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Unsupervised Image Retrieval

Descriptions

» Multimodal retrieval
» Bridging the semantic gap
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« BEfficient query processing
» Encoding into compact binary strings

= Efficiency in search & indexing

= Storage capacity

« Query refinement
» Query-specific relevance judgments
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« User preference learning

Schematic Overview of the iIBP Algorithm
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Evaluation

The Latent Abstract Feature Model

Visual data X" is a product of Z and A” with some noise; and similarly the textual
data X7 is a product of Z and A" with some noise.
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Graphical Model for the Integrative IBP

Considering the infinite limit of a distribution on finite binary matrices.
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Query Extension to IBP

Z ~ IBP(a)

o

Based on the same Indian buffet analogy [1]:
New customer (query) and his friends have similar sense of taste.

Query image New customer
Relevant Images Friends of

to the query new customer

« Sampling dishes in proportion to their
- popularity among friends and

- unpopularity among non-friends.

#friends who N #non-friends who did
sampled that dish not sampled that dish
#customers

« Friendship status of the nth customer: 7, ~ Bernoulli(0)

Graphical Model for the Retrieval Model
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» Fix the number of abstract features, K
= Sort images w.r.t. E|r,|Q,Z, X]|.

- Computing the exact expectation requires 2" computations.

« Monte Carlo approximation to r by resampling z’ several times.

Inference by MCMUC for the Retrieval Model

= Collapsed Gibbs sampling: Integrate out r and A;
sample z’ for J times from

p(h =117, Q. 2, X) o p(z} = 11Z) p(Ql2, Z, X).

« Predictive probability is

Om;. + (1 — (9)(N — mk) +
p(z, = 1|Z) = :
N+1+2

« and collapsed likelihood function is similar to the previous one.
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Feedback Extension to IBP

The new customer has imaginary friends who reflect his preferences (bias).

« Sampling probability of a dish:

#friends #non-friends Fimaginary
who sampled -+ who did not + friends who
that dish sampled that dish sampled that dish

##customers + Fimaginary friends

« Number of imaginary friends:
N, ~ Binomial(vy, N)
« Number of imaginary friends who sampled the kth dish: 0,1,2,..., N,
Moy i | Ny ~ Binomial(¢, N,)

Retrieval Experiments — Quantitative Analysis

« The result of category retrieval for all query types:
» image-to-image and text-to-image queries.

« Our method (iIBP) is compared with the state-of-the-art methods on the
PASCAL-Sentence dataset|2| and SUN-Attribute dataset|3].
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Retrieval Experiments — Qualitative Analysis

A bird perching on a tree
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Query Retrieval Set
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Feedback Experiment — Quantitative Analysis

—@—Text Query w/ feedback  —#&—Image Query w/ feedback
- 3 - Text Query w/o feedback -<>- Image Query w/o feedback
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Conclusions

« A Bayesian nonparametric framework for integrating multimodal data in a latent space.

« A retrieval system that can respond to cross-modal queries and an MCMC algorithm for
inference.

« Formulation of user preferences as pseudo-images to alter the distribution of images in the
latent space.
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