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1. Introduction

Somehow, living organisms deal with a complex world. This is the basis for the AI

hope of smart systems worthy of that designation. But we have been unsuccessful at

this so far. Here I will argue that a closer — but straightforward — look at human

reasoning suggests an implementable strategy for °exible commonsense reasoning.

The notion of an anomaly — something that deviates from expectations — is the

central focus. I will begin with a motivating discussion, followed by examples, and a

sketch of where further work is needed.

2. Anomalies are the Problem

Why do cognitive architectures need biological (or indeed any) inspiration? Simply

put, because our e®orts to design such architectures have, to date, been °ops.

Somehow we are missing a key ingredient. Our most touted successes (think of Deep

Blue) are idiot savants, brilliant at one thing and utterly clueless at everything else,

even at minor variations on what they are good at; see [Anderson et al., 2006b].

In other words, our artifactual systems lack the ability to deal with variation,

perturbation, unexpected twists. In fact, this has a name: the brittleness problem.

Brittle systems break when given a twist, when forced into circumstances beyond

what they were explicitly designed for, i.e., when they encounter anomalies.
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This means our systems are far less useful than we would like, than we in fact need

in order to deploy them usefully in realistic settings; for the real world abounds in the

unexpected. And dealing usefully with the unexpected is a hallmark of °exible

human-level intelligence, whereas breaking in the face of the unexpected (wasting

time, getting nowhere, brooking disaster) is the hallmark of current automated sys-

tems. Rational anomaly-handling (RAH) is then the missing ingredient, the missing

link between all our fancy idiot-savant software and human-level performance.

Notice the boldness of this claim: not simply do our systems lack RAH, but this

lack is the missing ingredient. Whether this is so remains to be seen. To a large

extent, the current paper is an argument in support of this hypothesis. This is more

than merely stating that our systems' primary lack is °exibility; for °exibility covers

an inde¯nite range of capabilities. But anomaly-handling — although it may sound

much the same — has a focus, and reasoned anomaly-handling both a focus and a

method. (Needless to say, at this point the reader is not expected to agree.)

To forestall a misunderstanding: RAH is not a matter of being clever or insightful.

All humans have RAH (in varying degrees!); essentially it amounts to not being

idiotic — not being blind to signs that things are getting a bit unusual. But what is

hidden in this seemingly elementary capability? For one, the unusual (i.e., the

occurrence of an anomaly) must be detected (in virtue of its deviating from the usual,

from the everyday expected set of conditions). Thus RAH involves having expec-

tations, and having them means to compare them to observations as to what is

happening. We will examine this at greater length in a subsequent section, but what

has been said so far already sets the tone for what is to come.

3. Fumbling our Way toward RAH

Why has this been so hard? After all, brittleness is not a newly discovered problem.

Here are some parts of an explanation, in terms of temptations that perhaps have

distracted us from the larger picture.

3.1. Build it in

It has been very tempting, irresistibly so in many cases, simply to try to build in useful

responses to individual anomalies. For instance (to mention just one example), the

enormous — and enormously impressive — literature on non-monotonic reasoning

appears to be an attempt to address the problem of providing a precise formal account

of the complexities of the natural world, by setting out in advance what is normal and

what is anomalous in a given context, andwhat is normal for an anomalous subcontext

of a normal context, etc. As an example: birds (normally) °y; but penguins are

abnormal (anomalous) within the °ying-bird context, that is, penguins do not (nor-

mally) °y; but a propeller-out¯tted one is abnormal with the non-°ying-penguin

subcontext; etc.
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Thus, such an approach appears to set out what to conclude about each and every

object and context, no matter how unexpected. Yet this is doomed to failure, if on its

own. There is no way to know in advance what the various anomalous subcontexts

are — the world really is too surprising. Somehow the knowledge as to what the

various subcontexts are has to be found from experience, and cannot be set out in

advance. Once learnt, then to be sure a very useful formal account can be given

(perhaps revised later on, as conditions or information change). But this leaves wide

open what to do when an as yet unlearned anomaly rears its head.

