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ABSTRACT 
A corpus of 291 small C-program test cases was developed to 
evaluate static and dynamic analysis tools designed to detect 
buffer overflows. The corpus was designed and labeled using a 
new, comprehensive buffer overflow taxonomy. It provides a 
benchmark to measure detection, false alarm, and confusion rates 
of tools, and also suggests areas for tool enhancement.  
Experiments with five tools demonstrate that some modern static 
analysis tools can accurately detect overflows in simple test cases 
but that others have serious limitations. For example, PolySpace 
demonstrated a superior detection rate, missing only one 
detection.  Its performance could be enhanced if extremely long 
run times were reduced, and false alarms were eliminated for 
some C library functions. ARCHER performed well with no false 
alarms whatsoever. It could be enhanced by improving inter-
procedural analysis and handling of C library functions. Splint 
detected significantly fewer overflows and exhibited the highest 
false alarm rate.  Improvements in loop handling and reductions 
in false alarm rate would make it a much more useful tool.  UNO 
had no false alarms, but missed overflows in roughly half of all 
test cases.  It would need improvement in many areas to become a 
useful tool.  BOON provided the worst performance. It did not 
detect overflows well in string functions, even though this was a 
design goal. 

Categories and Subject Descriptors 
D.2.4 [Software Engineering] Software/Program Verification, 
D.2.5 [Software Engineering] Testing and Debugging, K.4.4 
[Computers and Society] Electronic Commerce Security. 

General Terms 
Measurement, Performance, Security, Verification. 

Keywords 
Security, buffer overflow, static analysis, evaluation, exploit, test, 
detection, false alarm, source code. 

1. INTRODUCTION 
Ideally, developers would discover and fix errors in programs 
before they are released.  This, however, is an extremely difficult 
task. Among the many approaches to finding and fixing errors, 
static analysis is one of the most attractive. The goal of static 

analysis is to automatically process source code and analyze all 
code paths without requiring the large numbers of test cases used 
in dynamic testing. Over the past few years, static analysis tools 
have been developed to discover buffer overflows in C code. 

Buffer overflows are of particular interest as they are potentially 
exploitable by malicious users, and have historically accounted 
for a significant percentage of the software vulnerabilities 
published each year [18, 20], such as in NIST’s ICAT Metabase 
[9], CERT advisories [1], Bugtraq [17], and other security forums. 
Buffer overflows have also been the basis for many damaging 
exploits, such as the Sapphire/Slammer [13] and Blaster [15] 
worms. 

A buffer overflow vulnerability occurs when data can be written 
outside the memory allocated for a buffer, either past the end or 
before the beginning.  Buffer overflows may occur on the stack, 
on the heap, in the data segment, or the BSS segment (the 
memory area a program uses for uninitialized global data), and 
may overwrite from one to many bytes of memory outside the 
buffer.  Even a one-byte overflow can be enough to allow an 
exploit [10].  Buffer overflows have been described at length in 
many papers, including [20], and many descriptions of exploiting 
buffer overflows can be found online. 

This paper focuses on understanding the capabilities of static 
analysis tools designed to detect buffer overflows in C code. It 
extends a study by Zitser [20, 21] that evaluated the ability of 
several static analysis tools to detect fourteen known, historical 
vulnerabilities (all buffer overflows) in open-source software.  
The Zitser study first found that only one of the tools could 
analyze large, open-source C programs. To permit an evaluation, 
short, but often complex, model programs were extracted from the 
C programs and used instead of the original, much longer 
programs.  Five static analysis tools were run on model programs 
with and without overflows: ARCHER [19], BOON [18], Splint 
[6, 12], UNO [8], and PolySpace C Verifier [14].  All use static 
analysis techniques, including symbolic analysis, abstract 
interpretation, model checking, integer range analysis, and inter-
procedural analysis.  Results were not encouraging.  Only one of 
the five tools performed statistically better than random guessing.  
Not only did the tools fail to detect a significant number of 
overflows, but they also produced a large number of false alarms, 
indicating overflows where none actually existed.  Equally 
discouraging were the confusion rates, reflecting the number of 
cases where a tool reports an error in both the vulnerable and 
patched versions of a program. 

