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Abstract. Choosing the regularization parameter for an ill-posed problem is an art based on
good heuristics and prior knowledge of the noise in the observations. In this work, we propose
choosing the parameter, without a priori information, by approximately minimizing the distance
between the true solution to the discrete problem and the family of regularized solutions. We
demonstrate the usefulness of this approach for Tikhonov regularization and for an alternate family
of solutions. Further, we prove convergence of the regularization parameter to zero as the standard
deviation of the noise goes to zero.
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1. Introduction. Linear, discrete ill-posed problems of the form

min
x

‖Ax− b‖2, or, equivalently, A∗Ax = A∗b(1.1)

arise, for example, from the discretization of first-kind Fredholm integral equations
and occur in a variety of applications. We shall assume the following:

1. The full-rank matrix A is m× n with m ≥ n.
2. A is ill-conditioned with no significant gap in the singular value spectrum. (A

gap would make the problem somewhat easier.) The problem is normalized
so that the largest singular value is 1.

3. The right-hand side b consists of true data plus random noise: b = bt + e,
where the components of e are an independent sample from a probability
distribution with mean 0 and standard deviation s.

4. The discretization error caused by making a finite dimensional approximation
to the continuous operator is much smaller than the noise.

5. The system satisfies the discrete Picard condition, which we will define in
section 2 after introducing some notation.

The noise in the measurements, in combination with the ill conditioning of A,
means that the exact solution of (1.1) has little relationship to the noise-free solution
and is worthless. Instead, we use a regularization method to determine a solution
that approximates the noise-free solution. Regularization methods replace the original
operator by a better-conditioned, but related, one in order to diminish the effects of
noise in the data and produce a regularized solution to the original problem. In this
work, we first consider Tikhonov regularization, in which the problem (1.1) is replaced
by

min
x

(‖Ax− b‖2
2 + λ‖Lx‖2

2

)
, or, equivalently, (A∗A+ λL∗L)x = A∗b,(1.2)
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where L is a regularization operator chosen to obtain a solution with desirable prop-
erties, such as a small norm (L = I) or good smoothness (L a discrete approximation
to a derivative operator), and λ > 0 is a scalar parameter. Throughout this paper we
will use the 2-norm and denote it by ‖ ∗ ‖.

The central question in Tikhonov regularization is how to choose the parameter λ
in order to produce a solution x close to the true noise-free solution xtrue. Hoerl and
Kennard [11] showed that on average a smaller error is produced using a nonzero λ,
and numerous heuristics have been proposed for the choice of this parameter. Some of
these (e.g., the discrepancy principle [14]) assume that the standard deviation of the
noise is known. Others (e.g., generalized cross-validation [6] and the L-curve [8]) work
with less knowledge of the noise properties. An interesting recent approach of Rust
[17] uses visualization of residual and singular component plots to choose reasonable
parameters. Pierce and Rust [15] minimize the lengths of confidence intervals using
appropriate parameter choices, and Kilmer and O’Leary [13] discuss the choice of
parameters when iterative solution methods are used.

In this work, we propose another rule for parameter choice. We go back to first
principles: among all solutions in a given family such as Tikhonov, we want the
solution that is a minimal distance from the true solution. Kay [12] has developed
asymptotic expressions for this distance as the size of the problem grows large. Others
have determined a Tikhonov parameter by minimizing a bound on this distance; Raus
[16], Gfrerer [5], and Engl and Gfrerer [3] propose minimizing one such bound, while
Hanke and Raus [7] propose an alternative. Rather than using asymptotic results or
minimizing a bound, we compute in section 2 a parameter that approximately mini-
mizes the distance to the true solution to the discretized problem and accomplishes
this goal without a priori knowledge of the standard deviation or distribution of the
noise in the observations. We discuss convergence of this choice in section 3. Section 4
contains a similar development for an alternative to Tikhonov regularization. Section
5 discusses some algorithmic issues, and in section 6 we show the effectiveness of these
methods on numerical examples.

2. Choosing the Tikhonov regularization parameter. In order to analyze
the problem, we convert to the coordinate system of the singular value decomposition
(SVD) of A. For simplicity of exposition, we assume that the regularization operator
L is the identity matrix. A similar development, using the generalized SVD, could be
done for general L (see, for example, [10, sect. 2.1.2]), but the resulting function is
considerably more complicated to compute and minimize.

