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We describe criteria for implementation of quantum computation in qudits. A qudit is ad-dimensional
system whose Hilbert space is spanned by statesu0l, u1l, …, ud−1l. An important earlier workfA. Muthukrish-
nan and C.R. Stroud, Jr., Phys. Rev. A62, 052309s2000dg describes how to exactly simulate an arbitrary
unitary on multiple qudits using a 2d−1 parameter family of single qudit and two qudit gates. That technique
is based on the spectral decomposition of unitaries. Here we generalize this argument to show that exact
universality follows given a discrete set of single qudit Hamiltonians and one two-qudit Hamiltonian. The
technique is related to theQR-matrix decomposition of numerical linear algebra. We consider a generic
physical system in which the single qudit Hamiltonians are a small collection ofHjk

x ="Vsuklk j u+ u jlkkud and
Hjk

y ="Vsi uklk j u− i u jlkkud. A coupling graph results taking nodes 0,…, d−1 and edgesj ↔k iff Hjk
x,y are allowed

Hamiltonians. One qudit exact universality follows iff this graph is connected, and complete universality
results if the two-qudit HamiltonianH="Vud−1,d−1lkd−1,d−1u is also allowed. We discuss implementation
in the eight dimensional ground electronic states of87Rb and construct an optimal gate sequence using Raman
laser pulses.

DOI: 10.1103/PhysRevA.71.052318 PACS numberssd: 03.67.Lx

I. INTRODUCTION

An important theoretic construct used in the field of quan-
tum information is the qubit. Its utility follows from the
simple but significant recognition that all two-dimensional
subspaces, regardless of the underlying physical system, can
be regarded as informationally equivalent. This has made it
possible to discuss quantum computation in terms of single
qubit and two qubit gates without the need to analyze the
specific interactions that realize operations within a physical
system or between subsystems. An important issue in this
regard is that a necessary condition forefficient quantum
computation is the existence of an underlying tensor product
structure on the Hilbert spaceH. If all computation were
performed on a singled=dimsHd level system then some
physical resource such as space or energy would grow with
the dimension of the systemf1g. In contrast, the analogous
resources grow poly-logarithmically with the dimension
when the system is composed of many subsystems. By this
argument, a computation performed on qubitssd=2d is in
some sense the most compact foliation of Hilbert space.

Nevertheless, there are compelling reasons to consider
computation on qudits withd.2. First, most candidate sys-
tems for a quantum computer encode the qubit in a subspace
of a larger accessible Hilbert space. Examples of systems
with multiple states that can be coherently controlled include
charge-position states in quantum dotsf2g, rotational and vi-
brational states of a moleculef3g, harmonic oscillator states

f4g, and ground electronic states of alkali atomsf5g. Using
higher dimensional subspaces already endowed in these sys-
tems may be more efficient in terms of the number of inter-
acting gates needed during a computation. This is critical for
error control because interactions between qudits tend to
open channels for interactions with the decohering environ-
ment. By contrast, in many physical systems, single qudit
control is a well-developed technology that can be done with
high precision. Second, there is some evidence that the error
thresholds for fault tolerant computation improve when the
encoding is done with qudits whered.2 and primef6g.

Previous work has established conditions for simulating
unitaries on many qudits. Vlasovf7g shows that any unitary
UPUsdnd can be simulated with arbitrary precision using
two specific noncommuting single qudit Hamiltonians
complemented by a two qudit interaction Hamiltonian. Bry-
linski and Brylinski f8g prove the necessary and sufficient
criteria for exact qudit universality. Exact universality means
that any unitary and, by unitary extension to a larger Hilbert
space, anyquantum process, can be simulated with zero er-
ror. The result is that arbitrary single qudit gates comple-
mented by one entangling two qudit gate is needed. Neither
of these methods is constructive. Muthukrishnan and Stroud
f9g give a constructive procedure for an exact simulation of
an arbitrary unitary onn qudits using single qudit and two
qudit gates. Their approach uses the spectral decomposition
of unitaries and involves a gate library consisting of a family
of continuous parameter gates.

