The Soundness of Bugs is What Matters
(Position Statement)

Patrice Godefroid
Bell Laboratories, Lucent Technologies

There is one thing stronger than all the armies in the world;
and that is an idea whose time has come. — Victor Hugo

In this short note!, I argue that most program anal-
ysis and verification research seems confused about the
ultimate goal of software defect detection.

The Goal is to Find Bugs. The main practi-
cal usefulness of software defect detection is the ability
to find bugs, not to report that “no bugs have been
found”. Unfortunately, the latter is sometimes con-
fused for a correctness proof. In practice, there is no
such thing as a complete correctness proof, since even
a sound analysis implemented flawlessly in a bug-free
tool is bound to check only a specific set of properties.

So, Why May-Analysis? Yet, most defect detec-
tion tools are surprisingly based on program verifica-
tion ideas and make use of conservative abstractions.
By design, such tools detect bugs that may happen.
The price to pay for this questionable design decision
is enormous: such tools are doomed to report (many)
false alarms, i.e., unsound bugs. Despite progress on
limiting false alarms (e.g., by using more precise sym-
bolic execution or alarm classification techniques), any
may program analysis is bound to generate false alarms
and hence to require (significant) human effort.

The Importance of Testing. This may explain
why testing has been a multi-billion dollar industry for
many years, while automated code-inspection is merely
emerging as a multi-million dollar business. Today, sev-
eral orders of magnitude more effort (people, money,
time) is spent on testing than on code inspection (man-
ual and automated). The reason is simple: testing finds
sound bugs while may-analysis does not.

A Paradox. If defect detection is the goal, why are
so many defect detection tools based on may-analysis?

Sources of Imprecision. It is important to dis-
tinguish two distinct sources of imprecision in program
analysis: (a) since we want to analyze open programs,
we need realistic environment assumptions; (b) using

IWritten in a provocative style for entertainment purposes —
please take this note with the grain of salt it deserves.

abstraction implies approximate reasoning. While (a)
is a hard problem (i.e., often requires user assistance),
(b) is simply an engineering issue (see below).

Alternatives. After realizing that “The Soundness
of Bugs is What Matters”, alternatives emerge. Here
are three concrete examples, drawn from my own work:
1. VeriSoft is a software model checker for languages
like C and C++ which uses a run-time scheduler for
systematically driving the executions of a software im-
plementation through its state space (no abstraction
is used). Since this search is typically incomplete,
VeriSoft sacrifices, by design, soundness of correctness
proofs (“soundness”) for soundness of bugs.

2. Must abstractions are abstractions geared to-
wards finding errors, which dualize may abstractions
geared towards proving correctness. With combined
may/must abstractions, both correctness proofs and
bugs found are guaranteed to be sound.

3. DART (Directed Automated Random Testing) is
a new approach and tool (see PLDI’2005) for auto-
matically testing software (i.e., no test driver needed)
that combines (1) automated interface extraction from
source code, (2) random testing at that interface,
and (3) dynamic test generation to direct executions
along alternative program paths. Although DART uses
imprecise abstraction techniques, all bugs found by
DART are guaranteed to be sound, by design.

Role of “Soundness”. In my opinion, “sound-
ness” (to find all potential bugs of a particular type) is
important not for exhaustiveness reasons but only for
efficiency reasons: the ability to prove the absence of
bugs can be used to stop a dual search for sound bugs.

Conclusion. The May and the Must are the Yin
and the Yan of program analysis. Yet, past research in
program analysis and verification has tilted the balance
towards the May and hence prevented a wider adoption
of program analysis tools. I suggest to repair this im-
balance by restoring the proper role of Must, i.e., to
put the soundness of bugs first.