Suppose A = UΣV ∗, where U and V have orthonormal columns and Σ is a matrix
of zeros except for diagonal entries σ1 ≥ · · · ≥ σn > 0. Exploiting the property that
‖Uz‖ = ‖z‖ and ‖V ∗z‖ = ‖z‖, the problem (1.2) takes the form

min
z

‖Σz − β‖2 + λ‖z‖2 ,

where βi ≡ u∗
i b and z = V ∗x. Setting the derivative equal to zero, we find that for a

fixed value of λ, we need to solve the equation

(ΣTΣ+ λI)z = ΣTβ.

Thus, the Tikhonov solution is

xtik =

n∑
i=1

βiσi

σ2
i + λ

vi,(2.1)
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where vi is the ith column of V .
The true solution to the discrete (noise-free) problem is

xtrue =

n∑
i=1

βi − εi
σi

vi,

where εi ≡ u∗
i e represents the unknown noise component.

The goal in regularization is to produce a solution as close as possible to the true
solution, so let us (rather naively) try to minimize this distance:

min
λ

‖xtik − xtrue‖2 ≡ min
λ

f(λ) .

Using the singular value representation, we see that

f(λ) =
n∑

i=1

[
βiσi

σ2
i + λ

− βi − εi
σi

]2
.

Setting the derivative equal to zero yields

0 = g(λ) ≡ 1

2
f ′(λ) = −

n∑
i=1

[
βiσi

σ2
i + λ

− βi − εi
σi

] [
βiσi

(σ2
i + λ)2

]

=

n∑
i=1

β2
i λ

(σ2
i + λ)3

−
n∑

i=1

βiεi
(σ2

i + λ)2
.

Now the first summation in this last expression is computable, but the second is not
because the noise values εi are unknown. However, there are two interesting properties
of the second summation.

• First, the terms for i ≈ n tend to be the largest because the denominators
are the smallest.

• Second, the system satisfies the discrete Picard condition, meaning that for
large enough values of the discretization parameter n, the sequence of true
data values {βi − εi} goes to zero faster than the sequence of singular values
{σi}. Thus, for terms with i greater than or equal to some parameter k,
εi ≈ βi.

Therefore, although we cannot compute the function g(λ), we can compute the fol-
lowing approximation to it:

ĝ(λ) ≡
n∑

i=1

β2
i λ

(σ2
i + λ)3

−
n∑

i=k

β2
i

(σ2
i + λ)2

− E
(

k−1∑
i=1

βiεi
(σ2

i + λ)2

)

for a suitable index k, depending on the standard deviation s. Finding the zero of this
function yields an approximation to the optimal value of λ. The last term denotes
the expected value of the quantity. Under assumption 3 of section 1, βi is some true
value plus noise εi, so E(βiεi) = E(ε2i ) = s2, and

ĝ(λ) =

n∑
i=1

β2
i λ

(σ2
i + λ)3

−
n∑

i=k

β2
i

(σ2
i + λ)2

− s2
k−1∑
i=1

1

(σ2
i + λ)2

.(2.2)

As λ increases from zero, this function is monotonically increasing, and we denote the
first zero by λhat and the corresponding solution vector xhat.
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3. Convergence for the Tikhonov parameter choice. We know that we
cannot, in general, compute the optimal Tikhonov parameter. How far do we stray
from the optimal vector when we use a nonoptimal parameter? The following theorem
bounds the relative distance between the optimal solution and the computed one.

Theorem 3.1. Let λopt be the optimal parameter for the Tikhonov family (i.e.,
the (generally uncomputable) one that produces the solution closest to xtrue). Then
for any value of λ,

‖xtik(λopt)− xtik(λ)‖
‖xtik(λopt)‖ ≤ |λopt − λ|

σ2
n + λ

.

Proof. The result follows from the computation

‖xtik(λopt)− xtik(λ)‖2 =

n∑
i=1

(
βiσi

σ2
i + λopt

− βiσi

σ2
i + λ

)2

=

n∑
i=1

β2
i σ

2
i

(
λ− λopt

(σ2
i + λopt)(σ2

i + λ)

)2

≤ (λ− λopt)
2

(σ2
n + λ)2

n∑
i=1

(
βiσi

σ2
i + λopt

)2

=
(λ− λopt)

2

(σ2
n + λ)2

‖xtik(λopt)‖2 .

Our algorithm for choosing the regularization parameter also behaves well as the
size of the observation noise is decreased.

Theorem 3.2. If we choose the parameter k so that εi ≈ βi for i ≥ k, then in
the limit as the standard deviation s of the noise converges to zero, the solution xhat

produced by our algorithm converges to the correct discrete solution xtrue.
Proof. As the standard deviation of the noise goes to zero, the value k increases

to n+ 1, and the solution to ĝ(λ) = 0 becomes λ = 0, as desired. Thus, as the noise
goes to zero, our solution converges to the noise-free solution.

