), and correspondingly the errors remain
constant; however, the results at earlier iterations are actually better than after the
parameter on the projected problem has converged to the L-curve parameter on the
original. For the projection plus TSVD, both the discrepancy principle and GCV
method yielded parameters for which the solutions had similar errors from one iter-
ation to the next for at least the first 80 iterations (see the top of Figure 4.2); the
L-curve behaved slightly less consistently for iterations beyond about 50. Discrepancy
and GCV when applied to projection plus Rust’s TSVD also gave consistent solutions
for about 40 iterations, after which the GCV solutions began to grow very large in
error, much like GCV applied to the original problem (refer to the bottom of Figure
4.2).

4.2. Example 2. The 3969× 3969 matrix A for this example was a symmetric,
block Toeplitz matrix with Toeplitz blocks formed according to A = T ⊗T . Here T is
a symmetric, banded Toeplitz matrix with entries Ti,j = ti−j ; the nonzero entries in
the first row were tk = (sin(k/B)/(k/B))2, 0 ≤ k ≤ 4, B = .8. The singular values of
this matrix range from 5.7 to 8.6×10−8 but do not decay very quickly, and the matrix
has a condition number of about 7× 107. x was obtained by stacking by columns the
63 × 63 image that was zero except for a rectangle with value 1 from rows 20 to 49,
columns 4 to 24, and another rectangle with value .8 at rows 23 to 53, columns 29
to 52. We generated btrue = Axtrue and then computed the noisy vector b as b + e,
where e was generated using the Matlab randn function and was scaled so that the

noise level, ‖e‖
‖btrue‖ , was 2× 10−3.

We generated our discrete λi using log10 λ = −4,−4.9, . . . , 0. The norm of the
noise vector was 3.66E−1, so we took τδ = 4.00E−1 for the discrepancy principle.

In this example, when no preconditioning was used, it took 90 iterations for
LSQR to reach a minimum relative error of 7.93E−2. Likewise, the dimension k of
the projected problem had to be at least 90 to obtain good results with the projection-
plus-regularization approaches and even larger for the parameter selection techniques
to work well on the projected problem. Therefore, for the projection based techniques,
we chose to work with a left preconditioned system (refer to the discussion at the end
of section 2.1). Our preconditioner was chosen as in [23] where the parameter defining
the preconditioner was taken to be m = 2080. Results for right preconditioning were
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Fig. 4.1. Example 1. Top: λk as selected by L-curve method; bottom: relative error for
corresponding solution. The solid line indicates the optimal value on the original problem, and the
dashed line indicates value selected by L-curve on the original problem.
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Fig. 4.2. Example 1. Relative error between computed and exact solutions for projection
plus TSVD (top) and projection plus Rust’s TSVD (bottom) when the parameters for the projected
problem are selected by either the discrepancy principle (*) or GCV method (o).

similar, although the errors were not quite as small. On other examples, though, we
found that right preconditioning by this type of preconditioner was only effective in
certain instances, even when left preconditioning was effective.2

The results of the resulting regularization for the original problem parameters are
given in Table 4.4. We note that GCV with Rust’s TSVD was ineffective. Also, after
50 iterations on the left preconditioned system, the GCV functional for projection was
still decreasing, so the value in Table 4.4 corresponds to the value after 50 iterations.
The L-curve parameter in the table was determined after 20 iterations.

Although we projected using LSQR, we note that since the matrix and precondi-
tioner were symmetric, we could have used MINRES as in [23]. The results in each
case at iterations 10, 20, and 40 are given in Tables 4.5, 4.6, and 4.7, respectively, and
we summarize results up to 60 iterations in the discussion below.

Again, we used the lcorner routine to determine the corners of the respective
L-curves, with the modification that for 20 iterations and beyond for TSVD, we first
removed points on the curve with residual norm greater than 10 to avoid detecting a
false corner.

2In the language of [23], right preconditioning worked well only when K was a very good approx-
imation to C so that right preconditioning did not mix noise into early iterates; left preconditioning
was not nearly as sensitive to the approximation on the transition and noise subspaces.
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Table 4.4
Example 2: comparison of ‖xtrue−xreg‖2/‖xtrue‖2 for each of four regularization methods on

the original problem. The parameter values are given in parentheses. The projection was performed
on a left preconditioned system.

Disc. GCV L-curve Optimal
Tikhonov (1.6E−1) 8.5E−2 (5.0E−2) 8.0E−2 (3.2E−3) 5.3E−1 (6.3E−2) 7.8E−2
TSVD (2073) 9.9E−2 (2534) 8.1E−2 (1509) 1.2E−1 (2521) 8.0E−2
Rust’s TSVD (2.1E−2) 7.6E−2 (9.2E−2) 4.0E + 3 (1.6E−2) 2.3E−1 (2.0E−2) 7.6E−2
Projection (2) 9.7E−2 (50+) 2.7E−1 (13) 8.3E−2 (8) 7.9E−2

Table 4.5
Example 2, iteration 10: comparison of ‖xtrue−xreg‖2/‖xtrue‖2 for projection plus Tikhonov,

TSVD, and Rust’s TSVD. Parameter values are given in parentheses.