3.2. OK, then let it learn

So-called adaptive systems — genetic algorithms, neural networks, etc. — do learn,

albeit often very slowly, and — more to the point — do not make decisions about

what, when, or how to learn (largely because they have no knowledge of why to learn

in the ¯rst place— no recognition that there is an anomaly to be addressed). Still, the

existence of such systems may have lulled us into thinking that learning was a well-

explored area. It is and it is not: machine learning, including the aforementioned work

on adaptive systems, is a major area of vigorous investigation and a very great deal of

important results are now available. But the bulk of this work focuses on the learning

per se, and not on the contexts within which learning is needed. Yet the latter is

precisely what RAH requires.

3.3. Keep it consistent

Anomalies — that is, mismatches between expectations and observations — can be

reasonably regarded as contradictions in a belief base: an agent has the belief P since

P is expected, and also �P since the latter is \observed" (that is to say, �P is

provided by some other source). Both cannot be true, both cannot be rationally

believed, so the agent must do something about the situation. But traditional formal

approaches to commonsense reasoning — including non-monotonic logics — are

hopelessly inappropriate in such cases, i.e., when applied to inconsistent belief bases

they \explode" to produce all w®s as theorems. (So-called paraconsistent logics are

intended antidotes; but most of these also miss the mark — more on this later.) But

the extreme intellectual beauty of consistent formalisms exerts such a pull that it is

hard to turn one's head away and toward a less pristine form of reasoning.

Thus, to repeat, e®orts to capture human-level commonsense reasoning, with its

marvelous RAH °exibility, have not been successful to date. It makes sense, then, to

take a closer look at this human capability, in the hope that we might ferret out some

key aspects that can be borrowed and automated. That is to say, perhaps artifac-

tuality can recapitulate biology — the only known supplier of RAH.

4. Biology is the Only Answer (So Far)

How has biology solved this problem? How do organisms cope with anomalies? What

anomalies are organisms faced with?
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Basically, an organism has processes that provide certain life-preserving bene¯ts;

and anything that rubs strongly against the grain of these processes is potentially

something to be reckoned with, something that must be dealt with or the organism

dies. And indeed that often is what happens, the survivors being those lucky few

whose processes are less strongly rubbed against.

For instance, supposed \food" that is not healthy may result in survival of only

those few members of a species that either safely metabolize that item or that avoid

it. Thus anomalies drive evolution. But this is not yet RAH; no rational process, no

actual reckoning, is given here. Rather this is slow evolution, parameter adjusting,

trial-and-error, as in adaptive computation. For a species, anomalies present a kind of

challenge to rise to, but for an organism an anomaly is simply the end of the line, or a

routine matter-of-course; there is no change, no learning, at the organism level — at

least not from such \selective pressures".

Yet biology has not stopped with (Darwinian selective) evolution. For among the

products of such evolution are mammals, primates, humans: organisms with RAH,

agents that face anomalies and deal with them, that individually get better over time,

and that do so in part by reasoning. But what then is it, really, that we do? And

is it something that can be automated? Or does human-style RAH have no concise

principles, instead being a mishmash product of evolution akin to a highly distributed

neural network? In the latter case, we might manage to evolve our own RAH-capable

algorithms but not know how they work, perhaps useful but not intellectually

satisfying. Fortunately, there is evidence that it is the former, nor the latter, that

obtains.

5. RAH Principles

What principles underlie RAH, and how can they be transitioned from the biological

to the arti¯cial? How does natural/biological RAH work? What is it that we humans

do when we encounter and deal with an anomaly?

The answer is surprisingly simple, even obvious — and also one that is borne out

by work in cognitive psychology and neuroscience. It consists of ¯ve parts, which

together de¯ne what we call the Metacognitive Loop (MCL):

(i) We have expectations as to how things will be.