 
2005 Workshop on the Evaluation of Software Defect Detection Tools 
2005,June 12, Chicago, IL 

 

*This work was sponsored by the Advanced Research and Development 
Activity under Force Contract F19628-00-C-0002. Opinions, interpretations, 
conclusions, and recommendations are those of the authors and are not 
necessarily endorsed by the United States Government. 

 

mailto:KENDRA@LL.MIT.EDU


Given the small number of model programs, and the fact that 
buffer overflows were embedded in complex code, it is difficult to 
draw conclusions concerning why the tools performed poorly.  
This paper describes a follow-on analysis of the five tools 
evaluated in the previous study.  It’s simpler but broader, and 
more diagnostic test cases are designed to determine specific 
strengths and weaknesses of tools.  Although this research 
evaluated only static analysis tools, it provides a taxonomy and 
test suite useful for evaluating dynamic analysis tools as well. 

2. BUFFER OVERFLOW TAXONOMY 
Using a comprehensive taxonomy makes it possible to develop 
test cases that cover a wide range of buffer overflows and make 
diagnostic tool assessments. Zitser developed a taxonomy 
containing thirteen attributes [20].  This taxonomy was modified 
and expanded to address problems encountered with its 
application, while still attempting to keep it small and simple 
enough for practical application.  The new taxonomy consists of 
twenty-two attributes listed in Table 1. 

Table 1. Buffer Overflow Taxonomy Attributes 

Attribute N ttribute Name umber A
1 Write/Read 
2 Upper/Lower Bound 
3 Data Type 
4 Memory Location 
5 Scope 
6 Container 
7 Pointer 
8 Index Complexity 
9 Address Complexity 
10 Length/Limit Complexity 
11 Alias of Buffer Address 
12 Alias of Buffer Index 
13 Local Control Flow 
14 Secondary Control Flow 
15 Loop Structure 
16 Loop Complexity 
17 Asynchrony 
18 Taint 
19 Runtime Environment Dependence 
20 Magnitude 
21 Continuous/Discrete 
22 Signed/Unsigned Mismatch 

 

Details on the p ble values for each attribute are available in 
[11], and are sum arized below.  For each attribute, the possible 
values are listed in ascending order (i.e. the 0 value first). 

Write/Read: des  the type of memory access (write, read).  
While detecting illegal writes is probably of more interest in 
preventing buffer overflow exploits, it is possible that illegal 
reads could allow unauthorized access to information or could 
constitute one operation in a multi-step exploit. 

pper/Lower Bound: describes which buffer bound is violated 
the term “buffer overflow” suggests an 

ers; buffers of all 

ffers (e.g., those allocated by calling a malloc 

 and 

 scope describes a buffer that is 

t it is possible to use a pointer 

expression, 

ossi
m

cribes

U
(upper, lower).  While 
access beyond the upper bound of a buffer, it is equally possible 
to underflow a buffer, or access below its lower bound (e.g. 
buf[-1]). 

Data Type: indicates the type of data stored in the buffer 
(character, integer, floating point, wide character, pointer, 
unsigned character, unsigned integer).  Character buffers are often 
manipulated with unsafe string functions in C, and some tools 
may focus on detecting overflows of those buff
types may be overflowed, however, and should be analyzed. 

Memory Location: indicates where the buffer resides (stack, 
heap, data region, BSS, shared memory).  Non-static variables 
defined locally to a function are on the stack, while dynamically 
allocated bu
function) are on the heap.  The data region holds initialized global 
or static variables, while the BSS region contains uninitialized 
global or static variables.  Shared memory is typically allocated, 
mapped into and out of a program’s address space, and released 
via operating system specific functions.  While a typical buffer 
overflow exploit may strive to overwrite a function return value 
on the stack, buffers in other locations have been exploited
should be considered as well. 

