
Introducing a Test Suite Similarity Metric for Event Sequence-based Test Cases

Penelope A. Brooks and Atif M Memon

Dept. of Computer Science

University of Maryland

College Park, MD, 20742 USA

{penelope,atif}@cs.umd.edu

Abstract

Most of today’s event driven software (EDS) systems are

tested using test cases that are carefully constructed as se-

quences of events; they test the execution of an event in the

context of its preceding events. Because sizes of these test

suites can be extremely large, researchers have developed

techniques, such as reduction and minimization, to obtain

test suites that are “similar” to the original test suite, but

smaller. Existing similarity metrics mostly use code cov-

erage; they do not consider the contextual relationships

between events. Consequently, reduction based on such

metrics may eliminate desirable test cases. In this paper,

we present a new parameterized metric, CONTeSSi(n)
which uses the context of n preceding events in test cases to

develop a new context-aware notion of test suite similarity

for EDS. This metric is defined and evaluated by comparing

four test suites for each of four open source applications.

Our results show that CONTeSSi(n) is a better indicator

of the similarity of EDS test suites than existing metrics.

1. Introduction

Research in software testing has yielded a large num-

ber of automated model-based test case generation tech-

niques [4, 9, 15, 18, 21]. Each of these techniques has the

ability to generate test suites containing hundreds of thou-

sands of test cases, which require significant resources to

run, and for regression testing, rerun [14]. For this reason,

research in test case selection and reduction has been grow-

ing in an attempt to shrink these test suites to a manageable

size, while maintaining the “goodness” of the original suite.

Reduction techniques attempt to yield a test suite that is

“similar” to the original suite in some ways, where similar-

ity is usually determined by using metrics based on code

(e.g., obtained from branch, statement, and method cover-

age reports) executed by the original suite [6,7,12,16,17] or

the set of faults detected. These metrics work well when ap-

plied to conventional software; they are not appropriate for

event driven software (EDS) systems, such as software that

uses a Graphical User Interface (GUI) front-end [14] be-

cause of the nature of EDS. EDS systems take sequences of

events as input and change state; the execution of an event

may be effected by the sequence of preceeding events han-

dled thus far by the EDS. Consequently, test cases for EDS

are composed of sequences of events designed specifically

to test events in the context of preceding events. Existing

test suite reduction metrics ignore context completely. Con-

sequently, test reduction may eliminate a desirable (albeit

redundant according to existing metrics) test case that tests

an event in a specific context.

In this paper, we define a new parameterized metric,

CONTeSSi(n) (CONtext Test Suite Similarity) that ex-

plicitly considers the context of n preceding events in test

cases to develop a new “context-aware” notion of test suite

similarity. This metric is an extension of the cosine similar-

ity metric used in Natural Language Processing and Infor-

mation Retrieval for comparing an item to a body of knowl-

edge, e.g., finding a query string in a collection of web

pages or determining the likelihood of finding a sentence in

a text corpus (collection of documents) [2,19,20]. We eval-

uate CONTeSSi(n) by comparing four test suites, includ-

ing suites reduced using conventional criteria, for four open

source applications. Our results show that CONTeSSi(n)
is a better indicator of the similarity of test suites than ex-

isting metrics.

The contributions of this work include:

• the first context based similarity metric for sequence-

based test cases,

• application of the metric to reduced test suites, and

• an empirical study demonstrating the effectiveness of

the metric.

The remainder of this paper is organized as follows. Sec-

tion 2 describes the development and theory of the metric.

Section 3 contains a description of the empirical study per-

formed to validate this metric, and its results are described

in Section 4. Section 5 expands on work in related areas,

such as determining similarity in information retrieval. Fi-

nally, conclusions and future work are presented in Sec-

tion 6.

2. Computing test suite similarity

We now present the CONTeSSi metric, its computa-

tion, and application. As a running example, we will show

several test suites which can be used to test the Radio But-

ton Demo GUI, shown in Figure 1. This GUI is often used

to teach programming students how to develop a GUI con-

taining radio buttons.

w1 -
w2

�	

w3 -
w4@I

w5 -

w6 - w7�

w8�

Figure 1. A simple GUI

A GUI is modeled as a set of widgets W =
{w1, w2, ..., wl} (e.g., buttons, panels, text fields) that con-

stitute the GUI, a set of properties P = {p1, p2..., pm} (e.g.,

background color and shape) for each of these widgets, and

a set of values V = {v1, v2..., vn} (e.g., red and square)

associated with the properties. The state of a GUI can be

specified at any time during its execution as a set S of triples

(wi, pj , vk), where wi ∈ W , pj ∈ P , and vk ∈ V . Each

GUI will contain certain types of widgets with associated

properties.