Here we describe an approach that uses theQRdecompo-
sitions on unitaries to achieve exact universal computation
on qudits. The analysis is done at the Hamiltonian level, i.e.,
we describe a minimal set of Hamiltonians needed to per-
form computation on qudits. Our primary motivation is to
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find a construction which requires a small number of control
resources and the fewest number of control pulses. By small
we mean that using a sequence of control pulses withk free
parameters each, the number of control pulses timesk should
be close to the number of parameters in the unitary group
Usdd, namely,d2. Our construction has the advantage that the
single qudit gates are generated by a fixed set of Hamilto-
nians that couple pairs of states in the single qudit logical
basis. The gates perform rotations, parametrized by two
angles, about orthogonal axes within the associated two-
dimensional subspace. For the example of two states coupled
by a electromagnetic field, the two angles correspond to the
pulse area and the mixing angle of the in phase and in
quadrature components of the driving field. Additionally, our
decomposition requires only a single one parameter two-
qudit gate: the controlled-phase gate. This gate is generated
by a two-qudit HamiltonianHint that generates a phase on a
single product state of two qudits. Such interactions can be
engineered in many atom optical systems.

In this paper, the general results are developed with close
contact to the example of computation in thed=8 qudit en-
coded in the ground hyperfine states of87Rb. In Sec. II we
describe the construction of single qudit unitaries using the
QR decomposition. We introduce a coupling graph to de-
scribe how states are connected to each other by physical
Hamiltonians. The set of rotation planes may be incomplete,
i.e., each state may not be connected to every other state.
However, provided the graph is connected, an efficient de-
composition can be found. Multiqudit computation is ad-
dressed in Sec. III. Using a construction of a singly-
controlled Householder gate demonstrated in the Appendix,
we show thatOsd4d elementary single- and two-qudit gates
from our library suffice to generate arbitrary two qudit uni-
taries. This construction completes the requirements for ex-
act universality. We conclude with a summary of the results
in Sec. IV.

II. ONE-QUDIT UNITARIES

We show how to construct an arbitrary single qudit uni-
tary with exact precision. The idea relies on applying control
fields that couple only two basis states at a time. Using the
fields to generate an arbitrary unitary on a two-dimensional
subspace of the qudit, one can then use a sequence of such
operations on different pairs of states to construct a unitary
on the entired-dimensional space. We show that this can be
done efficiently, meaning in as few gates as possible, pro-
vided there exists a pathway between any two states via pair-
wise couplings.

Recall that any determinant one unitary operator on
a two-dimensional Hilbert space can be described by a
Bloch sphere rotation. In the subspaceH jk spanned by
the orthonormal basishu jl , uklj such a rotation is written

Ujksg ,u ,fd=e−igW ·lW jk, where the vector gW =g(sinsud
3cossfd ,sinsudsinsfd ,cossud) is parametrized by its length
ugW u=g and its polar coordinatessu ,fd on the Bloch sphere.
The chosen basis for the subalgebra is both unitary and Her-
mitian and its components along the axes of the Bloch sphere

arehl jk
z = u jlk j u− uklkku ,l jk

y =−i u jlkku+ i uklk j u ,l jk
x = u jlkku+ uklk j uj.

Any such unitary can be generated by only two members
of the subalgebra. This follows by the Euler decomposition
of SUs2d into a product of three rotations about two orthogo-
nal axes on the Bloch sphere. In this paper we focus on the
set of Hamiltonians

Hjk
x = "Vl jk

x , Hjk
y = "Vl jk

y . s1d

For convenience of notation, we assume the strength of each
coupling is equal toV and allow the time durationt that each
Hamiltonian is left on to be a free parameter. In some cases,
the two Hamiltonians in Eq.s1d can be turned on simulta-
neously. By adjusting the relative strengths of the couplings,
one can then realize any rotation about an axis on the equator
of the Bloch spheresu=p /2d. For brevity, we write such

rotations asUjksg ,fd=e−ifcossfdHjk
x −sinsfdHjk

y gg/s"Vd, where it is
understood that if the couplingsHjk

x , Hjk
y cannot be turned on

together thenUj ,ksg ,fd requires three elementary gates. The
matrix form of the unitaryUj ,ksg ,fd in the logical basis is

Uj ,ksg,fd

=1
I j

cossgd − ieif sinsgd
Ik−j−1

− ie−if sinsgd cossgd
Id−k−1

2 ,

s2d

whereIr denotes ther-dimensional identity operator and we
assumedj ,k. In linear algebra applications these operations
are named “Givens rotations.” They define a coordinate axis
rotation in the plane spanned by the vectorshu jl , uklj and are
a tool used to zero elements of a matrix.

