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Abstract

We give a constructive proof of a theorem of Marshall and Olkin that any real symmetric
positive definite matrix can be symmetrically scaled by a positive diagonal matrix to have
arbitrary positive row sums. We give a slight extension of the result, showing that given a sign
pattern, there is a unique diagonal scaling with that sign pattern, and we give upper and lower
bounds on the entries of the scaling matrix.
© 2003 Elsevier Inc. All rights reserved.
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1. Introduction

We consider the following problem: Given a matrix W ∈ Rn×n and an n-vector
u > 0, find a diagonal matrix X so that the scaled matrix XWX has row-sums equal
to the elements of u. In other words, given W and u, solve the nonlinear equation

XWXe = u,

where e is an n-vector with all entries equal to one.
Scaling problems have been a topic of intense investigation. Brualdi [1] gave

necessary and sufficient conditions for the existence of such a diagonal scaling when
W is symmetric with nonnegative elements. Other authors have considered scalings
of nonsymmetric matrices, allowing different diagonal matrices on the left and the
right; see, for example, [2,12,13] and the references therein. The inverse problem of
finding matrices of given sign patterns with given row and column sums has also
been investigated, for example, in [3,5].
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In this paper, we consider the problem when W is real symmetric and positive
definite. Marshall and Olkin [10] proved that a positive scaling matrix exists when a
symmetric matrix W is strictly copositive, and, as a special case, when W is positive
definite. As noted by a referee, Kalantari investigated the positive semidefinite case
from the point of view of a theorem of the alternative in [7] and via a separation
theorem in [6, Sec. 11.3]. Algorithms for computing the scaling in polynomial time
can be obtained by noting that our problem can be written as a second-order cone
program (SOCP) [11]

min
x,y

‖Wx − y‖
ui = xiyi, i = 1, . . . , n,

x � 0,

where x is the diagonal of X and ‖ · ‖ denotes the 2-norm (for vectors or matri-
ces). See [9] for techniques to convert this problem to standard SOCP form and for
discussion of the polynomial time complexity.

In this paper, we give an alternate constructive existence proof of Marshall and
Olkin’s result. We generalize the result slightly, showing that there are 2n solutions
to the nonlinear equation XWXe = u, one for each sign pattern for X, and we give
bounds on the size of the entries of the matrix X.

2. A constructive existence proof

Suppose we are given a symmetric positive definite matrix W ∈ Rn×n and an n-
vector u > 0. We want to show that there exists a positive diagonal matrix X so that
the scaled matrix XWX has row-sums equal to the elements of u.

We will prove this result by considering the matrix

V (t) = (1 − t)I + tW.

Then V (0) = I , and V (1) = W .
We will study the mapping

H(t, x) = X(t)V (t)X(t)e − u = 0,

where X(t) is a positive diagonal matrix with entries xi . For t = 0, we have a unique
positive solution x(0) = x̂ with x̂i = √

ui .
If we can find a positive solution vector x for t = 1, then the solution to our

scaling problem is the corresponding matrix X(1).
Differentiating our mapping, we obtain

∂xH(t, x)x′(t) + ∂tH(t, x) = 0, x(0) = x̂, (1)

where

∂xH(t, x) = X(t)V (t) + diag(V (t)X(t)e),

∂tH(t, x) = X(t)(W − I )X(t)e.
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The matrix V (t) is positive definite on some interval (−σ, τ) where σ > 0 and
τ > 1. Let 2ε = min(σ, τ − 1). Then V (t) is uniformly positive definite on the in-
terval (−ε, 1 + ε), with eigenvalues (1 − t) + (t times the eigenvalues of W ), and
we define the bounds on its eigenvalues to be λmin > 0 and λmax < ∞.

The proof of our theorem relies on three lemmas, one establishing the bounded-
ness of X(t), one showing Lipschitz continuity of f (t, x) = ∂xH(t, x)−1∂tH(t, x),
and one rather standard result concerning existence of solutions to initial value prob-
lems.

Lemma 1. There exist scalars ξ� > 0 and ξu < ∞, independent of t, such that if
x(t) > 0 satisfies (1) for some value of t ∈ [−ε, 1 + ε], then

ξ� � min
i

xi(t) � max
i

xi(t) � ξu.

