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Abstract

The high tumor heterogeneity makes it very challenging to identify key tumorigenic pathways as therapeutic targets. The
integration of multiple omics data is a promising approach to identify driving regulatory networks in patient subgroups.
Here, we propose a novel conceptual framework to discover patterns of miRNA-gene networks, observed frequently up- or
down-regulated in a group of patients and to use such networks for patient stratification in hepatocellular carcinoma (HCC).
We developed an integrative subgraph mining approach, called iSubgraph, and identified altered regulatory networks
frequently observed in HCC patients. The miRNA and gene expression profiles were jointly analyzed in a graph structure. We
defined a method to transform microarray data into graph representation that encodes miRNA and gene expression levels
and the interactions between them as well. The iSubgraph algorithm was capable to detect cooperative regulation of
miRNAs and genes even if it occurred only in some patients. Next, the miRNA-mRNA modules were used in an unsupervised
class prediction model to discover HCC subgroups via patient clustering by mixture models. The robustness analysis of the
mixture model showed that the class predictions are highly stable. Moreover, the Kaplan-Meier survival analysis revealed
that the HCC subgroups identified by the algorithm have different survival characteristics. The pathway analyses of the
miRNA-mRNA co-modules identified by the algorithm demonstrate key roles of Myc, E2F1, let-7, TGFB1, TNF and EGFR in
HCC subgroups. Thus, our method can integrate various omics data derived from different platforms and with different
dynamic scales to better define molecular tumor subtypes. iSubgraph is available as MATLAB code at http://www.cs.umd.
edu/,ozdemir/isubgraph/.
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Introduction

Scientists have made great progress in the development of new

treatment modalities for certain cancer types over the past three

decades. However, the improvement of mortality rates in cancer

patients remains very modest, especially for esophageal, liver, lung

and pancreatic cancers [1]. Tumor heterogeneity is the major

obstacle that we need to overcome in order to improve cancer

treatment outcomes and patient mortality rates. Similar to other

lethal tumors, most primary liver cancer patients cannot be cured

because of extensive tumor heterogeneity. Liver cancer represents

a heterogeneous group of malignancies attributable to a variety of

genetic and environmental causes, such as different cells of origin,

range in patient ethnicity, etiology, underlying disease and

diversity of genomic and epigenomic changes which drive tumor

development [2].

Recent advances in molecular-based technologies have enabled

researchers to recognize molecular differences between tumors

from different patients, inter-tumor heterogeneity, and between

different areas of an individual tumor, intra-tumor heterogeneity,

possibly originating from the existence of cancer stem cells or

selection by clonal evolution. The high degree of heterogeneity

observed in the hepatocellular carcinoma (HCC) population

implies that multiple patient subgroups exist, each of which share

similar tumor biology [3]. Molecularly targeted therapies are

promising new treatment options because they are highly effective

in a stratified group of patients. Therefore, even though they may

not fundamentally reduce overall mortality in the whole cohort,

selection of patients that may respond to a specific treatment might

lead to greatly improved outcome in this subgroup. Thus, our

ability to identify distinct groups of cancer patients with similar

tumor biology who are most likely to respond to a specific therapy

would have a significant impact on improving patient outcome.

MicroRNAs (miRNAs) are *22 nucleotide long non-coding

RNAs that take a significant role in regulation of gene networks by

targeting complementary messenger RNA (mRNA) transcripts

[4,5]. Previous miRNA expression profiling studies have identified

a few differentially expressed miRNAs in liver tumor such as

miR-122, miR-26, and miR-101, which are down-regulated in

HCC, and miR-21 and miR-221, which are up-regulated in HCC
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[6,7]. However, the functions of miRNAs in complex cellular

systems have not yet been fully understood because accurate

prediction of post-transcriptional gene regulatory mechanisms

poses a major challenge for most miRNAs.

Changes in both miRNA and gene expression levels observed

specifically in a subgroup of cancer patients might be the result of

driving regulatory pathways between miRNAs and genes. For

example, an abundant miRNA can repress the translation of its

target genes, which may lead to the down-regulation of hundreds

of genes. Most prognostic signatures that have been proposed to

predict clinical outcome for HCC are based on either miRNA or

gene expression profiles. Such signatures can identify only one side

of the signaling pathway. On the other hand, integrated analysis of

miRNA and gene expression data offers a broader view of the big

picture and may help to develop more accurate prediction models.

Systems biology is a holistic approach that strives the integration

of experimental information into computational models that

contribute towards further understanding of complex biological

systems [8–10]. The goal of this study was to provide a conceptual

framework that allows integration of different genomic data

modalities and their interactions into graphical network models in

order to better understand biological pathways associated with a

specific type of cancer and to identify related molecular networks.

We specifically focused on the integration of miRNA and mRNA

expression profiles for liver cancer. However, the method we

propose is easily extensible to other omics data types such as DNA

methylation data, somatic copy number alterations or metabo-

lomics. Therefore, systems biology approaches, such as integrating

miRNA and gene expression profiles, may aid in the understand-

ing of their interaction in liver tumor cells and their contribution to

the pathogenesis of liver cancer.

We propose a simple yet powerful tool to discover patterns of

miRNAs and their target genes, observed frequently up- or down-

regulated in a group of patients. Our method is capable to detect

cooperative regulation of miRNAs and genes even if it occurs in

some patients only. We denoted each patient by a single bipartite

graph, which encodes miRNA and gene expression levels and also

the interactions between them. We used an integrative graph

mining approach called iSubgraph (integrated subgraph analysis)

to identify miRNA-mRNA regulatory networks frequently seen in

HCC as subgraphs. These miRNA-mRNA modules were used in

a stable unsupervised class prediction model for patient stratifica-

tion to discover HCC subgroups. The Kaplan-Meier survival

analysis showed that subgroups identified by the algorithm have

different survival characteristics. The statistical analyses of the

biologically significant miRNA-mRNA co-modules identified by

the algorithm demonstrate key roles of Myc, E2F1, let-7, TGFB1,

TNF and EGFR in HCC subgroups. Thus, this approach can

integrate omics data with different dynamic scales to better define

tumor subgroups.

Materials and Methods

Study Cohorts
In this study, we used three HCC cohorts with publicly available

microarray data at the Gene Expression Omnibus (GEO; http://

www.ncbi.nlm.nih.gov/geo) database. The gene and miRNA

expression data of the first cohort have been published earlier in

[11] and [12], respectively. The microarray data accession

numbers are GSE14520 and GSE6857 for the gene and miRNA

expression. This cohort consists of 242 HCC cases derived from

Liver Cancer Institute (LCI) of Fudan University. The second

cohort is composed of HCC patients who received primary

curative hepatectomy at Queen Mary Hospital (Pokfulam, Hong

Kong) between 1990 and 2007. The expression data of this cohort

have been studied in [13] and [14]. For the Hong Kong cohort,

the gene and miRNA expression profiles from 96 tumor and

adjacent nontumor tissues are available under accession number

GSE22058. The gene expression profiling of the third cohort was

performed by the Laboratory of Experimental Carcinogenesis

(LEC, National Cancer Institute) and the data has been published

previously in [15] and [16]. The gene expression of the LEC

cohort data can be accessed at GEO with accession numbers

GSE1898 and GSE4024. Only gene expression data is available

for this cohort. Therefore, we used this dataset for validation

purposes only. The LEC cohort consists of 139 HCC patients and

the microarray platform contains 16,796 genes. For 113 patients,

disease free survival and overall survival were available. In the

experiments, we used only the patients with survival data.

Significant amount of the expression data is missing for this

dataset (32% of the data). The Bayesian mixture model, used for

clustering, can resolve this issue by marginalizing probabilities over

missing values. For all cohorts, pre-normalized data as published

previously was used for statistical analyses in logarithmic scale.