The widgets for the Radio Button GUI (Figure 1), la-

beled w1 through w7, are those through which users can

access the corresponding events (e1 through e7). In the

start state of the GUI, Circle and None are selected; the

text-box corresponding to w5 is empty; and the Rendered

Shape area (widget w8) is empty. Event e6 creates a shape

in the Rendered Shape area according to current set-

tings of w1 . . . w5; event e7 resets the entire software to its

start state. The other events behave as follows:

• e1 sets the shape to a circle; if there is a square in the

Rendered Shape area, it is immediately changed

to a circle,

e1

e2

e3

e4

e6

e7

e5

Figure 2. EFG for the Radio Button GUI

• e2 is similar to e1, except that it displays a square in

the Rendered Shape area,

• e3 enables the text-box w5, allowing the user to enter a

custom fill color, which is immediately reflected in the

shape being displayed (if there is a shape there), and

• e4 reverts back to the default color.

The class of GUIs that are considered in this research

take input from a single user, have a fixed number of events

and are deterministic; these GUIs can be represented by

an Event-Flow Graph (EFG). Standard graph walking tech-

niques can be used to reason about the model and generate

test cases from the EFG [15]. An EFG is a specific model of

the GUI for a particular application, representing all possi-

ble sequences of events that a user can execute on that GUI.

Figure 2 shows the EFG for the GUI of Figure 1. Nodes

in the EFG represent events, and directed edges represent

the event-flow relationship between two events. That is, an

edge in the graph from event e1 to e2 indicates that event e2

may be invoked immediately after event e1. EFGs are po-

tentially cyclic, since events can typically be executed more

than once during a session with an application.

Column 1 of Table 1 shows a test suite generated from

this static model of the GUI. The test suites in the remain-

ing columns were obtained using reduction techniques, and

hence, are “similar” to the original suite. The popular HGS

algorithm [6] was used to reduce the suite. Column 2 shows

a suite reduced based on event pair coverage, which retains

test cases that cover all unique pairs of events. The suite in

Column 3 is reduced based on event coverage, which retains

test cases that cover all unique events. The suites in columns

4-6 were reduced based on statement, method, and branch

coverage, respectively. We note that event-pair coverage is

the only reduction method that considers the context of a

preceding event; however, it considers only a single event.

Column 7 shows a suite consisting of test cases in which

each test case executes one unique event. This suite will be

used to illustrate the metric.

Original Event Pair Event Statement Method Branch Illustrative

Tests Coverage Coverage Coverage Coverage Coverage Tests

e1, e6 e1, e4 e1, e4 e7, e1, e6 e1, e3, e5, e6 e1, e4 e1

e2, e6 e1, e3, e5, e6 e7, e2, e3, e5, e6 e7, e2, e6 e7, e2, e3 e7, e1, e6 e2

e7, e1 e7, e2, e3, e5, e6 e2, e3, e5, e6 e7, e2, e6 e3

e1, e4 e3, e5, e4, e3, e6 e3, e5, e4, e3, e6 e2, e3, e5, e6 e4

e2, e3, e5 e2, e4, e7, e2, e6 e7, e2, e3, e5, e6 e5

e7, e1, e6 e7, e1, e6 e6

e7, e2, e6 e7

e2, e4 e7, e2, e6

e7, e2, e3

e1, e3, e5, e6

e2, e3, e5, e6

e3, e5, e4, e3, e6

e7, e2, e3, e5, e6

Table 1. Example test cases yielded from several reduction techniques

Although these suites are similar to the original suite in

terms of their respective reduction/similarity criteria, they

are quite different when considering context. For exam-

ple, the subsequence < e7, e2 > appears four times in the

original suite; < e2, e3 > appears four times; < e1, e6 >

appears twice; each of these event subsequences appear in

multiple contexts. Reduction does not consider preserving

the importance of these frequencies and/or contexts.

Let us consider some notions of the similarity of two

given suites. We can measure similarity based on the occur-

rence of events in both suites. If both suites contain exactly

the same events, we could consider them to be very simi-

lar. However, that would allow us to say that a suite with 10

test cases of 5 events each, for a total of 50 distinct events,

would be the same as a test suite with 1 test case with 50

of the same events. A better method of measuring similar-

ity, however, would be to consider the frequency of events

in the test suite. For example, counting the occurrence of

e3 in each test suite and using this count to compare the

suites will apply a weight to the event and provides more

information on the suite. We may use a vector to represent

the count of each event in the suite, with each position in

the vector representing the count of a single event. For our

seven events e1 to e7 in the running example, this vector is

produced: < 5, 8, 7, 3, 5, 9, 6 >, also shown in tabular form

for all suites in Table 2(a). This is the basis of CONTeSSi.

Because EDS systems are highly reliant on the context

in which events are executed, CONTeSSi should return a

value representing higher similarity when the same events

occur in the same frequency and the same context between

two test suites. As a starting point, consider the context for a

single preceding event; a vector can be created based on the

frequencies of event pairs observed in the test suite, rather

than on a single event. In considering this context, the event

pair coverage suite in Table 1 is expected to be more similar

to the original suite than the event coverage suite, since the

event pair coverage suite is created based on the existence

of event pairs. Table 2(b) shows the count of each event

pair for each suite. This is the basis of CONTeSSi(n), for

n = 1, since we are looking at events in the context of one

other (previous) event.