Realization of an arbitrary unitary evolutionVPUsdnd
follows in two steps. The first corresponds to aQR decom-
position f10,11g of the matrixU.

Using the allowed set of Hamiltonians, we may realize
matrices of Givens rotations physically. Generically, theQR
decomposition writes an invertibleG=UT, where U
=G1G2¯Gl is a product of Givens rotations and hence uni-
tary andT is upper triangular. Note that ifG=V is unitary,
then so likewise isT=U†G, whenceT is in this case a diag-
onal matrix which applies relative phases to computational
basis states.

Using techniques for realizing diagonal computations
f12g, a sequence of Hamiltonians realizingT is constructed.

We illustrate the idea using a Givens rotation in theQR
reduction of a unitaryVPUsdd as above. We may chooseU
a Givens rotation so as to zero the matrix elementfUVgd−1,0

swhere the indices run0,1, . . . ,d−1d. An appropriate choice
is Ud−2,d−1sg ,fd where the anglesg, f are chosen to satisfy

tang = ufVgd−1,0/fVgd−2,0u,

f = p/2 + argsfVgd−2,0d − argsfVgd−1,0d. s3d

Then lettingfVg**8 denote a changed entry, we obtain
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Ud−2,d−1V =1
fVg0,0 fVg0,1 ¯ fVg0,d−1

] � ]

fVgd−2,08 fVgd−2,18 ¯ fVgd−2,d−18

0 fVgd−1,18 ¯ fVgd−1,d−18
2 . s4d

In the next step, one chooses a unitaryUd−3,d−1 to zero the
matrix elementfUd−2,d−1Vgd−2,0. Continuing in this way, the
productp j=2

d Ud−j ,d−1 zeros all the elements below the upper
left diagonal entry. By unitarity, this sequence also zeros all
but the diagonal element in the top row. Iterating the se-
quence over all columns to zero elements below the diagonal
then brings the unitaryV to diagonal form. The maximum
number of Givens rotations needed isdsd−1d /2. The re-
sidual diagonal unitaryT hasd parameters. As each Givens
rotation has two parameters the total number of free param-
eters in the algorithm is dimfUsddg=d2. We note that the
above choice of Givens rotations assumes that one can physi-
cally couple any two logical basis states. In fact this particu-
lar sequence is not necessary. One can achieve aQR reduc-
tion usingdsd−1d /2 Givens rotations with a restricted set of
couplings. This is proven in Sec. II C.

A. Example: One-qudit Unitaries in 87Rb

Generically, control over a quantum system involves a
tradeoff in the number of resources used and the complexity
of the control algorithm. In the language of single qudit com-
putation, the goal is to realize an arbitrary unitary on the
qudit with as few gates and control fields as possible. We
analyze this complexity for the example of controlling
ground electronic states of a single atom. Specifically, we
describe the coupling graph alluded to in the introduction in
this case before defining it in general.

Consider the atomic species87Rb per Fig. 1. There are

two ground state hyperfine manifolds with total spinF↓=1
and F↑=2 split in energy by the hyperfine interactionEhf.
Each manifold consists of 2F+1 degenerate magnetic sub-
levelsMF for a total of eight distinguishable states. The de-
generacy can be lifted by applying a longitudinal magnetic
field Bz. For small fields, the resultant Zeeman interaction is
linear in the magnetic quantum number:HB=gFBzMF, where
the Landeg factors satisfygF↓=−gF↑ f13g.

Control fields that act on ground-state hyperfine levels can
couple to either the nuclear spin or to the electronic spin.
These two mechnisms are distinguished by the strength of
the coupling with respect to the hyperfine interaction. We
consider coupling that is weak relative toEhf using a pair of
laser beams on Raman resonance between two sublevels at a
time. The effective atom-laser HamiltonianHAL in the sub-
spaceH jk is then

HALjk = cossfdHjk
x − sinsfdHjk

y , s5d

where V= uV1V2u /D is the product of the individual laser
Rabi frequencies divided by the detuningD from the excited
state, andf=f1−f2 is the relative phase of the two beams.
A Raman coupling will also introduce ac stark shifts on all
the basis states. Generally, in the subspacehu jl , uklj this will
introduce an effectiveHj ,k

z coupling term. However, if the
laser Rabi frequencies are chosen such thatuV1u= uV2u, then
Hj ,k

z =0. Therefore, the Raman coupling between the two
states does indeed generate the Givens rotationUj ,k up to
diagonal phases accumulated on the other basis states. Such
phases can then be accounted for in the subsequent step of
the QR algorithm.