(ii) We compare expectation to observation and thereby note indications that an

expectation has been violated.

(iii) We assess what we know that might explain this violation.

(iv) We decide what response — if any — to guide into place.

(v) We revise/create expectations as needed.

It is introspectively clear that we do this — and do it a lot, every single day — and

that without these ¯ve capabilities we would not do well at all, i.e., they are necessary

parts of our job of being RAH agents. Whether the converse holds — that these ¯ve
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are su±cient for RAH — is perhaps less obvious. But at least this now puts us in a

good position: (i)�(v) can be automated and studied, and the su±ciency— let us call

it the MCL hypothesis — tested. To de¯ne this a bit more sharply: it may happen

that MCL (i.e., (i)�(v) above) does indeed do all that is claimed, and yet leaves us

without °exible systems, simply because this approach might push \the problem"

somewhere else. That is, it may turn out that achieving one or more of the requisites

(i)�(v) above is in itself AI-hard. So part of the MCL hypothesis is that this is not the

case, and that (i)�(v) are achievable, and largely with existing technology.

A comment on whywe call this a \loop": note the italicized terms note, assess, guide

in items (ii), (iii), (iv) above; the algorithm more precisely loops through these three

steps over and over, and (i) and (v) come in as needed. Yet more precisely: there is also

implicit recursion, in that once a response has been chosen and guided into action, it

may produce an expectation (of its success) which can in turn encounter anomalies.

Below I will recount several such investigations; but ¯rst I need to clarify some of

the ¯ve parts a bit. Let me start with item (iv), things that can be done about an

anomaly. Recall my earlier warning: cleverness has little to do with RAH. So the

things we can do generally are not ones requiring heavy duty analysis or insight, yet

they must on balance be useful. These include such actions as trying again, asking for

help, postponing, giving up, using trial-and-error, initiating training, double-check-

ing our observations, seeking corroborating evidence, and so on. An implicit part of

our hypothesis is that there is a relatively small \core" of anomaly-types and

anomaly-resolutions, suited to virtually all domains. We are currently investigating

ontologies of such; our work to date is highly suggestive that such a core exists. See

[Schmill et al., 2007; Anderson et al., 2007a].

Item (i) requires us to have ideas about how the world works, and this then

requires item (v), some sort of learning capacity; and in turn then we need also an

\initiate training" option in (iv). And in (ii) and (iii) there is an implicit use for

formal logics that behave \responsibly" in the presence of contradictions.

Thus (i)�(v) are not trivial, they come with substantial requirements. But they

also lend themselves to algorithmic implementation. The training option is particu-

larly interesting, for it dramatizes the need to decide that learning is needed, what is

to be learned, and when, and how, and for how long. Thus an RAH-capable system

will, among other things, need trainable modules (neural networks, reinforcement

learners, etc.). RAH then is not a substitute for traditional aspects of AI so much as

an enhancement and bringing together of them.

6. A Spate of RAH-Capable Systems

Over the past several years, my group has been hard at work building and testing

examples of RAH-capable systems. These include systems involving navigation (for

simulated robots), reinforcement learning, non-monotonic reasoning, video-arcade

tank game playing, and human-computer natural-language dialog. Each of these

RAH capabilities was built separately, for that particular application. And each such
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system performed markedly better when its RAH aspects were employed. However,

we soon realized that the same elements (i)�(v) were at work in much the same way

in each case. This led us to hypothesize a general-purpose domain-independent MCL

module, akin to the human RAH that will work pretty well across the board, not just

in two-player games, not just in preparing a meal, and not just on its \job". For a

science-¯ction style comparison: Any of us would probably be ¯ne if spirited away —

as an involuntary immigrant — to Finland in the dead of the night; we would be

astonished and deeply worried, but we would ¯nd a way to survive, make our con-

cerns known, even in another language, and we would eventually manage to get back

home— or become adapted to Finnish life. So why should an automated RAH be any

less domain-independent?