Disc. GCV L-curve Optimal
Tikhonov (7.9E−2) 7.9E−2 (6.3E−2) 7.9E−2 (2.0E−4) 7.9E−2 (5.0E−2) 7.9E−2
TSVD (6) 9.9E−2 (6) 7.9E−2 (8) 9.8E−2 (10) 7.9E−2
Rust’s TSVD (2.2E−1) 8.5E−2 (2.6E−1) 9.9E−2 (2.3E−1) 9.9E−2 (3.9E−4) 7.9E−2

Table 4.6
Example 2, iteration 20: comparison of ‖xtrue−xreg‖2/‖xtrue‖2 for projection plus Tikhonov,

TSVD, and Rust’s TSVD. Parameter values are given in parentheses.

Disc. GCV L-curve Optimal
Tikhonov (7.9E−2) 7.9E−2 (6.3E−2) 7.8E−2 (2.0E−4) 1.1E−1 (6.3E−2) 7.8E−2
TSVD (12) 9.9E−2 (12) 9.9E−2 (19) 8.3E−2 (19) 8.3E−2
Rust’s TSVD (1.6E−1) 9.5E−1 (7.9E−2) 1.1E−1 (4.6E−2) 1.1E−1 (1.3E−1) 8.3E−2

Table 4.7
Example 2, iteration 40: comparison of ‖xtrue−xreg‖2/‖xtrue‖2 for projection plus Tikhonov,

TSVD, and Rust’s TSVD. Parameter values are given in parentheses.

Disc. GCV L-curve Optimal
Tikhonov (7.9E−2) 7.9E−2 (6.3E−2) 7.8E−2 (2.0E−1) 2.3E−1 (6.3E−2) 7.9E−2
TSVD (24) 9.9E−2 (24) 9.9E−2 (28) 9.9E−2 (38) 8.3E−2
Rust’s TSVD (1.5E−1) 9.2E−2 (5.8E−2) 2.3E−1 (1.6E−1) 9.2E−2 (1.5E−1) 9.2E−2

Discrepancy and GCV consistently chose the same regularization parameter and
hence gave the same error for projection plus Tikhonov for 10 to 60 iterations. From
the tables, we see that these are not the same parameters as those chosen when
applied to the original problem and that, in fact, the solutions for projection plus
Tikhonov have smaller error. The errors for the solutions obtained using any of the
3 parameter selection methods applied to find � for projection plus TSVD were also
consistent for 10 to 60 iterations, as alluded to in the tables. Figure 4.3 shows the
errors from iterations 5 to 60 for projection plus Tikhonov and projection plus TSVD
when GCV is used. For Rust’s TSVD, the L-curve and discrepancy rules are fairly
consistent at picking parameters that give solutions with similar error from iteration
to iteration. We note that GCV for Rust’s TSVD picked parameters giving solutions
with reasonably small errors, even though GCV for Rust’s TSVD on the original
problem failed, giving a solution with huge error. A similar statement can be made
for the L-curve with projection plus Tikhonov.

Summarizing, we observe two phenomena. First, the parameters selected to regu-
larize the projected problem can be different from those chosen on the original problem
but still yield solutions of better or comparable error. Second, as this and the previous
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Fig. 4.3. Example 2: Errors for projection plus Tikhonov (*) and projection plus TSVD (o)
when the regularization parameter for the projected problem was given by GCV.

Table 4.8
Example 3: comparison of ‖xtrue−xreg‖2/‖xtrue‖2 for each of the 4 regularization methods on

the original problem. Parameter values are given in parentheses. Those for GCV and the L-curve
are those selected after 30 iterations.

Disc. GCV L-curve Optimal
Tikhonov (1.0) 3.9E−1 (1.3) 4.0E−1 (5.0E−1) 4.1E−1 (7.9E−1) 3.9E−1
TSVD (232) 4.2E−1 (400) 1.3E+4 (261) 4.0E−1 (241) 4.0E−1
Rust’s TSVD (3.0E−1) 7.4E+2 (1.8E−1) 1.2E+4 (3.7) 4.6E−1 (3.9E−1) 4.6E−1
Projection (9) 4.0E−1 (23) 4.3E−1 (16) 4.0E−1 (12) 3.9E−1

example show, loss of orthogonality does not seem to hamper the parameter selection
process, at least not for a reasonable number of iterations. This may be due to the
fact that the parameter selection methods are applied directly to the projected prob-
lem: for example, the denominator of our GCV function for projection plus TSVD is
different from the denominator of the GCV function given in [2, (3.8)].

4.3. Example 3. Our final example is from the field of computed tomography.
In this example, the true vector x corresponded to the 20 × 20 image created with
the phantom.m function. The matrix A was the corresponding 561 × 400 Radon
transform matrix where it is understood that the data was taken at angles from 0
to 179 degrees in increments of 11 degrees. The matrix itself was computed (albeit
naively) in Matlab column by column using successive applications of radon.m on
images of point sources. The singular values fall off very slowly at first (the first 260
of the 400 singular values range between 18 and about 1) after which they fall off
rapidly, resulting in a condition number for A of about 107.