The mRNA data of the LCI cohort was RMA normalized and the

miRNA data was median and to an artificial common reference

normalized. Of the Hong Kong the mRNA data was RMA

normalized and the log10 expression level of the miRNA data

(qPCR data) was normalized to the sample mean. For the LEC

mRNA data the log2 transformed intensity ratios of each spot

from duplicated experiments were median normalized. The

patient characteristics for the LCI and LEC cohorts are shown

in Table 1. The LCI and LEC cohorts of this study were the

subsets of those used in [11] since we removed the patients for

whom we did not have miRNA, gene expression and survival data.

Data Preprocessing
We combined the probes that matched to the same miRNAs

listed in the miRBase database (release 19, http://www.mirbase.

org) [17] using their median expression level. Probes that did not

match to any miRNA were removed from the dataset. The final

microarray data of the LCI cohort had 196 tumor and 185

adjacent nontumor samples from 196 patients with 13,101 genes

and 206 miRNAs with missing values for some cases (7% of the

data). The same procedure for combining miRNA probes was

applied on the Hong Kong cohort which resulted in 18,503 genes

and 202 miRNAs.

Statistical Analyses and Computational Methods
The robustness of a clustering algorithm is a crucial issue in

tumor subclassification. An unstable clustering method might yield

quite distinct patient subgroups when it is applied on different

cohorts. The problem of unstable class estimates may stem from

over fitting of the model to training data due to very high

dimensionality of microarray data with limited number of samples.

Therefore, one can take feature selection approaches to prevent

the curse of dimensionality [18] by narrowing down the set of

genes and miRNAs. In addition, the complexity of the clustering

method i.e. the number of free parameters can be reduced to avoid

over fitting. Thus, we used a stable clustering method for cancer

patients by taking both approaches as described below.

The iSubgraph algorithm first discovers regulatory networks of

miRNAs and their target genes, which are frequently observed in a

subset of patients as up- or down-regulated. Next, it uses the

expression levels of only those genes and miRNAs in an

unsupervised clustering method to discover cancer subgroups.

The iSubgraph algorithm can be briefly summarized in three main

parts.

Tumor Subgroup Discovery by iSubgraph
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1. Transforming microarray data into graph representation,

2. Mining frequent subgraphs,

3. Cancer subgroup discovery via clustering using mixture

models.

Figure 1 shows the flow chart of the overall algorithm. The

graph representation of patients serves as an abstraction of

microarray data, which enables making generalization about

patients that belong to the same cancer subgroup. Instead of using

exact expression levels of genes and miRNAs, these values were

discretized, for generalization, into three groups as over-expressed,

under-expressed or averagely-expressed. Similarly, instead of

quantification of miRNA-gene interactions, we showed these

targeting interactions in graphs by three possible relationship

types: positively correlated, negatively correlated, or no target

relationship. The graph construction starts with two parallel steps:

target gene prediction for miRNAs and identification of differen-

tially expressed cases of each gene and each miRNA. The former

step specifies a template bipartite graph where miRNA-mRNA

targeting relationships are represented by edges, while the latter

provides graph nodes for genes and miRNAs with appropriate tags

(UP or DOWN) for each tumor sample. In the next step, these

edges and nodes are merged into bipartite graphs called patient

graphs.

The details of graph construction are described as follows:

Target genes of miRNAs were determined by filtering the

predictions of the TargetScan algorithm [19], which identifies

mRNAs with conserved complementarity to the miRNA seed.

Target predictions were tested for correlation (or anti-correlation)

between miRNA and gene expression levels of both tumor and

adjacent nontumor tissues. Significantly correlated pairs were

considered as actual miRNA-mRNA interactions. Let vectors

(x1i,x2i, . . . ,xNi)
T and (y1j ,y2j , . . . ,yNj)

T be the logarithms of the

expression levels of the ith gene and the jth miRNA, in samples 1

to N from both tumor and nontumor tissues, respectively. Suppose

that the ith gene is predicted as a potential target of the jth

miRNA in the TargetScan database. We first compute the

correlation coefficient, Rij , between these expression vectors. The

type of targeting relationship is determined from the sign of Rij

(positively or negatively correlated). Then, the significance of

Pearson correlation (p-value) is assessed by one-tailed test. This

includes permuting the expression values in each vector 1000

times, recalculating correlation coefficient for each permutation,

and counting significant results. Finally, multiple comparisons

procedure was performed for the targets of each miRNA to control

false discovery rate of the genes reported by the source of target

prediction knowledge (FDRƒ0:05). The pseudocode of the target

prediction procedure is shown in Procedure S1. We used a

bipartite graph, which represents miRNA-gene interactions, as a

template for constructing patient graphs. In this graph, two

disjoint vertex sets represent genes and miRNAs in the dataset

where each gene and each miRNA correspond a certain vertex in

the graph. A miRNA vertex and a gene vertex were connected by

an edge if there exists a positively or negatively correlated target

relationship between the corresponding gene and miRNA.

The next step of the method was to construct one bipartite

graph for each patient based on the template bipartite graph.

Patient graphs, constructed from tumor samples, contained only

up- or down-regulated genes and miRNAs in those patients. The

objective here is to create a set of structured data models that

facilitate the detection of abnormalities in the expression profiles of

a cancer subgroup. A patient graph had a graph node attached

with UP or DOWN tag if the corresponding gene or miRNA was

over-expressed or under-expressed in that patient, respectively.

Defining cutoff values for over- and under-expressed genes/

miRNAs can solve such a tag assignment problem. The nodes

without a tag, which indicated they were neither up- nor down-

regulated in that patient, were removed from patient graphs. The

edges between the remaining nodes were also removed if the

correlation type of an edge was not in accordance with the tags of

the nodes that were incident to that edge. For example, an edge

between an up-regulated miRNA node and an up-regulated gene

node was removed from a patient graph if they were negatively

correlated in the template bipartite graph. After this process was

repeated for all genes and miRNAs, we obtained N different

bipartite graphs representing N patients with their up- or down-

regulated genes and miRNAs. Moreover, these graphs encoded

the interactions between genes and miRNAs. The pseudocode of

the graph construction part is provided in Procedure S2.

Table 1. Clinical characteristics of patients in the LCI and LEC cohorts at the time of surgery.

Clinical variable LCI Cohort (N~196) LEC Cohort (N~113) P-valuea

AVR-CC (yes/no/NA) 54/136/6 NA NA

Gender (male/female/NA) 171/25/0 81/32/0 0:0012

Age (§50 y/,50 y/NA) 108/88/0 70/43/0 0.2822

AFP (.300 ng/mL/ƒ300 ng/mL/NA) 86/106/0 51/53/9 0.5419

ALT (.50 U/L/§50 U/L/NA) 79/117/0 NA NA

Cirrhosis (yes/no/NA) 181/15/0 49/64/0 v0:0001

Tumor size (.5 cm/ƒ5 cm/NA) 72/123/1 65/48/0 0:0006

Multinodular (yes/no/NA) 41/155/0 NA NA

BCLC staging (B–C/A-0/NA) 46/149/1 NA NA

CLIP staging (1–5/0/NA) 108/87/1 NA NA

TNM staging (II–III/I/NA) 114/81/1 NA NA

Survival at 60 mo (events/censored/NA) 77/119/0 67/46/0 v0:0001b

Abbreviations: NA, not available; available; AVR-CC, active viral replication chronic carrier.
aFisher’ sexacttest;
bCox-Mantel log-rank test.
doi:10.1371/journal.pone.0078624.t001

Tumor Subgroup Discovery by iSubgraph
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The second part of the iSubgraph algorithm is to mine frequent

cooperative regulation of genes and miRNAs in tumor samples.