In order to selectively couple two states only it is neces-
sary that their energy difference be unique. In the linear Zee-
man regime, this can only be accommodated when the two
levels reside in different hyperfine manifolds. The allowed
couplings are constrained by angular momentum selection
rules which dictate the change in magnetic spin quantum
number during a single pulse sequence. It will be important
to minimize spontaneous emission during the pulse sequence
by choosing a large detuningD of each laser from the excited
states. For a detuning much greater than the excited state
hyperfine structure, but less than than the fine structure split-
ting, the angular momentum selection rules dictateDMF
=0, ±1. Using two-laser pulses of the appropriate frequency
and polarization, the statesuF↓ ,MFl and uF↑ ,MF+DMFl,
where DMF=0, ±1 can then be coupled together. This is
shown schematically in Fig. 1 where statesu2l and u5l are
coupled by as+−p polarized laser pair. As a further resource
constraint, we assume that one laser coupled to theF↑ mani-
fold has fixed p polarization so that the transition
uF↓ ,0l↔ uF↑ ,0l is disallowed.

At this point we pause to comment on the resources nec-
essary for single qudit compution using Raman pulses. For a
fixed Zeeman splitting, it will be necessary to have lasers
tuned to Raman resonance for eight allowed couplings. This
may be achievable using two phase locked lasers that are
frequency modulated appropriately. Another recourse is to
change the magnetic field strength for each pairwise state
coupling so that only one laser pair with a fixed frequency
difference is necessary. The phase shifts accumulated on the

FIG. 1. A singled=8 qudit encoded in the ground-state hyper-
fine levels of87Rb. A pair of lasers can couple states in different
hyperfine manifolds according to the selection ruleDMF=0, ±1.
Projective measurements of population in stateu7l are made by
observing resonant fluorescence on a cycling transition to the ex-
cited state. Any pair of states can be coupled by swapping neighbors
together pairwise and similarly any state can be measured by swap-
ping to u7l.
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basis states during the change in Zeeman interaction can be
accounted for in the gate sequence.

We wish to show that the above set of atom-laser Hamil-
tonians suffices to construct an arbitrary unitary evolution of
eight dimensional state spaceH1=Cu0l % ¯ % Cu7l. TakeV
PUs8d as the target one-qudit evolution. The goal then is to
decomposeV into a sequence of evolutions by these atom
laser Hamiltonians

V = exps− iHAL
1 t1/"d ¯ exps− iHAL

l tl/"d. s6d

Additionally, we prefer efficient decompositions, i.e., we
wish to use as few laser pulsessas small anld as possible.
This is sometimes not possible, depending on which states
u jl, ukl are coupled by anHAL. In order to classify when the
QR step is possible, we introduce the notion of a “coupling
graph,” by example.

87Rb coupling graph. The 87Rb coupling graph has verti-
ces labelled by 0,1,…,7. In addition, consulting Fig. 1, we
also allow in the following edges, corresponding to the atom-
laser coupled hyperfine states:

hs0,5d,s0,6d,s0,7d,s1,4d,s1,6d,s2,3d,s2,4d,s2,5dj. s7d

In particular, the edges encode the selection rule for the hy-
perfine states. The graph is reproduced in Fig. 2. We note for
future use that it is connected. Provided the statesu jl, ukl are
coupled, we may produce any determinant-one unitary evo-
lution of H jk.

Now note thatsince the coupling graph is connected, we
may in fact sequentially construct a Givens rotation on any
H jk. Indeed, even ifu jl and ukl are not paired, there exists a
sequenceu j0l= u jl , u j1l , u j2l , . . . ,u j ll= ukl such that each con-
secutive pair admits atom-laser Hamiltonians. Moreover, tak-
ing f=p /2, u=p /2 in Eq. s2d shows that we may use these
pairings to swap states up to relative phase. Hence, since we
may physically construct some sequence of Hamiltonians for
any Givens rotation, we see that the first step of theQR
decomposition is possible.