Since the norm of the noise vector was about 3.44, we took the tolerance for the
discrepancy principle to be 3. The discrete values λi used for Tikhonov regularization
were 51 evenly log-spaced points between 10−4 and 101. The results computed using
discrepancy, GCV, and L-curve methods for Tikhonov, TSVD, Rust’s TSVD, and
projection on the original problem are given in Table 4.8.

Table 4.9 gives the results after 10 iterations of LSQR. Notice that the errors
for the projection plus Tikhonov solutions via GCV and L-curve are slightly better
than the corresponding error for Tikhonov without projection at only 10 iterations.
Also interesting is the fact that at 10 iterations the discrepancy and GCV methods
for projection plus Rust’s TSVD give solutions with reasonable errors, whereas these
techniques give solutions with very large errors when applied to the original problem.
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Table 4.9
Example 3, iteration 10: comparison of ‖xtrue−xreg‖2/‖xtrue‖2 for projection plus Tikhonov,

TSVD, and Rust’s TSVD. Parameter values are given in parentheses.

Disc. GCV L-curve Optimal
Tikhonov (1.0) 4.0E−1 (2.2) 4.0E−1 (1.6E−4) 3.9E−1 (4.0E−1) 4.0E−1
TSVD (10) 3.9E−1 (1) 8.6E−1 (5) 8.3E−1 (10) 3.9E−1
Rust’s TSVD (1.0) 3.9E−1 (1.5) 4.0E−1 (2.2) 4.0E−1 (0.0) 3.9E−1

Table 4.10
Example 3, iteration 40: comparison of ‖xtrue−xreg‖2/‖xtrue‖2 for projection plus Tikhonov,

TSVD, and Rust’s TSVD. Parameter values are given in parentheses.

Disc. GCV L-curve Optimal
Tikhonov (1.0) 3.9E−1 (1.2) 4.1E−1 (5.0E−1) 4.1E−1 (7.9E−1) 3.9E−1
TSVD (37) 4.0E−1 (15) 7.8E−1 (39) 4.1E−1 (38) 4.0E−1
Rust’s TSVD (6.0E−1) 4.2E−1 (1.2) 4.1E−1 (2.7E−1) 4.1E−1 (6.6E−1) 4.0E−1
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Fig. 4.4. Example 3. Top: Value of ρk selected by GCV for projection plus Rust’s TSVD;
Bottom: Relative error of the corresponding solutions.

Table 4.10 shows the parameters and the errors after 40 iterations. From these
results, we see that the L-curve for projection plus Tikhonov eventually gives the
same regularization parameter and same solution error as when applied to the larger
problem, and we observed this to be true for several iterations beyond 40. Again, we
see that discrepancy and GCV used with projection plus Rust’s TSVD is effective,
whereas they are ineffective when used on the original problem; we observed this
behavior well beyond 40 iterations (see Figure 4.4).

5. Conclusions. In this work we have given a common framework for methods
based on regularizing a projected problem. We have shown that determining regular-
ization parameters based on the final projected problem rather than on the original
discretization has firmer mathematical justification and often involves less computa-
tional expense. We presented results that in fact the regularized solution obtained by
backprojecting the TSVD or Tikhonov solution to the projected problem is almost
equivalent to applying TSVD or Tikhonov to the original problem, where “almost”
depends on the size of k. The examples indicate the practicality of the method and
illustrate that our regularized solutions are usually as good as those computed using
the original system, and they can be computed in a fraction of the time, using a
fraction of the storage. We note that similar approaches are valid using other Krylov
subspace methods for computing the projected problem.
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In this work, we did not address potential problems from loss of orthogonality
as the iterations progress. In this discussion, we did, however, assume that either k
was naturally very small compared to n or that preconditioning had been applied to
enforce this condition. Possibly for this reason, we found that for modest k, round-off
did not appear to degrade either the LSQR estimates of the residual and solution
norms or the computed regularized solution in the following sense: the regularization
parameters chosen via the projection-regularization and the corresponding regularized
solutions were comparable to those chosen and generated for the original discretized
problem. Another possible reason for the success of our approach is that we chose
parameters for the projected problem directly, rather than for the backprojected,
larger problem. In our experiments, we found that the parameters selected usually
leveled out after a few iterations. The stagnation of the parameters themselves may
suggest when k is large enough.

For the Tikhonov approach in this paper, we have assumed that the regularization
operator L was the identity or was related to the preconditioning operator; this allowed

us to efficiently compute ‖r(k)
λ ‖ and ‖x(k)

λ ‖ for multiple values of λ efficiently for each k.
If L is not the identity but is invertible, we can first implicitly transform the problem
to “standard form” [19]. With Ā = AL−1, x̄ = Lx, we can solve the equivalent system

min
x̄

= ‖Āx̄− b‖2
2 + λ

2‖x̄‖2
2.

Then the projection plus regularization schemes may be applied to this transformed
problem. Clearly the projection based schemes will be useful as long as solving systems
involving L can be done efficiently.
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