Now if we extend this example to compute

CONTeSSi(2), we obtain the frequencies shown in

Table 2(c). In general, as n increases, the frequencies for

the event sequences decrease, as they appear less frequently

in the test suites. Intuitively, comparing test suites on

longer sequences will make it harder for the test suites to be

similar. Therefore, if two test suites have a high similarity

score with a larger n, they are even more similar than two

suites being compared with a small n. By treating each

row in Table 2(a), (b), or (c) as a vector, CONTeSSi is

computed as follows:

CONTeSSi(A, B) =
(A · B)

(|A| × |B|)
(1)

where A and B are the vectors corresponding to the two

test suites, A · B is the dot product of the two vectors, i.e.,
∑j

i=1
(Ai×Bi) where j is the number of terms in the vector;

and |A| =
√

∑j

i=1
(Ai)2. The value of CONTeSSi lies

between 0 and 1, where a value closer to 1 indicates more

similarity. Hence, CONTeSSi(n) is computed as shown

in Equation 1, creating a vector for each suite, represent-

ing the frequencies of all possible groups of n + 1 events.

The inclusion of n previous events will increase the num-

ber of terms in the vector, thereby increasing j. The values

in Table 3 show the values of CONTeSSi(n) for all our

test suites, for n = 0, 1, 2, 3. From these values, we ob-

serve that if we ignore context, i.e., use n = 0, most of the

reduced suites are quite similar to the original, as indicated

by the high (> 0.9) value of CONTeSSi(0). However, the

similarity between the test suites decreases as more context

Suite e1 e2 e3 e4 e5 e6 e7

Original 5 8 7 3 5 9 6

Evnt Pair 3 3 4 3 3 5 3

Evnt Cov 1 1 1 1 1 1 1

Stmt Cov 1 3 4 1 3 5 3

Meth Cov 1 1 2 0 1 1 1

Brnch Cov 2 2 1 1 1 3 2

Illus. Suite 1 1 1 1 1 1 1

(a) Frequency of individual events

Suite e1, e3 e1, e4 e1, e6 e2, e3 e2, e4 e2, e6 e3, e5 e3, e6 e4, e3 e4, e7 e5, e4 e5, e6 e7, e1 e7, e2

Original 1 1 2 4 1 3 5 1 1 1 1 3 2 4

Evnt Pair 1 1 1 1 1 1 3 1 1 1 1 2 1 2

Evnt Cov 0 1 0 1 0 0 1 0 0 0 0 1 0 1

Stmt Cov 0 0 1 2 0 1 3 1 1 0 1 2 1 2

Meth Cov 1 0 0 1 0 0 1 0 0 0 0 1 0 1

Brnch Cov 0 1 1 1 0 1 1 0 0 0 0 1 1 1

Illus. Suite 0 0 0 0 0 0 0 0 0 0 0 0 0 0

(b) Frequency of all event pairs

Suite e1, e3, e5 e2, e3, e5 e2, e4, e7 e3, e5, e6 e3, e5, e4 e4, e3, e6 e4, e7, e2 e5, e4, e3 e7, e1, e6 e7, e2, e3 e7, e2, e6

Original 1 3 1 3 1 1 1 1 1 2 2

Evnt Pair 1 1 1 2 1 1 1 1 1 1 1

Evnt Cov 0 1 0 1 0 0 0 0 0 1 0

Stmt Cov 0 2 0 2 1 1 0 1 1 1 1

Meth Cov 1 0 0 1 0 0 0 0 0 1 0

Brnch Cov 0 1 0 1 0 0 0 0 1 0 1

Illus. Suite 0 0 0 0 0 0 0 0 0 0 0

(c) Frequency of all event triples

Table 2. Frequency of n events in original and reduced test suites for Radio Button GUI example

(larger values of n) is considered for the events. The event-

and method-coverage suites show relatively lower values of

CONTeSSi(3) because they retain very little context with

only two test cases. The event-pair reduced suites have the

highest value of CONTeSSi(3), followed by statement

and branch coverage reduced suites. Finally, the illustra-

tive suite is very similar to the original when context is not

considered (CONTeSSi(0) = 0.956). With the addition

of context, however, the CONTeSSi value is 0 due to the

single event test cases. Even in this simple example, we see

the value of the similarity metric.

To improve the context for events appearing at the be-

ginning and end of test cases, we include two special sets

of “events” called INITn and FINALn. Without loss

of generality, we add these events to all test cases. When

computing CONTeSSi(n), we prepend n INIT events

and append n FINAL events to each test case. For ex-

ample, in looking at event triples (n = 2), we will add

two INIT and two FINAL events to each test case:

< INIT0, INIT1, e2, e3, e5, F INAL0, F INAL1 > to

glean that e2 is at the start of < e2, e3, e5 >,

by obtaining the triple < INIT0, INIT1, e2 > and

that e5 is at the end of the sequence by obtaining

Suite

Evnt Evnt Stmt Meth Brnch Illus.

n Pair Cov Cov Cov Cov Suite

0 0.977 0.956 0.970 0.921 0.960 0.956

1 0.969 0.869 0.967 0.859 0.946 0

2 0.963 0.813 0.960 0.794 0.931 0

3 0.959 0.774 0.952 0.754 0.923 0

Table 3. CONTeSSi(n) value for Suite com-

pared to Original for all Radio Button GUI ex-

ample suites

< e5, F INAL0, F INAL1 >. Due to space constraints,

these events are not shown in Table 2.