4. An alternate family of solutions. We have studied how the regularization
parameter might be chosen for one family of solutions, the Tikhonov solutions, which
take the form

xtik =

n∑
i=1

βiσi

σ2
i + λ

vi .

A similar algorithm can be found for other solution families, and in this section we
consider the family

xalt =

n∑
i=1

βi

σi + λ
vi .

This family was proposed by Franklin [4] for Hermitian positive definite A and is also
associated with Lavrentiev [10, p.107]. Ekstrom and Rhoads [2] discussed the use of
the algorithm for convolution problems symmetrized by reordering, and this method
was also considered by Cullum [1].
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In his Regularization Tool Package for Matlab [9], Hansen includes a function
dsvd that can be used to apply the method to general problems. In this more gen-
eral context, there is more than one interpretation. The solution xalt satisfies the
regularized equation

(A+ λUV ∗)x = b .

However, it may be more intuitive to interpret the family as a set of filter factors [10,
sect. 4.2]

σi

σi + λ
,

multiplying the corresponding terms in the least squares solution

n∑
i=1

βi

σi
vi .

To choose the parameter λ, we mimic the procedure in section 2: we naively try
to minimize the distance between our solution and the true one:

min
λ

‖xalt − xtrue‖2 ≡ min
λ

f(λ) .

Using the singular value representation, we see that

f(λ) =
n∑

i=1

[
βi

σi + λ
− βi − εi

σi

]2
.

Setting the derivative equal to zero yields

0 = g(λ) ≡ 1

2
f ′(λ) = −

n∑
i=1

[
βi

σi + λ
− βi − εi

σi

] [
βi

(σi + λ)2

]

=

n∑
i=1

β2
i λ

σi(σi + λ)3
−

n∑
i=1

βiεi
σi(σi + λ)2

.

Again, the first summation in this last expression is computable. The second is not,
because the observation noise values εi are unknown, but the terms for i ≈ n dominate,
and for these εi ≈ βi, so our approximate function becomes

ĝ(λ) ≡
n∑

i=1

β2
i λ

σi(σi + λ)3
−

n∑
i=k

β2
i

σi(σi + λ)2
− E

(
k−1∑
i=1

βiεi
σi(σi + λ)2

)

for a suitable index k that depends on the standard deviation of the noise. Finding
the zero of the function

ĝ(λ) ≡
n∑

i=1

β2
i λ

σi(σi + λ)3
−

n∑
i=k

β2
i

σi(σi + λ)2
− s2

k−1∑
i=1

1

σi(σi + λ)2
(4.1)

yields an approximation to the optimal value of λ.
We have a bound for the relative distance between the optimal solution and the

computed one similar to the Tikhonov case.



1166 DIANNE P. O’LEARY

Theorem 4.1. Let λalt be the optimal parameter for the alternate family (i.e.,
the one that produces the solution closest to xtrue). Then for any value of λ,

‖xalt(λalt)− xalt(λ)‖
‖xalt(λalt)‖ ≤ |λalt − λ|

σ2
n + λ

.

Proof. The result follows from a computation similar to that in the proof of
Theorem 3.1.

Again, we can show that the solution converges to the true solution as the obser-
vation noise goes to zero.

Theorem 4.2. If we choose the parameter k so that εi ≈ βi for i ≥ k, then in
the limit as the standard deviation s of the noise converges to zero, the solution xhat

produced by our algorithm converges to xtrue.
Proof. The proof is the same as above.

5. Algorithmic notes. The standard deviation s of the noise is not assumed to
be known, so we estimate it using the last max(m−n, 10) components of the right-hand
side. If |bn| > 3.5s, then we choose k = n. Otherwise we use a T-test to determine
the index k. We choose k as the smallest index, among the values n − 9, n − 14, . . .,
for which a T-test with 0.05 significance level indicates that the sequence βk, . . . , βn

has zero mean. If the mean of the noise-free sequence is likely to be near zero, then
this test would not be appropriate, but many alternatives are available. One would
be to use the Mann–Whitney Test, a nonparametric test to determine whether two
independent groups of sampled data are taken from the same underlying distribution
without making assumptions on the distribution.

A root of either function (2.2) or (4.1) can be found using standard algorithms
(e.g., fzero in Matlab). Since ĝ(0) < 0 for both functions, we can find a lower bound
on the root by searching s, s/10, s/100, . . . for a negative function value. The simple
strategy of searching 100s, 1000s, . . . has proved effective in finding a value for which ĝ
is positive, thus providing the root finder with an initial interval containing the root.