Such regulation mechanisms used by tumor cells can increase or

decrease specific gene products in some cancer patients. Consid-

ering the patient graphs constructed in the first part, we can

discern similar patterns of connected graph nodes with UP or

DOWN tags in some patients as the results of such mechanisms. In

other words, a miRNA-driven gene regulatory network corre-

sponds to a subset of nodes and edges of a patient graph, i.e. a

subgraph. Since we had a bipartite graph for each patient, we were

able to identify frequently observed regulatory miRNA-mRNA

networks using graph mining algorithms. These algorithms aim to

extract useful information from structured datasets by finding

interesting graph patterns that might be frequent, correlated or

discriminative in a set of graphs. Before explaining how to retrieve

such networks, we provide some preliminary concepts about graph

mining below:

Definition 1 (Labeled Graph). A labeled graph has labels

assigned to its vertices and edges. It can be represented by 4-tuple, G = (V, E,

L, ‘) where V is a set of vertices, E(V|V is a set of edges, L is a set of

labels and ‘ : V|E?L is a function that maps a vertex or an edge to a

label.

In our case, the label of a vertex was either UP or DOWN,

whereas all edges were labeled with empty labels.

We say that a graph g is a subgraph of a graph G if the vertex

set of g is a subset of that of G, and the edge set of g is a subset of

that of G. This relationship is denoted by g(G (and g5G if

proper subgraph). In the opposite direction, we say that a graph g0

is a supergraph of a graph G if G is a subgraph of g0.
Definition 2 (Subgraph isomorphism). Let g and G be two

labeled graphs, then a subgraph isomorphism of g to G is an injective function

f : Vg?VG , that satisfies Vv[Vg,‘g(v)~‘G(f (v)); also V(u,v)[Eg,

((f (u),f (v))[EG and ‘g((u,v))~‘G((f (u),f (v))).

One can say that a graph G contains another graph g if there

exists a subgraph of G to which g is isomorphic.

Definition 3 (Frequent subgraph mining:[20]). Given a

graph dataset, GS~fGi j i~1, . . . ,Ng, and a minimum support, T ; let

w(g,G)~

1 if g is isomorphic to a subgraph of G,

0 if g is not isomorphic to any subgraph of G:

8><
>: ð1Þ

and

Figure 1. Schematic overview of the iSubgraph algorithm. The flow chart illustrates the transformation of microarray data into graph
representation (left); followed by the graph mining-based method to identify significant miRNA-gene co-modules (top right) and tumor
subclassification by the mixture model (bottom right).
doi:10.1371/journal.pone.0078624.g001

Tumor Subgroup Discovery by iSubgraph
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W(g,GS)~
X

Gi[GS
w(g,Gi) ð2Þ

where W(g,GS) denotes the occurrence frequency of g in GS, i.e., the support

of g in GS. Frequent subgraph mining is defined as finding every graph g, such

that W(g,GS)§T .

Graph mining algorithms are inherently based on search

algorithms such as breadth-first search where the state space

consists of potential frequent subgraphs. The search for all

frequent subgraphs starts with an empty subgraph. Either a node

or an edge is added to the candidate subgraph at every level as the

search deepens. The new candidate subgraph is inserted to the set

of frequent subgraphs if its support is equal or greater than the

frequency threshold; otherwise the search is pruned on that

subtree. An overview of several methods and related problems can

be found in [21]. In our problem formulation, regulatory miRNA-

mRNA networks matched with frequent subgraphs and their

supports were equal to the number of patients that possess such co-

regulation patterns. The set of all frequent subgraphs were highly

redundant because most of them shared the same gene and

Figure 2. Graph Mining steps for a small dataset. (A) Normalized gene and miRNA expression levels in tumor and adjacent nontumor tissues.
(B) Steps of correlation analysis to decide actual target genes of miRNAs. (C) Template bipartite graph representing miRNA-gene interactions. (D)
Graph patients constructed for all patients. Threshold for UP and DOWN tags is +1. (E) All closed frequent subgraphs for a support threshold of 2
patients.
doi:10.1371/journal.pone.0078624.g002

Tumor Subgroup Discovery by iSubgraph
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miRNA nodes. Therefore, we used only connected and closed

frequent subgraphs in order to reduce redundancy without losing

any information. A frequent subgraph g is closed if there is no

proper supergraph of g with the same support in the dataset. Let

the set of frequent graph patterns, FS, include all the graphs

whose support is greater than or equal to a minimum support

threshold, T ; then the set of closed frequent graph patterns, CS, is

defined as follows [20].

CS~fg[FS j:Ag0 [FSsuch that g5g0,

andW(g,GS)~W(g0,GS)g:
ð3Þ

In addition to the minimum support threshold, we also defined

a threshold for minimum number of gene nodes in frequent

subgraphs so that we were able to remove subgraphs that were too

specific to be informative about regulatory networks [22]. The

graph mining procedure is illustrated in Figure 2 for a small

sample dataset. For visualization purposes, we show only 10

patients where the support threshold is set to 2 patients.

The final filter on frequent subgraphs was about their statistical

significance. Any frequent subgraph found by the graph mining

algorithm with a reasonable support threshold is unlikely to be

observed by chance. Nevertheless, we computed the statistical

significance of every frequent subgraph by permuting sample

labels independently for each gene and each miRNA

(FDRƒ0:05).

Although mining only closed subgraphs significantly reduced

the number of frequent subgraphs returned by the mining

algorithm, they were still too redundant and required further

processing. For example, two subgraphs differing in only one node

would be reported individually if they had different supports.

However, they were usually observed in the same patients and

might have been associated with the same biological process.

Therefore, merging all subgraphs into a single co-module aided

eliminating the redundancy among subgraphs and provided a

more generalized HCC-related regulatory network. Let

gi~(Vi,Ei,L,‘i) be the i th subgraph in the set of closed frequent

graph patterns, CS; then the single co-module can be defined as

g�~(V�,E�,L,‘�) where V�~
SjCSj

i~1 Vi and E�~
SjCSj

i~1 Ei. Sim-

ilar to edges and vertices, subgraph labeling functions, ‘i, can be

considered as a set of mapping rules from Vi

S
E i to L, so the

labeling function of the co-module can be formulated as union of

mapping rules, ‘�~
SjCSj

i~1 ‘i.

The last part of the iSubgraph algorithm is cancer subgroup

discovery via patient clustering. This stratification of patients may

lead to the development of new targeted therapies. The patients in

each cancer subgroup are expected to share similar tumor biology

due to similar expression profiles. In the second part of the

iSubgraph algorithm, we identified significant genes and miRNAs

that play a role in HCC. The expression levels of all genes and

miRNAs that occurred in frequent subgraphs were used as input

into the subsequent clustering method. We employed a mixture

model, which is a probabilistic model for representing subgroups

with categorical latent variables, to cluster patients. The advantage

of this model is to handle missing values easily. The model we used

in the experiments is a version of the classical Gaussian mixture

model [23]. Figure 3 demonstrates the graphical representation of

this model. The model was trained from data using the

expectation-maximization (EM) algorithm [23]. Although genes

and miRNAs are functionally linked, the mixture model treats

them independently because stable clustering of patients is

superior to a more complex model. When clustering noisy data

with EM, one can either define complex models or use robust

estimation techniques [24]. On the other hand, we limited the

genes and miRNAs used in the model to the ones found in

frequent subgraphs so that the selected genes and miRNAs for the

model were already considered as functionally relevant.

The EM algorithm for this model is explained as follows: In our

mixture model, the category of the nth patient is denoted by

zn[f1, . . . ,Kg for n~1, . . . ,N. For that patient, xn represents G-

dimensional gene expression vector where the expression level of

the ith gene is denoted by xni for i~1, . . . ,G. Similarly, yn and ynj

represent M-dimensional miRNA expression vector and the

expression level of the j th miRNA for j~1, . . . ,M for the same

patient, respectively. We have two different standard deviation

parameters s for genes (x) and miRNAs (y) where each parameter

is shared among the same type of transcripts. The mixture

distribution for the nth patient can be written as

p(xn,yn)~
XK

k~1

hkN (xnjmx,k,s2
xIG)N (ynjmy,k,s2

yIM ) ð4Þ

where hk is the mixing coefficient such that p(zn~k)~hk and the

multivariate normal distribution parameters, m:,k and s, are the

mean expression level vector of the kth subgroup and shared

standard deviation, respectively.