3. Empirical study

To evaluate the quality of CONTeSSi(n), we con-

ducted an empirical study comparing several test suites on

the basis of exisiting similarity metrics, such as statement

coverage, method coverage, and event pair coverage. We

also used CONTeSSi(n) to compare the same suites.

The goal of this study is to evaluate a metric that mea-

sures the similarity of two test suites and to determine the

quality of this metric.

Restating this goal using the Goal Question Metric

(GQM) Paradigm [3], the goal for this research is restated

as follows:

Analyze the test suites

for the purpose of comparison

with respect to other test suites

from the point of view of the tester/researcher

in the context of event driven systems.

From this goal, the following research questions are ad-

dressed:

1. RQ1: Does CONTeSSi(n) agree with existing

metrics in determining the similarity between suites,

specifically relating to fault detection effectiveness?

2. RQ2: Does CONTeSSi(n)’s value improve for

larger values of n?

Each of these research questions will evaluate the simi-

larity metric by comparing existing test suites on coverage

criteria and the CONTeSSi metric. In most research and

in practice, test suites are evaluated based on code coverage,

fault detection, or both; the results of this study provide an

objective method of comparing test suites without the need

to run them.

The first question is focused on comparing the results of

CONTeSSi to the coverage of the suite, and further ex-

amining the relationship between the metric and fault de-

tection. The second question recognizes the importance of

event context in EDS test cases. By varying the amount of

event context used in computing the metric, a finer grained

measure of the similarity between test suites is garnered.

In setting up this study, several subject applications were

chosen, test suites were developed and run, and the suites

were compared based on several metrics. Each of these ac-

tions are described in the following sections.

3.1 Subject applications

Four popular, open source Java applications were chosen

for this research and downloaded from SourceForge:

1. CrosswordSage 0.3.51, a popular tool for creating and

solving professional-looking crossword puzzles with

built-in word suggestion capabilities, with an all-time

activity rate of 78.28%.

1http://sourceforge.net/projects/crosswordsage

2. FreeMind 0.8.02, a very popular mind-mapping appli-

cation, with an all-time activity rate of 100%.

3. GanttProject 2.0.13, a project scheduling application

featuring Gantt chart, resource management, calen-

dars, and the option to import/export MS Project,

HTML, PDF, and spreadsheets, with an all-time activ-

ity rate of 99.98%.

4. jMSN 0.9.9b24, a clone of MSN Messenger, includ-

ing instant messaging, file sharing, and additional chat

features standard in MSN Messenger, with an all-time

activity rate of 98.62%.

These applications were chosen for several reasons. All

of the applications have an active developer community and

high all-time-activity scores on SourceForge, with three of

the applications above 90%. CrosswordSage was chosen

partially because it is fairly new (first released in 2005) and

yet has an activity score of almost 80%. These applications

have also been released in several versions and have under-

gone quality assurance prior to each release.

3.2 Tools

The GUI Testing FrAmewoRk (GUITAR) was used to

perform the study [15]. The JavaGUIRipper, one of the

tools in the GUITAR suite, was used to glean the struc-

ture of the subject applications. By using Java Reflection,

the JavaGUIRipper creates an XML file that represents the

windows, menu items, and buttons present in the GUI, in-

cluding the actions that are executed when those items are

selected.

EFG-based test cases can be created using a parameter-

ized test case generator, developed in previous work [21].

The EFG is annotated based on learned event interactions

and the EFG is created. Test cases are then generated to ex-

haustively cover events up to n, given as a parameter to the

generator.

Another tool in the GUITAR tool suite, the JavaGUIRe-

player, was used for test case execution. The JavaGUIRe-

player is a framework that opens the application under test

and replays XML test cases containing details on the steps

to be performed. Each event is executed on the GUI, and

the state of the GUI is recorded after each step. The state

is saved in XML files that can be examined to determine

which test cases failed and why.

3.3 Test suites

Our empirical study used four test suites as the basis for

determining the usefulness of the test suite similarity metric.

2http://sourceforge.net/projects/freemind
3http://sourceforge.net/projects/ganttproject
4http://sourceforge.net/projects/jmsn

The suites consisted of: one model-generated suite (Torig),

which was executed to obtain its statement and method cov-

erage; and three suites reduced from the model-generated

suite by statement (Tstmt), method (Tmethod), and event

pair (Tpair) coverage. The Torig suite was generated from

the EFG model of the GUI for each application.

Test suite sizes are as follows. For CrosswordSage, Torig

has 1903 test cases, Tmethod has 5 test cases, Tstmt has 11

test cases and Tpair has 854 test cases. FreeMind’s Torig

has 58301 test cases; the method, statement and pair re-

duced suites have 135, 104, 18157 test cases, respectively.