This leaves open the question of efficiency. For example,
one might hope that in a graph as highly connected as that
for 87Rb few or no swaps might be required. This is indeed
possible as we now show. It is convenient to reorder the
unitary in a logical basis labeledh7,0,6,5,3,2,4,1j. By succes-
sive Givens rotations, one may bring a unitaryV to diagonal
form column by column where the sequence is chosen so as
to not void zeroes created in earlier steps. Each of the col-
umns can be reduced to a single unimodular entry on the

diagonal by a sequence of Givens rotationsUj ,k acting on the
two-dimensional subspaceH jk. The complete sequence is as
follows: Column 7 reduction:U4,1U2,4U2,3U5,2U0,5U0,6U7,0,
column 0 reduction:U4,1U2,4U2,3U5,2U0,5U0,6, column 6 re-
duction: U2,5U2,3U4,2U1,4U6,1, column 5 reduction:
U4,1U2,4U2,3U5,2, column 3 reduction:U4,1U2,4U3,2, column
2 reduction:U4,1U2,4, column 4 reduction:U4,1.

Note that in general, constructingUjk requires 2ds j ,kd
−1 basic Hamiltonians, whereds j ,kd is the distance between
j andk in the graph corresponding to the pairing relation. For
qudit computation in87Rb using Raman pulses, the graph is
sufficiently connected so that the distance is never greater
than one in theQRdecomposition above. There are a total of
837/2=28 gates in the reduction to diagonal form. Each
gateUj ,kPSUs2d has two parameters so this gives 56 param-
eters. An arbitraryuPSUsdd requiresd2−1 parameters so
the additional seven parameters correspond to seven relative
phases left on the diagonal.

B. Relative phases

The goal of this section is to show that should the Hamil-
tonian graph be connected andT=o j=0

d−1eiw ju jlk j u be a diagonal
element ofUsdd, then we may realizeT with the allowed
HamiltoniansHjk

x , Hjk
y . In fact, we only need to constructT

up to a global phase so we can provide the construction for
the unitary T8PSUsdd, T8=o j=0

d−1eif j u jlk j u, where fd−1=
−o j=0

d−2f j . We first note that although it is not explicitly an
allowed Hamiltonian, we may for anys j ,kd edge within the
coupling graph simulate the effect ofHjk

z ="Vl jk
z . Indeed, for

any fixed angleg we have

e−iH jk
z g/s"Vd = Uj ,ks− p/4,p/2dUj ,ks− g,0dUj ,ksp/4,p/2d.

s8d

The goal then is to find an efficient sequence ofz rotations
that simulatesT8:

p
l=0

d−2

exps− iH jlkl

z tl/"d = T8. s9d

Given that the coupling graph is connected, choose a subset
S of d−1 edgesl jk

z = u jlk j u− uklkku that leave the graph con-
nected. We can represent the elements ofS as vectors in a
d-dimensional real vector space spanned by the orthonormal
vectorshejj, i.e., l jk

z =ej −ek. We then construct asd−1d3d
matrix M out of the row vectors in S: M
=hl0k0

z ,l1k1

z , . . . ,ld−2kd−2

z j. The appropriate timingstj in Eq.
s9d necessary to simulateT8 are given by solutions to the

matrix equationMTuW =fW , where uW =−Vst0, . . . ,td−2d and fW

=sf0, . . . ,fd−2,fd−1dT. Straightforward Gaussian elimination
shows that the dimension of the row space ofM is d−1, thus

there is a unique solution to the vectoruW.
The result is that any diagonal unitary can be simulated up

to a global phase using 33 sd−1d gates from the gate library.
This sequence can be reduced by a factor of three ifz rota-
tions can be implemented directly without conjugation. Fur-
ther, all the HamiltoniansHjk

z are diagonal and hence com-

FIG. 2. This is the coupling graph for the coupled hyperfine
states of87Rb ssee Fig. 1.d As it is connected, the collection of
atom-laser couplings allows for universal one-qudit computation.

BRENNEN, O’LEARY, AND BULLOCK PHYSICAL REVIEW A 71, 052318s2005d

052318-4



mute, soz rotations that act on disjoint subspaces can be
implemented in parallel using additional control resources.

C. One-qudit universality for generic coupling graphs

We found that for computation in the ground electronic
states of87Rb, a single qudit unitary could be brought to
diagonal form using the fewest possible Givens rotations.
This is not peculiar to that system but is in fact possible for
any system with a connected coupling graphf14g.

Lemma II.1. Given ad-node coupling graphG of allowed
Givens rotations, then anyUPSUsdd can be brought to di-
agonal form usingdsd−1d /2 allowed rotations if and only if
G is connected.