The parameters can be learned from training data using the EM

algorithm. The algorithm starts by initializing the model

parameters to arbitrary values, and then the following steps are

repeated until they reach a certain number of iterations or the

parameters converge to the maximum likelihood values.

N E-Step: compute likelihood of zn~k for n~1, . . . ,N and

k~1, . . . ,K .

cnk /p(zn~k jxn,yn)

~
hkN (xnjmx,k,s2

xIG)N (ynjmy,k,s2
yIM )PK

t~1

htN (xnjmx,t,s
2
xIG)N (ynjmy,t,s

2
yIM )

ð5Þ

N M-Step: update hk, mx,k, mx,k, sx and sy for k~1, . . . ,K .

hk / 1
N

PN
n~1

cnk,

mx,k /
PN

n~1 cnkxnPN
n~1 cnk

,

my,k /
PN

n~1 cnkynPN
n~1 cnk

,

sx /

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
n~1

PK
k~1 cnkExn{mx,kE

2

NG

s
,

sy /

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
n~1

PK
k~1 cnkEyn{my,kE

2

NM

s
:

ð6Þ

Finally, the class predictions can be made using the final

likelihood values. The nth patient was assigned to the subgroup zn

such that zn~arg maxk cnk, for n~1, . . . ,N . The algorithm can

be run several times with different initializations to find the best

parameters that maximize the likelihood of the model. The

Tumor Subgroup Discovery by iSubgraph
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number of clusters, K , can be determined using Bayesian

Information Criterion (BIC) [25]. The model that maximizes

BIC is chosen among the models trained with different numbers of

clusters.

Finally, we evaluated the cancer subgroups identified by our

algorithm in computational and biological aspects. We carried out

an assessment of the robustness of the cancer subgroups using

bootstrap prediction analysis. We followed the procedure

described in [26]. A subset of the patients was randomly resampled

several times and the clustering algorithm was performed on each

subset. Let z�n denote the class assignment of the nth patient by the

mixture model trained on the entire dataset. Suppose that the

same patient was selected for the tth subset and z(t)
n denote the

class assignment of that patient by the model trained on the tth
subset. Then, the stability of class prediction for the nth patient

was calculated as

stability(n)~

P
t[D(n) 1½z�n~z(t)

n �
jD(n)j ð7Þ

where D(n) represents the set of all datasets in which the nth

patient is selected, and 1½:� is an indicator function that returns 1 if

the condition in square brackets is satisfied, and 0 otherwise. A

stable clustering algorithm has stability scores close to 1 for every

patient. For each patient, the proportion of class predictions was

calculated and compared with the original predictions made from

the entire dataset thus assessing the effectiveness of the method in

both aspects. The biological evaluations comprised survival

analyses and pathway analysis. We employed the Kaplan-Meier

survival analysis for survival characteristics of patient clusters using

the Prism software GraphPad (version 6, http://www.graphpad.

com) and the Cox-Mantel log-rank test was used to determine the

statistical significance [27]. Sensitivity analysis on iSubgraph

parameters and comparison with an integrative approach were

made too. We investigated if the genes and miRNAs in frequent

subgraphs have been reported in previous studies as playing a role

in cancer development using Ingenuity Pathway Analysis (IPA,

Ingenuity Systems, http://www.ingenuity.com) that calculates the

statistical significance of a particular gene and/or miRNA set in

being associated with known pathways.

Results

Study Design and miRNA-mRNA Network Construction
We applied the iSubgraph algorithm on two independent HCC

cohorts to identify functionally distinct patient subgroups. The

LCI and Hong Kong datasets were used to discover miRNA-

mRNA co-modules and tumor subclassification. In addition to

these two datasets, we used the LEC dataset, which includes only

gene expression data, for validation. Frequent subgraphs extracted

from the LCI and Hong Kong datasets were used separately for

clustering the LCI and LEC cohorts. By using independent

cohorts for clustering, we were able to validate the effectiveness of

our gene and miRNA selection method by graph mining. Lastly,

we performed survival analysis on the identified HCC subgroups.

Clustering and survival analysis were not performed on the Hong

Kong dataset due to lack of clinical data (Figure 4).

The first phase of the experiments was to find HCC associated

miRNA-gene networks from the LCI and Hong Kong datasets

using graph mining. We started this step by constructing the

template bipartite graphs. We obtained miRNA targets from the

TargetScan database (release 6.2, http://www.targetscan.org/

vert_61) [19]. Next, we removed miRNA-mRNA pairs, which

were not present in our datasets. There were 97,872 and 109,863

remaining miRNA-mRNA pairs in the LCI and Hong Kong

datasets, respectively. After the correlation analysis with false

discovery correction (q{valueƒ0:05), the resulting bipartite

graph of the LCI dataset had 13,101 gene and 206 miRNA

nodes with 20,323 edges. Similarly, the graph for the Hong Kong

dataset had 18,503 gene and 202 miRNA nodes with 45,419

edges. The graphs had a substantial number of single isolated

nodes with no edges. Therefore, these nodes were taken away from

the graphs before graph mining to reduce computational time

since they would not be found in frequent subgraphs due to the

minimum number of gene nodes constraint.

Patient Graph Construction
The sources of edges in patient graphs were the template

bipartite graphs; however, for node tags we needed to decide over-

and under-expressed cases of each gene and miRNA. We aimed to

give equal chance to each gene and miRNA to be found in patient

graphs. Therefore, each gene and miRNA had distinct cutoff

values. We determined if a gene or miRNA is over- or under-

expressed in a tumor sample by comparing its expression level with

the average expression level of all samples (tumor and adjacent

nontumor tissues) independently of all other transcripts. Let mi be

the average expression level for the ith gene, and si be the sample

standard deviation of the same gene computed from all samples;

then a patient graph contained a graph node for the ith gene,

attached with an UP tag if the ith gene was expressed greater than

mizsi in that patient. Similarly, a patient graph had a node for

that gene with a DOWN tag if its expression level was less than

mi{si. Otherwise, the node was removed from the patient graph.

In other words, we used z1 and {1 as z-score thresholds for

over- and under-expressed cases, respectively. We avoided making

judgments on missing values using nearest neighbors, so we

assumed they were neither up- nor down-regulated. Patient graph

sizes appeared to be slightly smaller in the LCI cohort compared

to the Hong Kong cohort (Figure S1). Thus, this method was able

to incorporate up- and down-regulated genes without requiring a

complete data set.

Identification of miRNA-Driven Regulatory Networks
We employed the MoSS software implemented by Borgelt for

mining frequent subgraphs [28]. It was originally developed for

Figure 3. Mixture model for cancer subgroup discovery using
plate notation. Circles indicate random variables: Subgroup of
patient, zn , gene expression level, xni , and miRNA expression level,
ynj . Shaded circles denote observed values. Outer rectangles indicate
fixed paramters: Class mixing parameter, h, the mean expression level,
m:, and shared standard deviation, s:. Directed edges show dependen-
cies between variables and parameters. Capital letters represent the size
of parameters (vector or matrix) and plate repetition.
doi:10.1371/journal.pone.0078624.g003
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finding frequent molecular substructures but it can be adapted for

other data types as well (for details see Materials and Methods).

For a given graph set, the graph mining software only requires

graph mining parameters to find all closed frequent subgraphs.

The number of frequent subgraphs returned by the graph mining

algorithm depended on support thresholds and microarray

platforms. They also affected the computational time required

for graph mining and the following steps. Therefore, we

determined the support thresholds experimentally that yielded

around 5000 most frequent closed subgraphs. The number of

genes in the Hong Kong dataset was greater than that of the LCI

dataset. Correlation coefficients between miRNAs and their target

genes were usually greater in the Hong Kong dataset too.