6. Performance of the algorithms. The ideas of the previous sections were
tested using two sets of test problems. In the first, the 200×200 matrix was diagonal,
with entries ranging between 1 and 10−5, evenly spaced on a log scale. The true
solution was assumed to be the vector with elements evenly spaced between 1.0 and
0.9, and 100 sets of random noise were generated for the right-hand side. The value of
the standard deviation of the noise was not made available to the algorithms; instead,
we estimated it as in section 5. We generated solutions using the Tikhonov and the
alternate method and calculated the distance between these computed solutions and
the exact noise-free solution, tabulating the relative x-error ‖x−xtrue‖/‖xtrue‖. Then
we calculated the optimal Tikhonov and alternate solutions, the ones corresponding
to the parameter values that minimize the distance to the noise-free solution. These
optimal solutions, of course, cannot be computed in practical situations since the
noise-free solution is unknown, but the results tell us how far we are from optimal.
We also compared our results with three other methods:

1. We computed the the Tikhonov parameter by minimizing the generalized
cross-validation (GCV) function using Matlab’s fmin with tolerance 1.0e-07.
In some sense this is an unfair comparison, since GCV aims to minimize the
residual norm, not the x-error.
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Table 6.1
Relative errors in experiments on a diagonal matrix of size 200.

Standard dev. Optimal Computed Optimal Computed GCV Hanke–Raus Discrep.
of noise Tikhonov Tikhonov alternate alternate Tikhonov Tikhonov Tikhonov
Mean
1.0e-03 6.17e-01 7.05e-01 6.59e-01 1.12e+00 8.99e-01 8.20e-01 6.80e-01
1.0e-04 4.34e-01 4.61e-01 4.63e-01 4.94e-01 8.37e-01 6.82e-01 5.16e-01
1.0e-05 1.75e-01 2.11e-01 1.79e-01 1.97e-01 7.70e-01 4.97e-01 3.09e-01
1.0e-06 2.18e-02 6.52e-02 2.19e-02 5.34e-02 7.32e-01 4.58e-01 1.38e-01
Median
1.0e-03 6.17e-01 6.43e-01 6.62e-01 6.71e-01 9.01e-01 8.21e-01 6.71e-01
1.0e-04 4.37e-01 4.57e-01 4.66e-01 4.74e-01 8.38e-01 6.83e-01 5.16e-01
1.0e-05 1.73e-01 2.10e-01 1.76e-01 1.95e-01 7.72e-01 4.83e-01 3.07e-01
1.0e-06 2.13e-02 4.10e-02 2.13e-02 3.05e-02 7.35e-01 4.63e-01 1.37e-01

Maximum
1.0e-03 6.46e-01 4.95e+00 6.88e-01 7.34e+00 9.21e-01 8.49e-01 1.62e+00
1.0e-04 4.78e-01 9.86e-01 5.11e-01 9.93e-01 8.68e-01 7.52e-01 5.75e-01
1.0e-05 2.42e-01 2.82e-01 2.60e-01 2.68e-01 7.99e-01 5.89e-01 3.85e-01
1.0e-06 3.41e-02 1.61e-01 3.41e-02 1.40e-01 7.53e-01 4.71e-01 1.83e-01

2. We also compared our results with those of the Tikhonov algorithm of Hanke
and Raus [7], which chooses the parameter by minimizing

f(λ) =
√
1 + 1/λ

√
rT1 (λ)r0(λ) ,

where

x0 = (A∗A+ λI)−1A∗b ,
r0(λ) = b−Ax0 ,

x1 = (A∗A+ λI)−1A∗r0 + x0 ,

r1(λ) = b−Ax1 .

3. We used our estimate of the standard deviation of the noise to apply the
discrepancy principle [14].

The results are summarized in Table 6.1. Several trends are apparent. First,
the average relative x-errors in the solutions computed by our algorithm are within a
factor of 2 of the average relative x-errors for the optimal parameter values. Second,
for large noise in the observations, the Tikhonov solution is on average closer to the
true solution, but for small noise the alternate algorithm does somewhat better than
Tikhonov. Third, the Tikhonov solutions computed by our algorithm are on average
better than the GCV Tikhonov solutions and the Hanke–Raus solutions over the full
range of noise values, and for small noise, the alternate solutions are better too. Our
Tikhonov solutions are better than the discrepancy principle solutions except for a
noise level of 10−3.

The trends in the medians are similar to those of the averages, except that our
values are always better than the discrepancy principle. The maximum relative errors
show that only in the small number of cases in which the standard deviation of the
error fails to be computed accurately are the GCV and Hanke–Raus solutions much
better than our solutions.