Proof. SupposeG is connected. Form any spanning tree
for it, and renumber the nodes so that the path from noded
sthe root of the treed to any nodej passes through no node
numbered lower thanj ; such a numbering can be constructed
by successively deleting leaf nodes and numbering in order
of deletion.sFor 87Rb, we formed the tree by breaking the
edge between nodes 6 and 1 and used the logical basis or-
deringh7,0,6,5,3,2,4,1j.d At the j th steps j =1, . . . ,d−1d, cre-
ate the treeT j, rooted at nodej , from the portion of the
spanning tree defined by nodesj , . . . ,d. sNote thatT j is con-
nected due to the way we numbered the nodes.d Then, until
only the root ofT j remains, choose a leafk, use a rotation
defined by its edge to eliminate elementsk, jd of U, and
delete nodek from T j. The result of applying these steps is an
upper triangular matrixsand therefore, sinceU is unitary, a
diagonal matrixd computed by usingdsd−1d /2 allowed rota-
tions.

SupposeG is not connected and consider a matrixU
PSUsdd that has no zero elements. Choose an arbitrary node
to call node 1. Then we can at best eliminate all but one of
the nonzeros in column 1 of the disconnected piece, but there
is no allowed rotation that will eliminate the last nonzero.
Repeating the argument for each choice of node 1, we con-
clude that we cannot reduceU to diagonal form using only
allowed rotations. j

III. MULTIQUDIT UNIVERSAILITY

Suppose in addition to being allowed local Hamiltonians
hHjk

x,yj with a connected coupling graph, the physical system
also allows for a two-qudit phase Hamiltonian

Hint = − "Vud − 1,d − 1lkd − 1,d − 1u, s10d

where um,nl;uml ^ unl. This interaction generates the
singly-controlled one qudit phase gate

L1„Psfd… ; expf− iH intf/s"Vdg. s11d

For qubits, the controlled-phase gateL1(Pspd) together with
arbitrary single qubit rotations is sufficient for exactly uni-
versal quantum computationf15g. In many situations, the
interaction between qudits will contain more than one term
on the diagonal. For instance, the actual Hamiltonian may be

Hint8 = o
m,n=0

d−1

"Vmnum,nlkm,nu. s12d

In this case the evolution generated byHint over a timet is
entangling if the following is truef8g:

tsVmn+ Vpqd Þ tsVmq+ Vpnd mod 2p for somem,n,p,q.

s13d

When the interactionHint8 is entangling, it is always possible
to map it toHint using multiple applications ofHint8 conju-
gated by single qudit gates. In practice, some multiqudit op-
erations may be done more efficiently usingHint8 directly.

There are several proposals for realizing diagonal cou-
pling gates in real physical systems. For example, in trapped
atoms possible coupling mechanisms include pairwise inter-
actions via dipole-dipole interactionsf16,17g, and controlled
ground state-ground state collisionsf18g. The later proposal
has been realized recently between atoms trapped in an op-
tical latticef19g. These proposals were originally made with
the goal of engineering two qubit controlled-phase gates. As
such, a naive adaptation to encoding over all magnetic hy-
perfine levels would fail due to off diagonal couplings be-
tween basis states. However, it should be possible to modify
one or more proposals to realize a differential shift on a
single product state. For instance, in Ref.f20g it was pro-
posed to realize a quantum gate using the ground state-
ground state collisional shift in a trap induced shape reso-
nance. Here one can tune a magnetic field such that a single
molecular state is on resonance with a bound motional state
of an external trap for both atoms. Because the resonance is
dependent on the internal states, a unique phase is accumu-
lated on a single product state. Provided the atoms are suffi-
ciently separated, the other basis state pairs do not interact
and a Hamiltonian of the formHint is realizedsup to local
unitariesd.

We describe a bootstrap technique using the interaction
Hint and one-qudit unitaries which allows for universal quan-
tum computation. Before presenting the generic discussion,
we describe a particular example of a two-qubit operation.
First, label ass%1d the map which carriesk° sk+1dmodd.
Then the controlled-increment gate, denotedL1 sINCd, is de-
fined by extending the following rule linearly:

L1sINCdu j ,kl = Hu j ,kl, j Þ d − 1,

u j ,k % 1l, j = d − 1.
J s14d

The controlled-increment gate has been used in the literature
for building a generick-controlled computationLksVd f9g as
well as for constructing quantum error correction codesf21g.