Consequently, we had to use a larger support threshold for the

Hong Kong cohort to obtain similar numbers of frequent

subgraphs. The support thresholds were 13 (6.6%) and 14 patients

(14.6%) for the LCI and Hong Kong cohorts, respectively. For

both datasets, we removed frequent subgraphs that had less than 4

gene nodes (Figure 5). The numbers of remaining closed frequent

subgraphs were 6,280 and 4,418 in the LCI and Hong Kong

datasets, respectively. All frequent subgraphs were found statisti-

cally significant by multiple hypotheses testing. Most of the

miRNAs in the subgraphs were differentially expressed in tumor

samples. Thirty-nine out of 49 miRNAs for the LCI cohort and 40

out of 46 miRNAs for the Hong Kong cohort were differentially

expressed (t{statistics withFDRƒ0:05). Each step of frequent

subgraph discovery functioned as a filter for genes and miRNAs.

Table 2 provides the residual numbers of genes and miRNAs in

each datasets after each step. Hence, we were able to narrow down

the sets of genes and miRNAs to a short list of HCC-associated

transcripts for the mixture model.

Although the LCI and Hong Kong cohorts have been collected

in different hospitals, during different time frames and also the

microarray data has been obtained on different platforms, the

frequent subgraphs from the LCI and Hong Kong cohorts had a

considerable number of common nodes. This relationship is shown

by Euler Diagrams (Figure 6). Figure 7 displays the combined

miRNA-mRNA regulatory networks of all frequent subgraphs for

each cohort. In the LCI cohort the let-7 family, miR-125b, miR-

26, miR-29 and miR-30 are down regulated and appear to be key

regulatory elements. On the other hand, in the Hong Kong cohort

miR-214, miR-145, miR-199 and miR-30 which are down and

miR106b which is up regulated have the most connections.

Therefore, it appears that of the five miRNAs with the most

connections both cohorts share only miR-30. Thus, the main

regulatory miRNAs in the LCI and Hong Kong cohort differ

significantly.

Identification and Stability of Patient Subgroup
Prediction

The second phase of the experiments was to cluster HCC

patients by mixture models using the subgraphs extracted from the

patient graphs. Graphs provide powerful structural models that

not only represent the values of expression profiles, but can also be

used to explicitly model relations that exist between different

transcripts. However, their use for clustering has been limited due

to difficulties and inefficiencies in structure-based comparisons of

these graphs. The alternative approach is embedding graphs into

vector space and using an algorithmic tool for pattern analysis

from the rich repository of statistical machine learning. For

example, the graph edit distance with dissimilarity representation

or Lipschitz embedding work well for matching relatively small

graphs [29,30]; however, it can become quite restrictive for graphs

with a large number of nodes and edges such as patient graphs.

Another approach is to use the occurrence data of frequent

subgraphs in patient graphs as features to a clustering method.

However, this may lead to unstable subgroup predictions because

of the redundancy between frequent subgraphs, the strict rules of

subgraph isomorphism and the dependency of labeling function on

thresholds. The redundancy in occurrence data of subgraphs can

be seen in Figure 8. There are 6,280 closed frequent subgraphs

mined from the LCI dataset and all of those subgraphs have a total

of 433 distinct vertices (384 genes and 49 miRNAs). This shows

that a gene or miRNA node appears on average on 14.5 different

subgraphs. As a result, merging all subgraphs into a single co-

module and using the expression values of the genes and miRNAs

in that co-module for patient stratification aided eliminating the

redundancy among subgraphs and reducing the dimensionality of

features. Besides, this co-module exhibited a more generalized

HCC-related regulatory network.

In total, four distinct mixture models were trained to cluster the

LCI and LEC cohorts using the frequent subgraphs from the LCI

and Hong Kong datasets, respectively. The two models for

clustering the LEC cohort had only gene variables. The Bayesian

Information Criterion (BIC, see Materials and Methods for details)

was maximized, for all four cases, when the patients were clustered

into two groups. In Eq. (1), subgraph occurrence, phi(g,G), is

defined as a binary function. For the analysis of patient

characteristics in terms of expression levels, we defined a modified

version of this function that assigns a score between 0 and 1 for

each subgraph-patient pair, indicating the occurrence of a

particular subgraph in a patient graph. Let g~(Vg,Eg,L,‘g)

denote a subgraph and G~(VG,EG,L,‘G) denote a patient graph,

then the occurrence score of g in G was computed as
jVg\VGj
jVgj

,

i.e. the ratio of common nodes between g and G to all nodes of g.

Figure 4. Schematic overview of the study design. Significant
genes and miRNAs for HCC were identified separately for the LCI and
Hong Kong cohorts using the graph mining approach of iSubgraph. The
included genes and miRNAs were used as features in the subsequent
clustering step of iSubgraph for the LCI and LEC cohorts. Finally,
computational and biological analyses were carried out on the selected
genes/miRNAs and cancer subgroups.
doi:10.1371/journal.pone.0078624.g004
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We observed that the patient graphs of one patient group in the

LCI cohort mostly contained the frequent subgraphs compared to

the other group. Therefore, we named the patient clusters as

subgroup w/subgraphs and subgroup w/o subgraphs (Figure 8A).

Interestingly, although the subgraphs of the Hong Kong cohort

did not contain the same miRNA-mRNA networks, clustering of

the LCI cohort using the Hong Kong subgraphs led to very similar

clustering results (Figure 8B). Significant enrichment was deter-

mined for AFP (Alpha-fetoprotein) and BCLC (Barcelona clinic

liver cancer) stage using Fisher’s exact test right-tailed (Pƒ0:05)

for both cases. However, metastasis failed to reject the null

hypothesis in the same analysis (Pw0:05). The subgroup

w/subgraphs has more patients with metastasis, high AFP level

and BCLC late stages. Therefore, the subgraphs identified in the

graph mining step are associated with tumor progression.

We evaluated the robustness of clustering by mixture models.

The stability of patient class assignments was measured on random

datasets generated by resampling patients from the entire cohort.

We followed the procedure described in [26]. For all mixture

models, we generated 100 random datasets, each of which

comprised 70% of the cohort, and we ran the mixture model

based clustering scheme on each random dataset. The proportions

of class predictions in random datasets were calculated for each

patient and compared with the class assignments from the entire

datasets (Figure S2). Most of the patients were repeatedly assigned

to the same subgroups in all trials, i.e. the stability scores equal to 1

for most patients (Eq. (7), see Materials and Methods for details).

In addition to the bootstrap stability analysis on random datasets,

we compared the class assignments of an entire cohort by mixture

models trained on different subgraphs. There were only 11

patients (5.61%) of the LCI cohort assigned to different subgroups

by the models trained from the LCI subgraphs and the Hong

Kong subgraphs. The similarity of clustering was measured by the

Rand index as 0.894 and the adjusted Rand index was 0.787 [31].

For the LEC cohort, there were 7 patients (6.19%) stratified

differently using those subgraphs. The Rand index was 0.883 for

the LEC clusterings and the adjusted Rand index was 0.766.

Therefore, clustering by the mixture model using the subgraphs

from each dataset was very stable in both cohorts and resulted in

high confidence of subgroups.

Validation of Patient Subgroups in Two Independent
Cohorts

We investigated the cancer subgroups identified by the

iSubgraph algorithm in terms of survival and recurrence

characteristics. These analyses demonstrated that the here

developed method is able to separate patient subgroups into good

and poor outcome groups in the LCI and LEC cohorts where the

subgroups were determined by the LCI subgraphs (Figure 9).

Thus, the survival analysis showed that our method was able to

identify patient subgroups with significantly different overall

survival and recurrence in the LCI cohort which could be

validated in the independent LEC cohort. Likewise, similar results

Figure 5. Frequency and graph size density of frequent subgraphs. (A) Density histograms of the frequent subgraphs from the LCI cohort
(N~196) and (B) Hong Kong cohort (N~96) with respect to frequency and graph size. The frequency of a subgraph equals to the number of patients
who have that subgraph in their patient graph.
doi:10.1371/journal.pone.0078624.g005

Table 2. Number of genes and miRNAs after each graph mining step.