Proof. The matrix X(t) satisfies X(t)V (t)X(t)e − u = 0, so

eTX(t)V (t)X(t)e = eTu > 0.

Since Xe = x, we know that

eTu � λmin(V )‖x‖2 � λmin x2
i , i = 1, . . . , n,

so

x2
i � eTu

λmin
≡ ξ2

u .

This means that the elements of X(t) are uniformly bounded above for t ∈ [−ε, 1 +
ε].

Now since

xi(t)(V (t)X(t)e)i = ui, i = 1, . . . , n,

we have

xi(t) = ui

(V (t)X(t)e)i
� ui

‖V (t)‖‖X(t)‖√n
,

so we can define

ξ� = mini ui

λmaxξu

√
n
. �

Lemma 2. Let

� = {
(t, x) : −ε < t < 1 + ε, 1

2ξ�e < x(t) < 2ξue, V (t)x(t) > 0
}
.

For a fixed value of t, the function f (t, x) is Lipschitz continuous on �, where f

is defined by

∂xH(t, x)f (x) = −∂tH(t, x). (2)

Proof. The matrix ∂xH(t, x)X(t) is symmetric and positive definite on �, so the
inverse of ∂xH(t, x) must exist, and it is a continuous function of x and t . The right-
hand side −X(t)(W − I )X(t)e is continuous on �. Therefore, f (x) is continuous.



188 D.P. O’Leary / Linear Algebra and its Applications 370 (2003) 185–191

Now, for a fixed t ∈ [−ε, 1 + ε], we show that f (t, x) satisfies a Lipschitz con-
dition in x.

Let (t, x) and (t, x̂) be two points in �. Let Y = X(W − I )Xe and Z = XV X +
diag(XV x), and define Ŷ and Ẑ by substituting X̂ for X in these expressions. Then
we have these bounds:

‖X̂‖, ‖X‖ � ξu,

‖Ŷ‖, ‖Y‖ �
√

n‖W − I‖ξ2
u ,

‖Ẑ−1‖, ‖Z−1‖ � 1

ξ2
� λmin

.

We compute

‖f (t, x̂) − f (t, x)‖ = ‖X̂Ẑ−1Ŷ − XZ−1Y‖
= ‖(X̂ − X)Ẑ−1Ŷ + XẐ−1(Ŷ − Y ) + X(Ẑ−1 − Z−1)Y‖
� ‖(X̂ − X)‖ ‖Ẑ−1‖ ‖Ŷ‖ + ‖X‖ ‖Ẑ−1‖‖Ŷ − Y‖

+‖X‖‖Ẑ−1 − Z−1‖‖Y‖.
We already have bounds on many of these norms, so to conclude that f is Lips-

chitz continuous, it suffices to bound ‖Ŷ − Y‖ and ‖Ẑ−1 − Z−1‖ in terms of ‖X̂ −
X‖, since ‖X̂ − X‖ � ‖x̂ − x‖.

We compute the Y bound by noting that

Ŷ − Y = X̂(W − I )X̂e − X(W − I )Xe

= (X̂ − X)(W − I )X̂e + X(W − I )(X̂ − X)e,

so

‖Ŷ − Y‖ � 2‖W − I‖ξu

√
n‖X̂ − X‖.

Now we bound the Z term. Let D = diag(XV x), and similarly for D̂, and note
that

Ẑ−1 − Z−1 = (X̂V X̂ + D̂)−1 − (XV X + D)−1

= (X̂V X̂ + D̂)−1[−X̂V (X̂ − X) + (X̂ − X)V X − D̂ + D]
×(XV X + D)−1.