We may explicitly realizeL1 sINCd from the Hamiltonian
Hint as follows. We writes j1j2¯ j ld for the cyclic permuta-
tion of the single qudit basis states withj1° j2,
j2° j3,¯ , j l−1° j l, j l ° j1, and all other set elements fixed.
The permutation will also be identified implicitly with the
associated permutation matrixps j1j2¯ j ld

PUsdd. Hence, given
s01ds12d¯ sd−2d−1d= % 1, we see thatL1sINCd=L1fs01d
3s12d¯ sd−2d−1dg. The construction ofL1 sINCd then
takes place in the following steps:
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Using Givens rotations, the gateL1sI j−1 % sz% Id−1−jd is
constructed as

L1sI j−1 % sz
% Id−1−jd = Id ^ Uj+1,d−1sp/2,0dL1„Pspd…

3 Id ^ Uj+1,d−1s− p/2,0d, s15d

then

L1fs j j + 1dg = Id ^ Uj+1,j+2s− p/4,p/2dL1sI j % sz
% Id−2−jd

3Id ^ Uj+1,j+2sp/4,p/2d. s16d

This leads to the realization ofL1 sINCd using d−1
controlled operations, given that L1sINCd
=L1s01dL1s12d¯L1sd−2d−1d.

Finally, we count the number of gates needed to imple-
ment an arbitrary two-qudit unitary using one-qudit Givens
rotations Uj ,k and the controlled-phase gateL1(Psfd). A
helpful tool is the controlled one-qudit Householder gate
L1(Xsucld) defined as a unitary extension of the mapping
ud−1l→e−ixucl conditioned on the control qudit in stateud
−1l. In the Appendix we show that this gate can be con-
structed with 2sd−1d controlled-phase gatesL1(Psfd) and
2sd−1d one-qudit Givens rotations. Using the techniques in
Ref. f22g, d−1 singly controlled Householder gates suffice to
synthesize an arbitrary two-qudit stateublPCd2

, i.e., to real-
ize the mappingud−1,d−1l→ ubl.

Any two-qudit unitaryUPUsd2d can be written in a spec-

tral decompositionU=o j=0
d2−1eif jul jlkl ju, where heif jj and

hul jlj are the sets of eigenvalues and eigenvectors ofU. The
unitary can then be decomposed into the productf23g

U = p
j=0

d2−1

WjL1„Pjsf jd…Wj
†, s17d

whereWj is any unitary extension of the two-qudit mapping
u jl→ ul jl, and the diagonal gateL1(Pjsf jd)= Id2+seif j

−1du jlk j u is locally equivalent to the singly controlled
phase gateL1sf jd. Using controlled-Householders to con-
struct the gatesWj, the total gate count for simulatingU
PUsd2d is then 4d2sd−1d2+d2 controlled-phase gates and
Osd4d one-qudit Givens rotations. In Ref.f22g we derive a
construction of an arbitraryn qudit unitary usingOsd2nd two-
qudit gates. That construction uses aQR decomposition and
is asymptotically optimal.

IV. CONCLUSIONS

We have identified the criteria for exact quantum compu-
tation in qudits. Our method is constructive and relies on the
QR decomposition of unitaries on qudits using a gate library
generated by a fixed set of single qudit Hamiltonians and a
one parameter singly controlled phase gate. Using the con-
cept of a coupling graph we are able to show that universal
computation is possible if the nodessequivalently logical
basis statesd are connected. Further we give a prescription for
efficient single qudit computation by demanding that at each
stage of theQRdecomposition the graph remains connected.
Using the gate library generated by the couplings in Eq.s1d

the worst case gate count isk=3dsd+1d /2−3. In thecase
that Hj ,k

x and Hj ,k
y can be turned on at the same time for a

fixed pair of statess j ,kd fas in Eq.s5dg, the gate count isk
=dsd−1d /2+3sd−1d. If, in addition, one is allowed the set
of diagonal generatorshHjk

z j, the gate count is optimal atk
=dsd+1d /2−1. Thetechnique for computation is exempli-
fied with a d=8 qudit using the Raman coupled magnetic
sublevels of87Rb. It is shown that arbitary single qudit com-
putation is possible with at most 49 laser pulse sequences. A
construction of an arbitrary two-qudit unitary is given using
Osd4d controlled-phase gates and Givens rotations. Arbitrary
computation onn qudits can then be done usingOsd2nd two-
qudit gatesf22g.