GanttProject’s Torig has 29133 test cases; Tmethod has 42

test cases; Tstmt has 88 test cases; and Tpair has 19656

test cases. JMSN’s Torig has 4634 test cases; the method,

statement and pair reduced suites have 2, 19, and 3482 test

cases, respectively. It is interesting to note the drastic size

difference between the suites reduced on code coverage and

the suites reduced on event pair coverage. We expect that

this difference will have an impact on our results because

the event-pair coverage reduced suites will be more similar

to their respective original suites due to the added context

opportunites for event execution.

3.4 Procedure

Figure 3. Comparing test suites using the

CONTeSSi metric

Figure 3 gives a graphical representation of the steps

described here. First, test suites based on the EFG were

created using the parameterized test case generator. Next,

the test suites were executed using GUITAR’s JavaGUIRe-

player. After running the test suites, fault detection and

code coverage was collected for each test case, matrices

were built, and this information was used to compare the

suites. The test oracle used for this work detects crashes in

these applications, where a crash is defined as an uncaught

exception thrown during test case execution.

From the coverage matrices, reduced suites were ob-

tained based on event pair, method and statement cover-

age. The code coverage and fault detection of these reduced

suites was computed from the per-test-case coverage files

generated during the execution of the original suite.

Finally, a file was created for each test suite where each

line of the file represents one test case and contains the se-

quence of events in a test case. Using these files as input,

CONTeSSi(n) was computed, using values for n from 0

to 5, to compare the original suite to each reduced suite.

3.5 Comparing test suites

Using Equation 1, the CONTeSSi metric is computed.

To use this metric, we must also have a method of compar-

ing suites with other metrics. The following function can

be used to compare two suites given any of the metrics dis-

cussed here.

f(Torig, T, m) =
N(em(Torig)

⋂

em(T))

N(em(Torig))
(2)

where T is the suite being compared to the original suite, m

is one of the metrics on which suites are compared, such as

statement coverage, branch coverage or event pair coverage,

em(suite) is a function returning the set of elements for

metric m covered by suite, and N is a function returning

the number in the set given. The result of this function is

a number between 0 and 1 which represents the ratio of the

number of metric elements covered by both T and Torig to

the total number of metric elements covered by Torig. We

will show coverage and fault detection numbers for each

suite; then compare the suites based on these metrics.

3.6 Threats to validity

There are a few threats to validity which should be con-

sidered when interpreting the results of this study. First, due

to our desire to use the existing GUITAR infrastructure, and

to compare our results to those posted by previous graduate

student researchers, we used subject applications developed

in Java. Therefore, we have no information on how the re-

sults would translate to other development languages. Fur-

ther, we are concerned only with EDS systems; this method

may not be appropriate for test suites in other domains.

Second, although each application is different, they do

not reflect all possible classes of EDS. Furthermore, the ma-

jority of the application code is written for the GUI, mean-

ing the results may not be consistent for applications with a

simple GUI and complex underlying business logic.

Another potential problem for this study is that it may

not produce conclusive results on which value of n used for

the context of CONTeSSi(n) is most effective; however,

it does give an indication of the impact of context and a

trend of the results as the value of n is varied.

4. Results

First, the value returned by CONTeSSi(n) is shown.

Next, the traditional metrics (class, method, and block cov-

erage) are shown. Finally, the two are compared. As the

value of n increases for Tpair, we expect CONTeSSi(n)
to decrease in most cases, indicating a decrease in the simi-

larity between the two suites as more context is considered,

as expected from the example in Table 3. We do not have

any expectations for Tmethod and Tstmt as these are not

event-based reductions and therefore do not consider event

context.

4.1 CONTeSSi vs. traditional metrics

Suite

Application n Tmethod Tpair Tstmt

CrosswordSage

0 0.788 0.974 0.760

1 0.682 0.958 0.676

2 0.597 0.952 0.614

3 0.539 0.946 0.579

4 0.496 0.942 0.552

5 0.464 0.938 0.528

FreeMind

0 0.105 0.087 0.064

1 0.088 0.079 0.051

2 0.089 0.084 0.051

3 0.091 0.089 0.162

4 0.093 0.093 0.055

5 0.095 0.098 0.057

GanttProject

0 0.200 0.947 0.358

1 0.237 0.934 0.423

2 0.229 0.933 0.414

3 0.224 0.931 0.410

4 0.220 0.930 0.408

5 0.216 0.929 0.406

JMSN

0 0.233 0.612 0.491

1 0.172 0.603 0.389

2 0.146 0.615 0.355

3 0.131 0.626 0.331

4 0.121 0.635 0.312

5 0.114 0.643 0.298

Table 4. CONTeSSi(n) for Torig, Suite

Since we are interested in determining if the

CONTeSSi metric returns a value consistent with

Coverage Value

Application Suite Class Method Block

CrosswordSage

Torig 41 20 25

Tmethod 35 15 23

Tpair 41 20 25

Tstmt 35 20 25

FreeMind

Torig 55 32 26

Tmethod 51 29 24

Tpair 55 32 26

Tstmt 49 26 23

GanttProject

Torig 66 51 46

Tmethod 58 44 45

Tpair 58 44 46

Tstmt 66 50 45

JMSN

Torig 35 24 27

TMethod 28 16 20

TPair 35 24 27

TStmt 35 24 27

Table 5. Code coverage information

the “goodness” of a suite, we can use the information in Ta-

bles 4 and 5, combined with the fault detection reported in

Table 7 to determine the most effective method of detecting

test suite similarity. Table 4 shows the CONTeSSi(n)
value for each pair of test suites.