Scope: describes the difference between where the buffer is 
allocated and where it is overrun (same, inter-procedural, global, 
inter-file/inter-procedural, inter-file/global).  The scope is the 
same if the buffer is allocated and overrun within the same 
function.  Inter-procedural scope describes a buffer that is 
allocated in one function and overrun in another function within 
the same file.  Global scope indicates that the buffer is allocated 
as a global variable, and is overrun in a function within the same 
file.  The scope is inter-file/inter-procedural if the buffer is 
allocated in a function in one file, and overrun in a function in 
another file.  Inter-file/global
allocated as a global in one file, and overrun in a function in 
another file.  Any scope other than “same” may involve passing 
the buffer address as an argument to another function; in this case, 
the Alias of Buffer Address attribute must also be set accordingly.  
Note that the test suite used in this evaluation does not contain an 
example for “inter-file/global.”   

Container: indicates whether the buffer resides in some type of 
container (no, array, struct, union, array of structs, array of 
unions).  The ability of static analysis tools to detect overflows 
within containers (e.g., overrunning one array element into the 
next, or one structure field into the next) and beyond container 
boundaries (i.e., beyond the memory allocated for the container as 
a whole) may vary according to how the tools model these 
containers and their contents. 

Pointer: indicates whether the buffer access uses a pointer 
dereference (no, yes).  Note tha
dereference with or without an array index (e.g. *pBuf or 
(*pBuf)[10]); the Index Complexity attribute must be set 
accordingly.  In order to know if the memory location referred to 
by a dereferenced pointer is within buffer bounds, a code analysis 
tool must keep track of what pointers point to; this points-to 
analysis is a significant challenge. 

Index Complexity: indicates the complexity of the array index 
(constant, variable, linear expression, non-linear 
function return value, array contents, N/A).  This attribute applies 
only to the user program, and is not used to describe how buffer 
accesses are performed inside C library functions. 

 



Address Complexity: describes the complexity of the address or 
pointer computation (constant, variable, linear expression, non-
linear expression, function return value, array contents).  Again, 
this attribute is used to describe the user program only, and is not 

 “N/A” is used 

 that if a C library function 

hat pointers point to is a 

e, and those within recursive functions 

des the overflow 

to directly containing the 

 > 10) 

Only cts whether or not the overflow occurs 
is cl s, if a preceding control flow construct 
has no bearing on whether or not the subsequent overflow occurs, 
it is not considered to be secondary control flow, and this attribute 
would be assigned the value “none.”   

The rates nested control flow.  The inner 
if s s the overflow, and we assign the 
valu ontrol Flow attribute.  The outer if 
statement represents secondary control flow, and we assign the 
valu Secondary Control Flow attribute as well. 

Som -sensitive analyses, and 
som ing 
approximations in order to keep the problem tractable and the 

applied to C library function internals. 

Length/Limit Complexity: indicates the complexity of the length 
or limit passed to a C library function that overruns the buffer 
(N/A, none, constant, variable, linear expression, non-linear 
expression, function return value, array contents). 
when the test case does not call a C library function to overflow 
the buffer, whereas “none” applies when a C library function 
overflows the buffer, but the function does not take a length or 
limit parameter (e.g. strcpy).  The remaining attribute values 
apply to the use of C library functions that do take a length or 
limit parameter (e.g. strncpy).  Note
overflows the buffer, the overflow is by definition inter-file/inter-
procedural in scope, and involves at least one alias of the buffer 
address.  In this case, the Scope and Alias of Buffer Address 
attributes must be set accordingly.  Code analysis tools may need 
to provide their own wrappers for or models of C library functions 
in order to perform a complete analysis. 

Alias of Buffer Address: indicates if the buffer is accessed 
directly or through one or two levels of aliasing (no, one, two).  
Assigning the original buffer address to a second variable and 
subsequently using the second variable to access the buffer 
constitutes one level of aliasing, as does passing the original 
buffer address to a second function.  Similarly, assigning the 
second variable to a third and accessing the buffer through the 
third variable would be classified as two levels of aliasing, as 
would passing the buffer address to a third function from the 
second.  Keeping track of aliases and w
significant challenge for code analysis tools. 

Alias of Buffer Index: indicates whether or not the index is 
aliased (no, one, two, N/A).  If the index is a constant or the 
results of a computation or function call, or if the index is a 
variable to which is directly assigned a constant value or the 
results of a computation or function call, then there is no aliasing 
of the index.  If, however, the index is a variable to which the 
value of a second variable is assigned, then there is one level of 
aliasing.  Adding a third variable assignment increases the level of 
aliasing to two.  If no index is used in the buffer access, then this 
attribute is not applicable. 