We note that while the results herein have focused on the
construction of unitaries, the ideas can be extended to simu-
lating nonunitary processes such as generalized measure-
ments. Generalized measurements on a systems can be
thought of as orthogonal measurements on an extended sys-
tem Hs% Hs

', which may not be orthogonal ins alone. Ap-
plications including precision measurementf24g, quantum
communication in the context of entanglement purification
f25g, and quantum error correctionf26g. To realize a positive
operator valued measurementsPOVMd, one can perform a
unitary operation onHs% Hs

' followed by a projective mea-
surement onHs

' alone. For example, nonorthogonal mea-
surements on a qubit can be realized by appending ancillary
qubits, performing unitary operations on the joint system,
and measuring the ancillae. The requirement of using two
qubit gates can be obviated if the ancillary degrees of free-
dom come from orthogonal states within the same system.
For example, one can use thed−2 states of a qudit to imple-
ment POVMs on a qubit subspace. These ideas are explored
in the context of quantum optical systems in Refs.f27,28g.
The techniques reported here indicate that the requisite
operations on the appended Hilbert space can be done
efficiently.
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APPENDIX: THE CONTROLLED HOUSEHOLDER GATE

We describe the construction of the singly controlled
Householder gate using one-qudit Givens rotations and the
controlled-phase gate. The Householder gate is a unitary ex-
tension of the mapping of an arbitrary one-qubit superposi-
tion stateucl=o j=0

d−1cju jl to the logical basis stateud−1l sup to
a global phasexd. For our convenience we describe the in-
verse controlled operation definedL1(Xsucld) that maps
ud−1l→e−ixucl on the target qudit iff the control is in state
ud−1l and applies1 to the target otherwise

L1„Xsucld… = o
kÞd−1,k8

ukk8lkkk8u + ud − 1lkd − 1u

^ Se−ixuclkd − 1u + o
kÞd−1

ubklkkuD , sA1d

where kc ubkl=0 and kb j ubkl=d j ,k. The singly controlled
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Householder is then justL1(Xsucld)†. Because the gate
L1(Xsucld) is allowed to implement any unitary extension of
ucltkd−1u, it only depends on the 2d−2 parameters of the
stateucl stwo parameters are fixed by the normkc ucl=1 and
setting the global phase to zerod. This gate plays prominently
in the contruction of universal computation in qudits by
Muthukrishnan and Stroudf9g. They give an example of how
such a gate could be designed using a specific Hamiltonian
in an ion trap. Our construction is general for any system
encoding qudits with a connected coupling graph.

First, expand the stateucl in the single qudit basis:ucl
=eixo j=0

d−1cju jl, where the global phasex is chosen so that
argscd−1d=0. The conditional mappingud−1l→e−ixucl, can
be realized as a sequence ofd−1 controlled unitaries that
couple two target qudit basis states at a time

L1„Xsucld… = p
j=0

d−2

L1„Uj ,d−1sg j,f jd…. sA2d

The argumentssu j ,f jd for each controlled unitary must
satisfy the following relations:

cd−2 ; kd − 2uUd−2,d−1ud − 1l = − ieifd−2 singd−2,

cd−3 ; kd − 3uUd−3,d−1Ud−2,d−1ud − 1l = kd − 3uUd−3,d−1ud − 1l

= kd − 1uUd−2,d−1ud − 1l = − iefd−3 singd−3 cosgd−2, . . . ,

ck = − ieifk singk p
l=k+1

d−2

cosgl sk , d − 2d. sA3d

Now it only remains to demonstrate that each controlled ro-
tation L1sUj ,d−1d can be simulated with just the controlled-
phase gate and rotations on the target qudit. Four elementary
gates suffice:

L1sUj ,d−1sg j,f jdd = L1„Pspd…f1 ^ Uj ,d−1s− g j/2,f jdg

3L1„Pspd…f1 ^ Uj ,d−1sg j/2,f jdg.

sA4d

Following this construction, 2sd−1d controlled-phase gates
and 2sd−1d single qudit Givens rotations suffice to exactly
simulate L1(Xsucld). The mapping of an arbitrary single
qudit basis stateukl→e−ixucl is realized by substituting the
Givens rotationsUj ,k in the product Eq.sA2d and conjugating
the controlled-phase gates by the one-qudit state swap
f%sd−1− jdg, where% denotes addition modulod.
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