First, computing CONTeSSi(n) without context (for

n = 0), the data in Table 4 shows that the Tpair suites are

the most similar to the original suite, Torig, in three of the

applications. For the fourth application, FreeMind, the most

similar suite is Tmethod, followed by Tpair and Tstmt. In

three of the four applications, Tmethod is more similar to

Torig than Tstmt.

Second, the relationships expected for Tpair are ob-

served in Table 4. While there are some values of n that

cause the CONTeSSi(n) value to increase, the difference

is so slight that it is unclear whether or not this result is

significant.

Third, carrying the trends and relationships of Table 4 to

fault detection (shown in Table 7) of each suite, it can be

seen that the values returned by CONTeSSi(n) are con-

sistent with the faults detected by the suites. That is, for

every application, Tpair detected almost the same faults as

the original suite, while Tmethod and Tstmt detected fewer.

Fourth, traditional code coverage metrics are shown in

Table 5. For all four applications, the class, method, and

block coverage of the reduced suites are very similar to the

original suite. Using this metric as a gauge for test suite

similarity would lead a tester to believe the suites are very

similar; however, the fault detection of each suite indicates

otherwise. This finding supports the intuition described ear-

lier that traditional metrics are not a good measure of simi-

larity between test suites.

Suite

Application Metric Tmethod Tpair Tstmt

CrosswordSage

method 1 1 1

pair 0.016 1 0.022

stmt 0.477 0.496 1

FreeMind

method 1 0.749 0.479

pair 0.006 1 0.006

stmt 0.974 0.759 1

GanttProject

method 1 0.999 0.968

pair 0.003 1 0.003

stmt 0.970 0.978 1

JMSN

method 1 1 0.200

pair 0.347 1 0.008

stmt 0.989 1 1

Table 6. Computing f(Torig, T, metric)

Finally, Table 6 shows the computation of Equation 2

for each metric, for each application. Each combination of

metric and test suite reduction method are compared, i.e.,

the number of methods covered by the suites reduced by

pair, method, and statement coverage are counted for each

application. For almost every metric, Tpair covers the most

elements of the metric. In most cases, the difference be-

tween Tmethod and Tstmt is very slight. Fault detection ef-

fectiveness of each suite further confirms this ranking of the

suites.

4.2 Discussion

The similarity (or rather dissimilarity) between Free-

Mind’s original suite and reduced suites does not follow

the pattern of the other applications. This can be par-

tially explained by the redundancy within test cases in the

original suite, combined with the fact that the computa-

tion of CONTeSSi(n) counts events (or event sequences).

Because much of the redundancy is removed when the

suites are reduced, the number of test cases as well as the

counts of events (or event sequences) used in computing

CONTeSSi are much smaller. Additionally, these reduced

suites did not find many faults; Tpair, however, had better

fault detection than the others.

By comparing the test suites on existing metrics, which

were also used to create the suites (Table 6), some insight

into the value of these reduction techniques is gained. For

all four applications, the similarity of Tpair to Torig, mea-

sured in the ratio of elements covered, code coverage, and

fault detection, also strengthens our claim that context is

valuable in EDS test cases. This comparison also serves to

reinforce the results provided by CONTeSSi on the simi-

larity and “goodness” of each suite.

CONTeSSi(n) was designed with context in mind due

to the importance of context in test cases for EDS. It is in-

teresting to note the trend of the CONTeSSi(n) value.

In some suites for some of the applications, the value of

CONTeSSi(n+1) increases over CONTeSSi(n) rather

than decreasing as is the general overall trend. For ex-

ample, the CONTeSSi(1) value for GanttProject’s Tstmt

suite is larger than that of CONTeSSi(0). The re-

maining CONTeSSi values decrease, however, as n in-

creases. Conversely, FreeMind and JMSN’s Tpair values of

CONTeSSi for n > 1 increase as context is increased. It

is possible this is due to the length of the test cases; as n gets

closer to the length of the test case, the similarity between

the suites increases.

5. Related work

Comparing whole test suites that are composed of se-

quences of events has not been researched in software test-

ing. Some work has been done in the information retrieval

(IR) and natural language processing (NLP) communities,

however, in comparing large bodies of text. In IR, several

researchers have developed similarity metrics to compare

ranked lists that are output from an IR query, compare doc-

uments, and comparing a query to a document. Further, re-

search on similarity between objects has been accomplished

in software security to detect viruses and in neurocomput-

ing to determine where to place an object in a fuzzy lattice.

We will discuss these related works.

