
False Positives Over Time: A Problem in Deploying Static Analysis Tools
Andy Chou, Coverity Inc., andy@coverity.com

All source code analyzers generate false positives, or issues which are reported but are not really defects. False
positives accumulate over time because developers fix real defects but tend to leave false positives in the source
code. Several methods are available to mitigate this problem, some of which are shown in the following table
(especially important advantages or disadvantages are labeled with (*)):

Technique Advantages Drawback(s)
Add annotations to the
source code that indicate
the location of false
positives, which the tool
can then use to suppress
messages.

• Persistent across code changes
and renamed files (*)

• Seamlessly propagate between
different code branches via
version control systems

• Also works for real bugs that
users don’t want to fix

• Some users are unwilling to add
annotations to source code, even in
comments (*)

• Remain in the code even if analysis is
changed to not find the false positives

• Adding annotations to third party code is
usually undesirable

Allow users to override
analysis decisions that lead
to false positives.

• Eliminates entire classes of false
positives with same root cause (*)

• Flexible: can be done using source
annotations or tool configuration

• Difficult for users to understand (*)
• Changing analysis decisions can have

unexpected side-effects, such as missing
other bugs

Change the source code to
get the tool to “shut up.”

• No changes to tool • Not always obvious how to change the code
to make the false positive go away (*)

• Might not be possible to change the code in
an acceptable way

Stop using the tool, or turn
off specific types of checks
causing the false positives.

• Simple
• Minimize cost of dealing with

false positive-prone analyses (*)

• Lost opportunity to discover real bugs

Rank errors using some
criteria, or otherwise use
statistical information to
identify likely bugs vs.
likely false positives.

• (mostly) Automatic
• Adapts to application-specific

coding conventions (*)

• Does not deal with all false positives
• Larger development organizations want to

distribute bugs to be inspected; each
developer gets a small number of bugs to
inspect, making ranking less useful (*)

• Users don’t like deciding when to stop;
they fear missing bugs while
simultaneously loathing false positives.

• Users usually want “rank by severity” not
“rank by false positive rate”

Annotate the output of the
tool to mark false positives,
then use this information in
future runs to avoid re-
reporting the same issues.

• No changes to code
• Works for almost any type of

static analysis (*)

• Need heuristics to determine when false
positives are the “same” in the presence of
code changes (*)

• False positives may re-appear depending on
the stability of the merging heuristic (*)

These are not the only ways of attacking this problem. Very little work has been done on classifying and evaluating
these techniques, yet they are critical to the adoption of static analysis in industry. Some observations from Coverity
customers include:

• Users are unwilling to add annotations unless the tool has already shown to be an efficient bug-finder.
• Users are usually unwilling to change source code to eliminate false positive warnings.
• Ranking errors by “likely to be a bug” can help pull real bugs to the forefront, but users have a hard time

deciding where the cutoff should be. Users also dislike having no cutoff at all, because they will often
query for bugs in a specific location of interest, where only a handful of results are found and ranking is not
useful. Ranking by estimated severity of bug is more often useful.

• If users annotate tool output so the tool gains “memory,” the heuristic used to determine that previous
results are the “same” as new results must be robust. Users very much dislike false positives coming back.