The norms of the first and last factors are bounded, so we just need to bound the
norm of the middle expression:

‖−X̂V (X̂ − X) + (X̂ − X)V X − D̂ + D‖
� 2ξuλmax‖X̂ − X‖ + ‖D̂ − D‖.
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Focusing on the last term gives

(D̂ − D)i = x̂i

∑

j

wij x̂j − xi

∑

j

wij xj

= (x̂i − xi)
∑

j

wij x̂j + xi

∑

j

wij (x̂j − xj ),

so

|(D̂ − D)i | � λmaxξu|x̂i − xi | + ξuλmax‖x̂j − xj‖
and thus we have a bound on every term in terms of ‖x̂ − x‖, yielding a conclusion
of Lipschitz continuity for f . �

Lemma 3. Let � be a bounded domain in Rn+1 with (0, x0) ∈ �. If f is continuous
in � and locally satisfies a Lipschitz condition in the x variables, then there exists a
solution of the initial value problem

x′(t) = f (t, x), x(0) = x0

that can be uniquely extended arbitrarily close to the boundary of �.

Proof. See, for example, Hurewicz [4, Theorem 11]. �

Now we use our three lemmas to prove that the scaling matrix exists.

Theorem 1. Given a symmetric positive definite matrix W ∈ Rn×n and an n-vector
u > 0, there exists a positive diagonal matrix X so that the scaled matrix XWX has
row-sums equal to the elements of u.

Proof. To construct our scaling X, we use Lemma 3 to show that (1) has a solution
at t = 1.

It is clear that (0, x0) ∈ �, and Lemma 2 assures us that the function f defined by
(2) is Lipschitz continuous on �. Thus, the assumptions of Lemma 3 are satisfied, so
a solution to (1) can be extended to the boundary of �.

Now, consider any solution point (t, x(t)) for t ∈ [−ε, 1 + ε] with x > 0. By
Lemma 1, ξ�e � x � ξue, and thus, since XV (t)x = u > 0, we must have

V (t)x � 1

ξu

u > 0.

Therefore, any solution point (t, x(t)) with t ∈ [−ε, 1 + ε] has x bounded away
from the constraints

1

2
ξ�e < x(t) < 2ξue, V (t)x(t) > 0

that define �. Therefore, we must be able to extend the solution from t = 0 to the
boundary t = 1 + ε, and thus the solution exists for t = 1. �
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By replacing V (t) by the positive definite matrix EV (t)E, where E is a diagonal
matrix with entries ±1, we can see that there are actually 2n scaling matrices, one for
each orthant, that give the prescribed row sums. For t = 1, the equation XV Xe = u

is a polynomial system of degree 2n, so this accounts for all possible solutions.

Corollary 1. The equation XWXe = u, with W symmetric positive definite and X

a diagonal matrix, has 2n solutions, one per orthant, so we can scale the matrix W

by a diagonal matrix with arbitrary signs, so that it has prescribed row sums.

3. Bounds on the entries in the scaling matrix

Khachiyan and Kalantari [8] gave upper and lower bounds on the Frobenius norm
of the scaling matrix X in the special case when u = e and X > 0. We generalize
their result to an arbitrary positive vector u and an arbitrary orthant, deriving an
alternate lower bound expression.

Theorem 2. The entries in the scaling X are bounded as

uTe

µ̂
� ‖x‖2 � uTe

µ
,

where

µ = min
y∈S

yTWy

yTy
, µ̂ = max

y∈S

yTWy

yTy
,

and S is the orthant under consideration.

Proof. Since XWXe = u, we see that Wx − X−1u = 0, so

xTWx = uTe.

Therefore,

µ � uTe

xTx
.

Similarly,

µ̂ � uTe

xTx
,

and combining these results gives upper and lower bounds on xTx. �

Note that the largest eigenvalue of W is an upper bound on µ̂.
For the special case u = e and the positive orthant, our upper bound matches that

of Khachiyan and Kalantari, but our lower bound is different from their bound of
1/(nµ).
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4. Conclusions and remarks

We have presented an existence proof showing that any symmetric positive defi-
nite matrix can be scaled by a unique positive diagonal matrix, or by a unique diag-
onal matrix with a given sign pattern, to have arbitrary positive row sums.

The proof is constructive in that it leads to algorithms for computing such a scal-
ing: apply an ordinary differential equation solver to (1). This is one particular ho-
motopy method applied to the solution of the nonlinear equation XWXe − u = 0;
other methods for solution of nonlinear equations or SOCPs could also be applied.

If the matrix is not positive definite, then the homotopy breaks down at values t

for which (1 − t)I + tW is singular.
We have also given upper and lower bounds on the entries of the scaling matrix.
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