5.1 Similarity metrics in IR and NLP

Aslam and Frost developed a similarity metric for doc-

uments, as an extension of work by Dekang Lin in object

similarity [2]. Lin et al.’s metric is designed to compare

documents based on the features contained in that docu-

ment, from some possible feature set which is contained

in the set of documents. Aslam and Frost extend the met-

ric to compare normalized documents, thereby accounting

for fractional features that would otherwise be lost during

normalization. They found their metric outperformed other

standard metrics when run on a standard query retrieval data

set.

Kilgarriff notes the problem of determining being able to

come to a stable conclusion about a single word and that fre-

quently, it is not possible to draw a conclusion about a com-

bination of words or a rare word from a corpus [11]. In his

work, Kilgarriff found that a method of comparison based

on the χ2 test is the most effective, followed closely by the

Mann-Whitney ranks test [10]. He focused on determin-

ing both how similar two corpora are and in what ways two

corpora differ, by determining which words are the most

distinctive. Kilgarriff considered Poisson mixtures, Katz’s

model for word distributions, and adjusted frequencies used

in research by Francis and Kuc̆era. Finally, he used several

Fault Id

Applic. Suite 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 Tot

Crossword Torig x x x x x x x 7

Sage Tstmt x x x 3

Tmethod x 1

Tpair x x x x x x 6

Free Torig x 21

Mind Tstmt x x x x 4

Tmethod x 1

Tpair x x x x x x x x x x x x x x x x x 17

Gantt Torig x x x x x x x x x x x x x x x x 16

Project Tstmt x x x x x 5

Tmethod x 1

Tpair x x x x x x x x x x x x x x x 15

JMSN

Torig x x x x x x 6

Tstmt x x 2

Tmethod 0

Tpair x x x x x x 6

Table 7. Faults detected in all applications

methods of comparing two corpora and determined several

things: the distribution of word frequency is of little help;

Spearman’s rank correlation is too affected by the frequency

of words that may not be important (such as the); and using

a χ2 test while ignoring the null hypothesis is a reasonable

method of comparing corpora.

Previous research in IR, specifically the work by Aslam

and Frost, is similar in concept to our interest in how similar

test cases may be based on the events they contain, where

features in information retrieval map to events in software

testing. Kilgarriff’s work in comparing document collec-

tions is very applicable to the work presented here. Just as

is true for events in EDS test cases, Kilgarriff found words

in a corpus do not appear in a random order and techniques

to compare them must take this into account.

5.2 Similarity in software

Previous work in software engineering has compared

test cases within a suite to determine redundancy inside

the suite, but a suite to suite comparison has not been per-

formed [13]. Traditional approaches for test suite minimiza-

tion usually rely on coverage information collected during

dynamic execution. Li et al., applied a static analysis tech-

nique to detect redundant test cases based on their instruc-

tion sequences and counts.

Cosine similarity has been used in software engineering

to detect code changes. Antonio et al., used cosine similar-

ity to determine the difference between classes in new ver-

sions of software, thereby pinpointing the refactored seg-

ments [1]. Karnik et al., used the knowledge that malicious

software shares significant amounts of code and the statis-

tical properties of morphed viruses to successfully detect

variants [8]. Traditionally, viruses are detected by exam-

ining method signatures for changes, but virus writers are

aware of this approach and have methods of evading it. Al-

though virus variants may differ in the sequence of instruc-

tions they contain, they are functionally the same. Karnik et

al.’s method flagged any functions which are similar using

a threshold value of 0.97, and then took the average of the

similarities to evaluate overall program similarity.

Cripps and Nguyen proposed using cosine similarity

measures as the inclusion measure used by fuzzy lattice

neurocomputing (FLN) [5]. In this domain, data items of

different types may be stored in the same lattice. Their work

used counts of the attributes of each data item to generate a

weighted vector which represents that item. These vectors

can then be compared using the cosine similarity measure.

In software engineering, Karnik et al.’s work in virus

detection is comparable if, instead of the machine instruc-

tions, events are used in the computations. The biggest dif-

ference is that in virus detection, events in a different se-

quence are functionally the same; this is not the case in

EDS testing where event order is specific. We consider this

in CONTeSSi(n) by including the context in which the

event was executed. Further, the approach of comparing

each function to every other function differs from our com-

parison of whole vectors, which encode all events or event

sequences in a suite.

6. Conclusions and future work

There are several existing techniques (e.g., reduction and

minimization) used to obtain test suites that are “similar”

to an original suite. However, these techniques use criteria

and metrics not suited to EDS. We presented a new parame-

terized metric called CONTeSSi(n), which uses the con-

text of n preceding events in test cases to quantify test suite

similarity for EDS. CONTeSSi(n) is appropriate for EDS

because it considers the contextual relationships between

events. We defined and evaluated this metric on four test

suites for four open source applications. Our results showed

that CONTeSSi(n) is a better indicator of the similarity of

EDS test suites than existing metrics.

Our results have created several opportunities for future

work. In the short term, we will extend our study to ad-

ditional subjects to reduce threats to external validity. In

the medium term, we will use CONTeSSi(n) to develop

a new reduction technique for GUI test suites. We expect

that the reduced suite will be better at retaining the fault de-

tection effectiveness of the original suite. We will also fur-

ther investigate the relationship between the test case length

and the value of n used in CONTeSSi(n) to draw some

conclusions on how to pick the best value of n, starting

with a value of n which matches the length of the most test

cases in the input suite. In the long term, we will apply

CONTeSSi(n) to other types of EDS, e.g., web applica-

tions.