We now take a closer look at some of our earlier MCL-enhanced systems, then at a

more ambitious project we are poised to launch, and ¯nally at still broader

requirements for fully human-level RAH.

6.1. Reinforcement learning (RL)

RL is a well-established methodology that works very well in many settings, notably

ones in which the reward structure is static or nearly static. But when that structure

is changed suddenly and signi¯cantly, the performance of RL degrades severely and

recovers excruciatingly slowly. In essence, RL algorithms need to \unlearn" what

they have learned, step-by-step, since they have no way to recognize that the reward

structure has changed, let alone assess what can be done about it. Yet it is clear that,

given a drastic change that makes previous learning useless, the best policy is simply

to throw it out and start over.

Using a variety of reinforcement learning algorithms (Q-learning, SARSA, and

prioritized sweeping) we experimented with a simple 8� 8 grid world with rewards in

cells (1, 1) and (8, 8). The learner was trained for 10,000 steps, then the rewards were

switched and learning continued for another 10,000 steps. We compared the per-

formance of standard RL algorithms to MCL-enhanced versions of the same algor-

ithms. The MCL-enhanced RL algorithms maintained and monitored expectations

about such things as average reward per step, value of future rewards, and average

time to next reward. When these expectations were violated, they assessed the nature

of the violation and, using a simple decision tree, chose one of the available repairs.

These included: ignoring the problem, adjusting the learning parameter, or throwing

out the current action policy and starting over.

Performance rises sharply and levels o® until step 10,000 when the reward-

switching occurs. At that point, performance falls dramatically and then begins to

recover. However, the standard RL algorithms recover far more slowly and far less

completely than the MCL-enhanced versions (the higher curve) of the same algor-

ithms. In our experiments we found that the greater the degree of change in reward

(such as swapping rewards for penalties, and vice versa), the greater the bene¯ts

generated by MCL. See [Anderson et al., 2006a].
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This result was not surprising, given how RL algorithms work. But the next

domain was more of a challenge.

6.2. Tank game

Bolo is a multi-player tank game which takes place in a world that contains various

terrain types (roads, swamps, walls, etc.), refueling bases, and pillboxes. There are

three types of pillbox: neutral pillboxes ¯re on all tanks, dead pillboxes pose no threat

and can be captured to make them friendly, and friendly pillboxes ¯re only on other

players' tanks. An important strategy in Bolo is to capture pillboxes, make them

friendly, and then use them either o®ensively or defensively.

Bolo can be played by humans, but it can also be played by programs. Such

arti¯cial Bolo players tend to play quite poorly and are easily fooled when unexpected

complications arise (change of terrain, more dangerous pillboxes, etc.). Thus Bolo

provides a good challenge domain in which to test MCL.

Our MCL-enhanced Bolo player is controlled by a simple Hierarchical Task

Network (HTN) planner with primitive actions that ground out in controllers. It

maintains a variety of expectations, the primary one being that the tank it controls

will not be destroyed. Over time it learns from its mistakes, ¯rst discovering that its

performance is poor, and then using a form of trial-and error to ¯nd a way to improve.

In particular, repeated tank losses provoke test runs of various actions until one

works. The initial HTN allowed our player to locate and capture dead pillboxes.

However, it did not have a plan to deal with hostile pillboxes, which ¯re on the tank,

and so it was destroyed in its ¯rst such encounter. In one scenario, our MCL-

enhanced Bolo player was able to discover that ¯ring on pillboxes o®ered a solution to

the problem, even though it had no previous knowledge of the e®ect of that particular

action. More precisely, the MCL component searched through its past experience to

try to locate salient di®erences in the conditions under which it succeeded in taking

pillboxes, and those in which it failed. It found that only pillboxes with intact armor

managed to destroy the tank, so the next step was to see if it had any actions that

could reduce the armor of a pillbox. If it had known about an action that would do

that, it would have tried the action immediately. In one case we tested, it had no such

knowledge; so it used a heuristic to rank all its actions according to how likely they

were to have the desired e®ect, and then tested them until it found one that worked.