Our algorithm for choosing the parameter k tested values in increments of 5.
(See section 5.) Results are relatively insensitive to this increment: for experiments
with noise level 1.0e-03 and increments of 1, 5, or 10, for example, the mean for
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Fig. 6.1. Histograms of the relative errors in the solutions computed for the diagonal matrix
problem with standard deviation of the observation noise equal to 1.0e-03. The horizontal axis
indicates the log of the relative error. The bars have height equal to the number of test problems
yielding errors in that range.
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Fig. 6.2. Histograms of the relative errors in the solutions computed for the diagonal matrix
problem with standard deviation of the observation noise equal to 1.0e-06. The horizontal axis
indicates the log of the relative error. The bars have height equal to the number of test problems
yielding errors in that range.
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Table 6.2
Relative errors in experiments on a helioseismatic matrix of size 212× 100.

Standard dev. Optimal Computed Optimal Computed GCV Hanke–Raus
of noise Tikhonov Tikhonov alternate alternate Tikhonov

Mean values:
1.0e-02 5.83e-01 5.75e+04 6.46e-01 5.08e+04 8.87e-01 8.63e-01
1.0e-04 4.58e-01 5.75e+02 4.91e-01 5.08e+02 6.60e-01 5.88e-01
1.0e-06 3.54e-01 3.49e+00 3.71e-01 3.35e+00 5.71e-01 5.71e-01

Median values:
1.0e-02 5.92e-01 6.02e-01 6.49e-01 6.52e-01 8.87e-01 8.63e-01
1.0e-04 4.58e-01 4.90e-01 4.93e-01 4.97e-01 6.61e-01 5.88e-01
1.0e-06 3.54e-01 3.62e-01 3.73e-01 3.75e-01 5.71e-01 5.71e-01

Max values:
1.0e-02 6.11e-01 4.55e+06 6.88e-01 4.00e+06 8.92e-01 8.66e-01
1.0e-04 4.95e-01 4.55e+04 5.18e-01 4.00e+04 6.68e-01 5.88e-01
1.0e-06 3.70e-01 3.10e+02 3.95e-01 2.96e+02 5.74e-01 5.74e-01
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Fig. 6.3. Histograms of the relative errors in the solutions computed for the helioseismatic
matrix problem with standard deviation of the observation noise equal to 1.0e-04. The horizontal
axis indicates the log of the relative error. The bars have height equal to the number of test problems
yielding errors in that range.

the computed Tikhonov values was between 7.01e-01 and 7.56e-01, while the median
changed by at most 3 in the third significant digit. Similarly, the mean for the
computed alternate values was between 1.06 and 1.34, while the median changed by
at most 1 in the third significant digit.

Histograms of the relative errors are presented in Figures 6.1 and 6.2.
The second experiment used the inverse helioseismatic data of Hansen (helio.mat,

taken from the Regularization Tool Package homepage [9]). The problem is an inte-
gral equation of the first kind modeling internal rotation of the sun as a function of
radius. The matrix A of size 212 × 100 and the true solution x were obtained from
there, and random observation noise was added as before. The right-hand side values
had a mean close to zero, so a rather primitive scheme was used to determine k; it was
determined so that the values bj for j > k were not larger than 3.5 times the estimated
standard deviation. The results (Table 6.2) show that the median relative x-errors
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Fig. 6.4. Histograms of the relative errors in the solutions computed for the helioseismatic
matrix problem with standard deviation of the observation noise equal to 1.0e-06. The horizontal
axis indicates the log of the relative error. The bars have height equal to the number of test problems
yielding errors in that range.

are at most 1.1 times as large as the optimal and at most 0.8 times the GCV values
or the Hanke–Raus values. The trends are similar to the diagonal matrix problem:
when the value of k is estimated well, the new algorithms perform much better than
GCV and Hanke–Raus. However, since the k estimation problem is more difficult
with this right-hand side, the mean and maximum values of the relative errors are
not well behaved.

Still, the histograms of the relative errors presented in Figures 6.3 and 6.4 show
that the new algorithms can be expected to produce much better results than GCV
or Hanke–Raus when the errors are small enough that k is easily estimated.

7. Conclusions. We have proposed a method for choosing a regularization pa-
rameter that approximately minimizes the Euclidean distance between the computed
solution and the noise-free solution, and we have demonstrated by numerical experi-
ments that it produces solutions quite close to optimal.

We have demonstrated the use of these methods of parameter choice when the
SVD of the matrix A can be explicitly computed. If the problem is too large for
this to be practical, the ideas could be used in conjunction with iterative methods
by applying them in the subspace generated by the iteration. For example, the SVD
of the reduced matrix produced by a GMRES iteration could be substituted for the
SVD of the full matrix. The effectiveness of this general methodology is discussed in
[13].
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