LCI Cohort Hong Kong Cohort

Step #genes #miRNAs #genes #miRNAs

Initial data 13,101 206 18,503 202

In TargetScan Predictions 7,303 206 9,529 202

After miRNA-mRNA correlation analysis 4,401 171 7,572 200

Based on support threshold 4,374 171 7,399 194

In frequent subgraphs 384 49 418 46

doi:10.1371/journal.pone.0078624.t002
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Figure 6. Overlapping genes and miRNAs in subgraphs of the LCI and Hong Kong cohorts. (A) Euler Diagrams showing the overlap
between the genes and (B) miRNAs occurring in frequent subgraphs from the LCI and Hong Kong datasets. A single miRNA probe in the Rosetta
platform (Hong Kong cohort) may correspond multiple probes in the OSU-CCC platform (LCI cohort). The numbers in parentheses show the probe
counts in the LCI data. P-values were computed from hypergeometric tests. The number of common genes and miRNAs indicate solely those
transcripts that were present in the TargetScan database.
doi:10.1371/journal.pone.0078624.g006

Figure 7. Regulatory Networks associated with HCC. (A) MiRNA-mRNA networks from the LCI and (B) Hong Kong datasets. The networks were
constructed by merging vertices and edges of all frequent subgraphs from those datasets. The node color represents the transcript and regulation
type. The node size indicates the number of connections. Unlike the current layout of the nodes for visualization purposes, both networks are
originally bipartite graphs.
doi:10.1371/journal.pone.0078624.g007
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were obtained applying the Hong Kong subgraphs to the LCI and

LEC cohorts for independent validation (Figure S3).

The next biological evaluation was pathway analysis to identify

pathways enriched in the frequent subgraphs. In Ingenuity

Pathway Analysis (IPA), the default settings were used where both

direct and indirect relationships were considered for p-value

calculations in networks and upstream regulator analysis. All genes

and miRNAs in frequent subgraphs were used in the analyses

separately for each cohort. The top five upstream regulators for

each gene-miRNA set in the LCI and Hong Kong cohorts show

very little overlap (Table 3). It appears that the only upstream

regulator which is common to both cohorts is TP53. Similarly,

there are two common pathways in the top ten signaling pathways

of both cohorts. (Table 4). This confirms that the identified genes

and miRNAs of the two cohorts share only minor similarities.

Thus, although in both cohorts the identified patient subgroups

differ significantly in survival, iSubgraph identifies distinct

pathways that are independently survival associated.

Sensitivity Analysis on Parameters and Comparison with
Other Methods

Our final experiments were assessing the sensitivity of clustering

performance on parameter selection and comparing iSubgraph

with a recent integrative approach. The parameters of iSubgraph

can be grouped into four categories. These are expression level

cutoff values for tag assignments (z-score thresholds), minimum

support threshold for graph mining, minimum number of gene

nodes in frequent subgraphs, and the number of subgroups. A set

of parameters can be denoted by a 4-tuple in the same order, e.g.

(+1,13,4,2) for the case in Figure 9A. The parameter for the

number of subgroups can be determined by Bayesian information

criteria or a pre-defined number can be used. We analyzed the

sensitivity of iSubgraph to each parameter using one-at-a-time

Figure 8. Clinical properties and heatmap of subgraph occurrence in the LCI cohort. (A) Occurrence of all subgraphs identified in the LCI
and (B) Hong Kong cohorts. The order of patients in subgraph occurrence heatmap (bottom) is arranged according to class assignments (top) and
clinical properties (middle). Subgraph occurrence in a patient is defined as the ratio of common nodes between the subgraph and the patient graph
to all nodes of that subgraph. Abbreviations: AFP, Alpha-fetoprotein; BCLC, Barcelona clinic liver cancer.
doi:10.1371/journal.pone.0078624.g008
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perturbation except z-score thresholds, which required additional

support threshold adjustments to get sufficient number of frequent

subgraphs. We considered the survival curves in Figure 9A as the

baseline in sensitivity analysis and compared them with the

survival curves of different parameter settings (Figure S4).

Although small changes in support threshold affected the number

of subgraphs and computational time exponentially (Figure 5), the

alterations were comparatively minor in the set of genes and

miRNAs that were present in the frequent subgraphs (Table S1).

The survival curves remained significantly distinct on small

parameter perturbations because the set of genes and miRNAs

identified by iSubgraph was highly correlated and removing some

of them did not change the class assignments by the mixture model

dramatically. A value around +1 for the z-score threshold might

give sufficient number of subgraphs including significant genes and

miRNAs for many cases. Therefore, we suggest parameter settings

on which the graph mining algorithm terminates in short time,

and the frequent subgraphs include a few hundred or less genes

and miRNAs. It would be safe to start with a large support

threshold that will eventually decrease to a reasonable value.

Hence, the survival curves in Figure S4 showed that different

parameter settings had little effect on the performance of the

iSubgraph algorithm.

Before comparing iSubgraph with an integrative approach, we

assessed if the integration of gene and miRNA expression values

really lead to improvements. The LCI cohort was divided into two

groups using the mixture models trained solely on the expression

values of all genes. The same procedure was repeated for the

expression values of all miRNAs. Then, the mixture model was

also trained on the occurrence information of subgraphs found by

the graph mining algorithm. Finally, the survival curves of all these

classifications were compared with that of iSubgraph (Figure S5).

Using only miRNA expression failed to give significantly distinct

survival curves; however, the mixture model managed to divide

patients into two groups with different survival characteristics

using only gene expression data. The separation in survival curves

between two classes was much improved by the iSubgraph

algorithm. The usage of subgraph occurrence in tumor subclas-

sification is also an integrative approach; however, it suffered from

problems explained before in the Results section. Thus, taking the

iSubgraph approach, which is using the selected features of

integrated expression data in the training of the mixture model,

helps to overcome the limitations of subgraph occurrence data and

to improve the performance of tumor subclassification.

We compared the iSubgraph algorithm with a recent integrative

approach by Zhang et al. [22]. This approach proposes patient

classification based on their association with miRNA-gene

regulatory co-modules, which are identified using the sparse

network-regularized multiple non-negative matrix factorization

(SNMNMF). The miRNA and gene expression matrices are

factorized into a common basis W and two coefficient matrices H1

and H2. This process involves an optimization problem with

network (gene-gene and miRNA-gene interactions) and sparsity

constraints. The co-modules are identified based on association

values in the coefficient matrices and patients are grouped based

on association values in the basis matrix. The performances of the

iSubgraph and SNMNMF methods in tumor subclassification

were compared on the LCI dataset. Before applying the

SNMNMF method on the LCI dataset, missing values in the

miRNA profiles were estimated using k-NN imputation [32]. We

used the same parameter values as in [22]. Among the 50 co-

modules identified by the algorithm, 4 were empty and therefore

deleted, 39 contained only genes, and the remaining 7 had a single

miRNA. These results may stem from relatively low correlation

values between genes and miRNAs in the LCI cohort. In [22],

patients are divided into three groups independently by each co-

module. Each subgrouping is tested for distinct survival charac-

teristics using calculating KaplanJMeier curves. However, in this

study we divided patients into two equal groups based on the

median values of basis vectors in W in order to make a direct

Table 3. The most significant upstream regulators and
corresponding P-values calculated by Ingenuity Pathway
Analysis.

LCI Cohort Hong Kong Cohort

Regulator P-value Regulator P-value

Myc 2.52E-12 TGFB1 3.86E-18

E2F1 7.33E-10 TNF 3.47E-12

Let-7 7.75E-09 EGFR 1.79E-10

TP53 3.71E-08 TP53 1.01E-09

FGF21 5.04E-08 Prostaglandin E2 1.10E-09

doi:10.1371/journal.pone.0078624.t003

Table 4. The most significant canonical pathways and corresponding P-values calculated by Ingenuity Pathway Analysis.