Note how MCL turns failure into opportunity: in each case the system learned more

about what e®ects its actions did and did not have, and in a manner organized to

support its ongoing mission. See [Anderson et al., 2008; Schmill et al., 2008].

6.3. Natural-language dialog

Natural language — and especially natural language human-computer dialog — is

arguably the most di±cult application we have explored to date. Natural language is

complex and ambiguous, and therefore, communication always contains an element

of uncertainty. To manage this uncertainty, human dialog partners continually
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monitor the conversation, their own comprehension, and the apparent comprehen-

sion of their interlocutor. Human partners elicit and provide feedback as the

conversation continues, and make conversational adjustments as necessary. We

contend that the ability to engage in this meta-dialog is the source of much of the

°exibility displayed by humans when they engage in conversation; see [Perlis et al.,

1998]. We have demonstrated that enhancing existing dialog systems with a version

of MCL that allows for meta-dialog exchanges improves performance.

For instance, in one speci¯c case tested, a user of the natural-language train-

control simulation TRAINS-96 [Ferguson et al., 1996] tells the system to \Send the

Boston train to New York". If there is more than one train in Boston, the system may

well choose the wrong one to send — the user may have in mind the train that runs

regularly to and from Boston and so might respond: \No, send the Boston train

to New York!" Whereas the original TRAINS-96 dialog system responds to this

apparently contradictory sequence of commands (Send, Do not send, Send) by once

again sending the very same train, our MCL-enhanced version of TRAINS notes the

anomaly (i.e., the contradiction in commands) and, by assessing the problem,

identi¯es a possible explanation in its choice of reference for \the Boston train". The

enhanced system then chooses a di®erent train the second time around, or if there are

no other trains in Boston, it will ask the user to specify the train by name. The details

of the implementation, as well as a speci¯c account of the reasoning required for each

of these steps, can be found in [Traum et al., 1999].

Our current dialog system, ALFRED, uses the MCL approach to resolve a broad

class of dialog anomalies. The system establishes and monitors a set of dialog

expectations related to time, content and feedback. For example, in a toy-train

domain, if the user says \Send the Metro to Boston", ALFRED notices that it does

not know the word \Metro" (a failure of the expectation that it will ¯nd input words

in its dictionary). ALFRED's ¯rst response is to try to determine what it can about

the unknown word. Since ALFRED knows the command \send" and its possible

arguments, it is able to determine that \Metro" is a train. If it cannot determine from

this which train the user is referring to, it will request speci¯c help from the user,

saying: \Which train is ‘Metro'?" Once the user tells the system that \Metro" is

another word for \Metroliner", it is able to correctly implement the user's request.

See [Josyula, 2005].

7. Fuller Tests of the RAH Hypothesis

The above examples of MCL at work are well and good. But as mentioned earlier, the

larger promise of the method is that of a single domain-independent MCL rather than

specially designed ad hoc ones for each application; see [Anderson et al., 2007a,

2007b; Schmill et al., 2007]. Toward that end, we are currently engaged in a more

ambitious project, in which an upgraded MCL will simultaneously be applied to three

distinct domains: NLP, virtual reconnaissance robots sending secure messages in a

virtual \AfghanWorld", and physical robots exploring a physical mock-up of the
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Martian surface. There are then three broad kinds of agents here: an upgraded

ALFRED for the NLP system, AfghanWorld security-sensitive robots, and Mars-

World exploration robots. A human communicates with ALFRED in English, and

ALFRED — when appropriate — translates and forwards commands to the various

robots and also receives and translates into English robotic replies. Each of the three

agent types will (eventually) be enhanced with the very sameMCL code, in a deliberate

attempt to assess MCL's adequacy to highly distinct agents and tasks.