Acknowledgments

This work was partially supported by the US National

Science Foundation under NSF grant CCF-0447864 and the

Office of Naval Research grant N00014-05-1-0421.

References

[1] G. Antoniol, M. D. Penta, and E. Merlo. An automatic ap-

proach to identify class evolution discontinuities. Principles

of Software Evolution, International Workshop on, 0:31–40,

2004.

[2] J. A. Aslam and M. Frost. An information-theoretic mea-

sure for document similarity. In SIGIR ’03: Proceedings of

the 26th annual international ACM SIGIR conference on Re-

search and development in informaion retrieval, pages 449–

450, New York, NY, USA, 2003. ACM.

[3] V. Basili. Software modeling and measurement: the

goal/question/metric paradigm. Technical report, University

of Maryland at College Park, 1992.

[4] P. A. Brooks and A. M. Memon. Automated GUI testing

guided by usage profiles. In ASE ’07: Proc. of the 22nd

IEEE/ACM Int’l Conf on Automated Software Engineering,

pages 333–342, New York, NY, USA, 2007. ACM.

[5] A. Cripps and N. Nguyen. Fuzzy lattice neurocomput-

ing using weighted cosine similarity measure. Neural Net-

works, 2007. IJCNN 2007. International Joint Conference

on, pages 236–241, Aug. 2007.

[6] M. J. Harrold, R. Gupta, and M. L. Soffa. A methodology

for controlling the size of a test suite. ACM Trans. Softw.

Eng. Methodol., 2(3):270–285, 1993.

[7] J. Jones and M. Harrold. Test-suite reduction and prioriti-

zation for modified condition/decision coverage. Software

Engineering, IEEE Transactions on, 29(3):195–209, March

2003.

[8] A. Karnik, S. Goswami, and R. Guha. Detecting obfuscated

viruses using cosine similarity analysis. Modelling & Simu-

lation, 2007. AMS ’07. First Asia International Conference

on, pages 165–170, March 2007.

[9] D. J. Kasik and H. G. George. Toward automatic genera-

tion of novice user test scripts. In CHI ’96: Proceedings

of the SIGCHI conference on Human factors in computing

systems, pages 244–251, New York, NY, USA, 1996. ACM.

[10] A. Kilgarriff. Comparing corpora. International Journal of

Corpus Linguistics, 6(1):1–37, 2001.

[11] A. Kilgarriff and G. Grefenstette. Introduction to the special

issue on the web as corpus. Comput. Linguist., 29(3):333–

347, 2003.

[12] D. Leon and A. Podgurski. A comparison of coverage-based

and distribution-based techniques for filtering and prioritiz-

ing test cases. Software Reliability Engineering, 2003. IS-

SRE 2003. 14th International Symposium on, pages 442–

453, Nov. 2003.

[13] N. Li, P. Francis, and B. Robinson. Static detection of redun-

dant test cases: An initial study. In ISSRE, pages 303–304,

2008.

[14] S. McMaster and A. Memon. Call-stack coverage for gui

test suite reduction. IEEE Transactions on Software Engi-

neering, 34(1):99–115, 2008.

[15] A. M. Memon and Q. Xie. Studying the fault-detection ef-

fectiveness of GUI test cases for rapidly evolving software.

IEEE Transactions on Software Engineering, 31(10):884–

896, 2005.

[16] X. Qu, M. B. Cohen, and K. Woolf. Combinatorial in-

teraction regression testing: A study of test case genera-

tion and prioritization. Software Maintenance, 2007. ICSM

2007. IEEE International Conference on, pages 255–264,

Oct. 2007.

[17] G. Rothermel, M. Harrold, J. Ostrin, and C. Hong. An

empirical study of the effects of minimization on the fault

detection capabilities of test suites. Software Maintenance,

1998. Proceedings. International Conference on, pages 34–

43, Nov 1998.

[18] Q. Xie and A. Memon. Automated model-based testing of

community-driven open source GUI applications. In Proc.

22nd Int’l Conf on Software Maintenance, Sep 2006.

[19] T. R. Y and A. Kilgarriff. Measures for corpus similarity

and homogeneity. In Proceedings of the 3rd conference on

Empirical Methods in Natural Language Processing, pages

46–52. ACL-SIGDAT, 1998.

[20] E. Yilmaz, J. A. Aslam, and S. Robertson. A new rank cor-

relation coefficient for information retrieval. In SIGIR ’08:

Proceedings of the 31st annual international ACM SIGIR

conference on Research and development in information re-

trieval, pages 587–594, New York, NY, USA, 2008. ACM.

[21] X. Yuan and A. M. Memon. Using GUI run-time state as

feedback to generate test cases. In ICSE’07, Proc. of the

29th Int’l Conf on Software Engineering, Minneapolis, MN,

USA, May 23–25, 2007.