LCI Cohort Hong Kong Cohort

Canonical pathway P-value Canonical pathway P-value

Estrogen Receptor Signaling 3.80E-04 Axonal Guidance Signaling 1.32E-07

ERK/MAPK Signaling 7.08E-04 Hepatic Fibrosis/Hepatic Stellate Cell Activation 5.50E-06

4-aminobutyrate Degradation I 1.32E-03 Regulation of the Epithelial-Mesenchymal Transition Pathway 6.61E-06

Glucocorticoid Receptor Signaling 1.45E-03 Cardiac Hypertrophy Signaling 6.76E-06

Estrogen-mediated S-phase Entry 1.51E-03 Estrogen-mediated S-phase Entry 1.58E-05

Role of BRCA1 in DNA Damage Response 1.66E-03 PKCh Signaling in T Lymphocytes 2.00E-05

Estrogen-Dependent Breast Cancer Signaling 2.14E-03 Role of NFAT in Cardiac Hypertrophy 2.95E-05

TR/RXR Activation 2.19E-03 ERK/MAPK Signaling 4.27E-05

Biotin-carboxyl Carrier Protein Assembly 2.63E-03 Breast Cancer Regulation by Stathmin1 5.75E-05

Protein Kinase A Signaling 3.24E-03 Molecular Mechanisms of Cancer 1.95E-04

doi:10.1371/journal.pone.0078624.t004
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comparison between the subclassification of the LCI cohort by

iSubgraph. Eight co-modules exhibited significant differences in

their survival curves (Pƒ0:05). The Kaplan-Meier curves of the

most significant three classifications can be seen in Figure 10. The

major drawback to comparing the overall performances of both

algorithms is that there is no single stable clustering result provided

by the SNMNMF method. Among 50 co-modules, only two co-

modules (25 and 40) provided significantly distinct survival curves

close to those of iSubgraph. We additionally analyzed the genes

and miRNAs in the co-modules of SNMNMF. There were 7

miRNAs and 390 genes in all co-modules; however, the overlap

between the transcripts identified by SNMNMF and iSubgraph

was very limited: 21 genes and no miRNA. Moreover, no common

top upstream regulator or canonical pathway was found in IPA.

The main reason for lack of overlap was that the genes identified

by SNMNMF had low correlation with miRNAs and most co-

modules of SNMNMF included only genes with high correlation.

On the other hand, iSubgraph seeks only correlated miRNA-gene

pairs in frequent subgraph mining. Therefore, iSubgraph enriches

genes and miRNAs that are most likely to be functionally linked

due to target gene prediction by TargetScan and actual correlation

of expression.

Discussion

The amount of microarray data for both gene and miRNA

expression is constantly increasing. Despite the significant role of

miRNAs in tumor development, the knowledge about the

regulation between miRNAs and genes has remained limited.

The availability of large amounts of genomics data such as the

TCGA project has enabled the study of integrated analysis for

certain cancers [33]. However, the efforts to integrate gene and

miRNA data have been limited for tumor subclassification.

In recent years, a few computational methods have been

proposed to identify miRNA-mRNA regulatory networks. Yoon

and De Micheli introduced the first method to predict miRNA

regulatory modules (MRMs) [34]. They defined data mining tasks

for miRNA-mRNA binding sites at sequence level and represented

the relations between miRNAs and target genes by a weighted

bipartite graph. However, using only seed-based predictions for

miRNA targets has been considered inadequate to determine

combinatorial interactions between miRNAs and genes in a

specific biological process. More recent methods have taken

miRNA and gene expression profiles into account to improve

target predictions. Several strategies have been adopted for

discovery of miRNA-mRNA interactions from microarray data.

The fusion models proposed for miRNA and gene expression data

embrace a probabilistic graphical model [35], a co-evolutionary

learning algorithm [36], a rule-based learning approach [37], a

Bayesian network structure learning with splitting-averaging

strategy [38], layered hyper-networks [39] and a graph theoretical

approach by generating all maximal bi-cliques as candidate

regulatory modules [40]. However, these methods construct a

single model that considers all patients coming from a single group

without taking the heterogeneity among patients into account, i.e.

the possibility that multiple patient subgroups exist.

In this study, we developed the iSubgraph algorithm to

investigate miRNA-driven regulatory mechanisms and their

association with cancer subgroups. In the first part, we analyzed

the patterns of miRNA-mRNA regulations in two HCC

datasets. The subgraph mining approach effectively identified

common regulation patterns among liver cancer patients. The

Figure 9. Combined Kaplan-Meier curves of patients subgrouped using the LCI subgraphs. The first row shows the survival and
recurrence characteristics of the LCI cohort (N~196) and the second row shows those of the LEC cohort (N~113). The recurrence information was
not available for some patients of the LEC cohort. From left to right, the columns indicate the overall survival (survival rates in the first 5 years), early
survival (survival rates in the first 2 years), overall recurrence (disease-free survival rates in the first 5 years), and early recurrence (disease-free survival
rates in the first 2 years) curves. P-values were calculated by the Log-rank (Mantel-Cox) test.
doi:10.1371/journal.pone.0078624.g009
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computational analysis of the clustering method by randomization

reveals the high stability of the method for all cases (Figure S2).

Moreover, clustering comparisons by Rand index showed large

agreements between two clusterings from different subgraphs. This

property ensures that applying this method on other HCC datasets

with similar clinical properties can give similar tumor subclassi-

fication even if the number of common genes is relatively small

(Figure 6). This stability was satisfied by the usage of shared

variance parameters because they restricted the effects of genes

and miRNAs with small variance, in other words noisy features, on

clustering. Our experiments using different mixture models with

multiple variance parameters (covariance matrix) performed less

stable predictions because of the limited number of training

samples compared to the number of parameters (data not shown).

In addition, identifying highly correlated gene-miRNA networks

by graph mining repeatedly provided significantly distinct survival

curves in sensitivity analysis in spite of the changes in the set of

selected genes and miRNAs (Figure S4). The Kaplan-Meier

survival analyses in Figure 9 draw the conclusion that the

subgroups identified by the algorithm have distinct survival

characteristics. Moreover, the integrated analysis led substantial

improvements in class predictions made from miRNA expression

profiles. There were also slight improvements for gene expression

profiles (Figure S5).

As the amount of available genomic data increases, integrated

analysis of multiple whole genome types gains more interest. The

iSubgraph algorithm can be easily extended to other omics types

such as DNA methylation, histone modification and metabolo-

mics. New omics data can be attached as a new layer of nodes to

the previous bipartite graph. Then, the nodes are assigned with

appropriate tags and they are connected by edges to the nodes of

other omics types that they interact with. The graph mining

algorithm can handle the discovery of regulatory networks

including the additional data type. Similarly, adding new

variables, depicted as shaded circles in the graphical model, to

the mixture model and updating the probability equations

accordingly are sufficient for clustering patients by multiple omics

dimensional data (Figure 3).

The genes and miRNAs found in the subgraphs exhibit

dissimilar patterns of occurrence in patients and different level of

interactions between each other in the LCI dataset and Hong

Kong dataset. As seen in Figures 7 and 8, the subgraphs of the LCI

dataset were moderately close to each other and they were found

in the same patients. On the other hand, the subgraphs of the

Hong Kong dataset show two different groups of subgraphs;

however, one group is more explicit in the subgraph occurrence

matrix. The mixture model generally grouped the patients

according to this property. The subgroup w/subgraphs included

more patients with high AFP, metastasis or BCLC late stage

(Figure 8). Thus, the iSubgraph algorithm was effective in

identifying stable subgroups in two independent cohorts. In

addition, further functional studies of the integrated miRNA-

mRNA networks may improve our understanding of HCC

development and progression and may lead to the development

of targeted therapies specific to patient subgroups.