Even if the above three-pronged study is wildly successful, much more remains to

be done. Fully general RAH should also be able to become host-and-domain speci¯c

over time, like the involuntary Finnish immigrant, adapting its expectations to its

host system and to its circumstances. But for this to occur, an agent will need

substantial infrastructure. For instance, as already stated, it will need a range of

trainable modules as well as appropriate training algorithms for them. It will also

need a well-organized memory so that it can assess its adaptations over long time-

periods, as well as progress on short-term tasks. With these and other additions, MCL

might \fuse" with its \body" (system) and become one uni¯ed agent, akin to a baby's

brain getting familiar with the baby's body. But our discussion so far has glossed over

a major issue that will form a central part of this next phase of work: inference.

It may have occurred to the reader that, despite much mention earlier on of

rationality and reasoning, little has been said here about how inference ¯ts into our

vision, other than the need for some version of reasoning that treats contradictions

\responsibly". But beyond this requirement, once a general-purpose MCL starts to

adapt to a host and domain, it will begin to develop a specialized knowledge base

upon which it must rely— that is upon which it must perform inference even in order

to determine whether an anomaly is occurring! This latter form of inference may well

be akin to traditional (consistent) formal modes (at least upto the point at which an

anomaly arises).

In fact, we have just such a formalism (active logic) and a reasoning engine based

on it. Active logic addresses three key needs here: it recognizes (direct) contradic-

tions, it has a real-time evolving representation of what time it is Now — as inference

goes on, and it can reason about— and even change— the meanings associated with

symbols (it has control over its own KR).

Interestingly, the second feature (real-time representation of evolving time) is key

to the other two: Anomalies often make themselves known via the presence of both

Expect(P) and Observe(�P ) in the knowledge base at a particular time t, and this

a®ords the logic engine the option of inferring at time tþ 1 that such an anomaly has

occurred and is to be treated as such, rather than inherit those two separate \facts"

from time t; and if a symbol is being used with one meaning and later an anomaly

arises, one possible assessment is that this symbol is now being used (perhaps by a

dialog partner) with a di®erent meaning so that the logic can adopt the new usage for

the time being (put di®erently, parsing can come under control of the logic and thus

be sensitive to changing knowledge).
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With respect to anomalies, both active logic and more traditional logics (even

non-monotonic ones) usually represent these as P and �P : one tends to believe that

things will be as expected, and one also tends to believe one's senses. Belief revision

treats one of these (say P) as already a belief within a given logical theory, and the

latter as a newcomer to be factored smoothly into the former by means of judicious

excisions to preserve consistency.

But often one simply does not know whether to trust the newcomer observation

over the existing expectation: further input might be required to make that call, and

also it might not be important to adjudicate between them at all if they are not critical

to one's concerns. Hence the need for a logic that notices such a contradiction (at time t)

and that is wary enough (at times subsequent to t) not to foolishly trust both con-

tradictands (unlike monotonic logics), but that is then able to reason about (assess)

their importance, and if needed then guide one or more possible resolutions into place

(of course, notice, assess and guide correspond precisely to items (ii)�(iv) of the ¯ve

parts of MCL). See [Anderson et al., 2004]. Active logic is then a form of paraconsistent

logic; but it di®ers from most in its treatment of evolving time (which is what allows it

to notice, reason about, and e®ect a response to contradictions, rather than the more

usual paraconsistent style of simply maneuvering around them).

Thus active logic is central to the theme here. Nevertheless, most of our work on

MCL to date has employed active logic mostly as a conceptual motivation, but not

built in as an actual inference engine. Our next planned phase of development

will include an active-logic engine as part and parcel of (a general-purpose but

host-adaptive) MCL.

8. Conclusion

We have presented an approach to the brittleness problem motivated by consider-

ations from biology and psychology. Several examples of implementations based on

this idea were discussed; a more ambitious current study was discussed. If this line of

investigation holds to its promise, automated °exible cognition may be closer than we

think.
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