Supporting Information

Procedure S1 Correlated Target Prediction Method.

(PDF)

Procedure S2 Patient Graph Construction Method.

(PDF)

Figure S1 Histograms of patient graphs. (A) Histograms of

patient graphs from the LCI (N~196) and (B) Hong Kong cohort

(N~96) with respect to graph size. The red dashed curves, which

are cut due to visualization purposes, show expected values.

(TIF)

Figure S2 Robustness of class predictions. The propor-

tion for each sample was calculated based on bootstrap prediction

analysis (by resampling 70% of patients 100 times). The order of

patients (x-axis) is arranged according to proportions of class

prediction in each panel. (A) Panels on the left show prediction

analysis of the LCI cohort for the subgraphs from the LCI cohort

and (C) Hong Kong cohort. (B) Panels on right show prediction

analysis on the LEC cohort for the subgraphs from the LCI and

(D) Hong Kong cohorts. Class assignments by the mixture models

trained on entire dataset are shown below each plot.

(TIF)

Figure S3 Combined Kaplan-Meier curves of patients
subgrouped using the Hong Kong subgraphs. The first row

Figure 10. Kaplan-Meier curves of the LCI cohort subgrouped by SNMNMF modules. Survival curves in the first 5 years are shown for three
different subgrouping of the LCI cohort (N~196). The patients are divided into two equal size groups with respect to their signals in the co-module
basis vectors. Shown are the three co-modules which exhibit the most significant differences in their clinical parameters among all co-modules. P-
values were calculated by the Log-rank (Mantel-Cox) test.
doi:10.1371/journal.pone.0078624.g010
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shows the survival and recurrence characteristics of the LCI cohort

(N~196) and the second row shows those of the LEC cohort

(N~113). The recurrence information was not available for some

patients of the LEC cohort. From left to right, the columns

indicate the overall survival (survival rates in the first 5 years), early

survival (survival rates in the first 2 years), overall recurrence

(disease-free survival rates in the first 5 years), and early recurrence

(disease-free survival rates in the first 2 years) curves. P-values were

calculated by the Log-rank (Mantel-Cox) test.

(TIF)

Figure S4 Kaplan-Meier curves of the LCI cohort
subgrouped with small parameter perturbations. Surviv-

al curves in the first 5 years are shown for the LCI cohort

(N~196) subgrouped by the mixture model. The parameter

setting in Figure 9A is used as a reference, where z-score cutoffs,

minimum gene node count, support threshold and number of

subgroups were set to (+1,4,13,2), respectively. The experiments

were repeated with perturbations in each panel, namely (A)

decreasing the minimum gene node count to 3, (B) increasing the

support threshold to 14, (C) decreasing the z-score thresholds to

+0:75 and increasing the support threshold to 21, (D) increasing

the number of subgroups to 3, (E) increasing the minimum gene

node count to 5, (F) increase the support threshold to 15, (G)

increasing the z-score thresholds to +1:25 and decreasing the

support threshold to 8, (H) increasing the number of subgroups to

4. P-values were calculated by the Log-rank (Mantel-Cox) test.

(TIF)

Figure S5 Kaplan-Meier curves of the LCI cohort
subgrouped using different data types. Survival curves in

the first 5 years are shown for the LCI cohort (N~196)

subgrouped by the mixture model trained on (A) expression data

of genes only, (B) expression data of miRNAs only, (C) occurrence

data of the LCI subgraphs, and (D) expression data of genes and

miRNAs found in the LCI subgraphs. P-values were calculated by

the Log-rank (Mantel-Cox) test.

(TIF)

Table S1 The number of closed frequent subgraphs and
the number of genes and miRNAs in those subgraphs for
different parameter settings in the LCI dataset.

(PDF)

Author Contributions

Conceived and designed the experiments: BO SR XWW. Performed the

experiments: BO. Analyzed the data: BO WA SR XWW. Wrote the paper:

BO WA SR XWW.

References

1. Siegel R, Naishadham D, Jemal A (2012) Cancer statistics, 2012. CA: a cancer
journal for clinicians 62: 10–29.

2. Farazi PA, DePinho RA (2006) Hepatocellular carcinoma pathogenesis: from
genes to environment. Nature reviews Cancer 6: 674–687.

3. Woo HG, Wang XW, Budhu A, Kim YH, Kwon SM, et al. (2011) Association

of TP53 mutations with stem cell-like gene expression and survival of patients
with hepatocellular carcinoma. Gastroenterology 140: 1063–1070.

4. Bartel DP (2009) MicroRNAs: target recognition and regulatory functions. Cell
136: 215–233.

5. Guo H, Ingolia NT, Weissman JS, Bartel DP (2010) Mammalian microRNAs

predominantly act to decrease target mRNA levels. Nature 466: 835–840.

6. Wang XW, Heegaard NHH, Orum H (2012) MicroRNAs in liver disease.

Gastroenterology 142: 1431–1443.

7. Lujambio A, Lowe SW (2012) The microcosmos of cancer. Nature 482: 347–
355.

8. Burrage K, Hood L, Ragan MA (2006) Advanced computing for systems
biology. Briefings in bioinformatics 7: 390–398.

9. Hood L, Rowen L, Galas DJ, Aitchison JD (2008) Systems biology at the

Institute for Systems Biology. Briefings in functional genomics & proteomics 7:
239–248.

10. Kitano H (2002) Computational systems biology. Nature 420: 206–210.

11. Roessler S, Jia HL, Budhu A, Forgues M, Ye QH, et al. (2010) A unique
metastasis gene signature enables prediction of tumor relapse in early-stage

hepatocellular carcinoma patients. Cancer research 70: 10202–10212.

12. Budhu A, Jia HL, Forgues M, Liu CG, Goldstein D, et al. (2008) Identification

of metastasis-related microRNAs in hepatocellular carcinoma. Hepatology 47:

897–907.

13. Liu AM, Yao TJ, Wang W, Wong KF, Lee NP, et al. (2012) Circulating miR-

15b and miR-130b in serum as potential markers for detecting hepatocellular
carcinoma: a retrospective cohort study. BMJ open 2: e000825.

14. Burchard J, Zhang C, Liu AM, Poon RTP, Lee NPY, et al. (2010) microRNA-

122 as a regulator of mitochondrial metabolic gene network in hepatocellular
carcinoma. Molecular systems biology 6: 402.

15. Lee JS, Heo J, Libbrecht L, Chu IS, Kaposi-Novak P, et al. (2006) A novel
prognostic subtype of human hepatocellular carcinoma derived from hepatic

progenitor cells. Nature medicine 12: 410–416.

16. Lee JS, Chu IS, Heo J, Calvisi DF, Sun Z, et al. (2004) Classification and
prediction of survival in hepatocellular carcinoma by gene expression profiling.

Hepatology 40: 667–676.

17. Kozomara A, Griffiths-Jones S (2011) miRBase: integrating microRNA

annotation and deepsequencing data. Nucleic Acids Research 39: D152–7.

18. Hughes GP (1968) On the mean accuracy of statistical pattern recognizers.
Information Theory, IEEE Transactions on 14: 55–63.

19. Lewis BP, Burge CB, Bartel DP (2005) Conserved seed pairing, often flanked by

adenosines, indicates that thousands of human genes are microRNA targets. Cell
120: 15–20.

20. Yan X, Han J (2003) CloseGraph: mining closed frequent graph patterns. In:
Proceedings of the ninth ACM SIGKDD international conference on

Knowledge discovery and data mining. Washington, D.C.: ACM, pp. 286–

295.

21. Cook DJ, Holder LB (2006) Mining Graph Data. John Wiley & Sons.

22. Zhang S, Li Q, Liu J, Zhou XJ (2011) A novel computational framework for

simultaneous integration of multiple types of genomic data to identify

microRNA-gene regulatory modules. Bioinformatics 27: i401–9.

23. Bishop CM (2006) Pattern recognition and machine learning. New York:

Springer.
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