Local Control Flow: describes what kind of program control 
flow most immediately surrounds or affects the overflow (none, 
if, switch, cond, goto/label, setjmp/longjmp, function pointer, 
recursion).  For the values “if”, “switch”, and “cond”, the buffer 
overflow is located within the conditional construct.  “Goto/label” 
signifies that the overflow occurs at or after the target label of a 
goto statement.  Similarly, “setjmp/longjmp” means that the 
overflow is at or after a longjmp address.  Buffer overflows that 
occur within functions reached via function pointers are assigned 
the “function pointer” valu
receive the value “recursion”.  The values “function pointer” and 
“recursion” necessarily imply a global or inter-procedural scope, 
and may involve an address alias.  The Scope and Alias of Buffer 
Address attributes should be set accordingly.   

Control flow involves either branching or jumping to another 
context within the program; hence, only path-sensitive code 

analysis can determine whether or not the overflow is actually 
reachable.  A code analysis tool must be able to follow function 
pointers and have techniques for handling recursive functions in 
order to detect buffer overflows with the last two values for this 
attribute. 

Secondary Control Flow: has the same values as Local Control 
Flow, the difference being the location of the control flow 
construct.  Secondary Control Flow either prece
or contains nested, local control flow.  Some types of secondary 
control flow may occur without any local control flow, but some 
may not.  The Local Control Flow attribute should be set 
accordingly.   

The following example illustrates an if statement that precedes 
the overflow and affects whether or not it occurs.  Because it 
precedes the overflow, as opposed 
overflow, it is labeled as secondary, not local, control flow. 

int main(int argc, char *argv[]) 
{ 
  char buf[10]; 
  int i = 10; 
 
  if (i
  { 
    return 0; 
  } 
 
  /*  BAD  */ 
  buf[i] = 'A'; 
 
  return 0; 
} 

ntrol flow that affe co
assified.  In other word

following example illust
ement directly containtat

e “if” to the Local C

e “if” to the 

int main(int argc, char *argv[]) 
{ 
  char buf[10]; 
  int i = 10; 
 
  if (sizeof buf <= 10) 
  { 
    if (i <= 10) 
    { 
      /*  BAD  */ 
      buf[i] = 'A'; 
    } 
}   

 
  return 0; 
 }

e code analysis tools perform path
e do not.  Even those that do often must make simplify

 



solu y mean throwing away some 
infor ng precision, at points in the 
prog  Test cases containing 
seco ntrol flow may highlight the capabilities or 
limitations of these varying techniques. 

Loo ribes the type of loop construct within 
which the overflow occurs (none, standard for, standard do-while, 

    i++; 
(i<11); 

Standard 

’; 
;  

           buf[i++] = ‘A’;  

itate secondary control flow (such 
as additional if s e cases, the Secondary Control 

tr ngly.  Any value other than 
“none” for this attribute requires that the Loop Complexity 
attribute be set to something other than “not applicable.”   

of iteratio ia that depend on runtime 
ible or impractical for 

 
Different tools have different methods for handling loops; for 

The functions that may be used 

 influenced 

aintable.”  These may be the most crucial 

n an off-by-

 overflow sizes were chosen with 

 rely 

tion scalable.  This ma
mation, and thereby sacrifici

e previous branches rejoin. ram wher
condary 

p Structure: desc

standard while, non-standard for, non-standard do-while, non-
standard while).  A “standard” loop is one that has an 
initialization, a loop exit test, and an increment or decrement of a 
loop variable, all in typical format and locations.  A “non-
standard” loop deviates from the standard loop in one or more of 
these areas.  Examples of standard for, do-while, and while 
loops are shown below, along with one non-standard for loop 
example: 

Standard for loop:  
for (i=0; i<11; i++)  
{ 

           buf[i] = ‘A’;  
} 

Standard do-while loop:  
i=0; 
do  
{ 

         buf[i] = ‘A’; 
     

} while 

while loop: 
 i=0; 

ile (i<11)  wh
{ 

         buf[i] = ‘A
i++     

} 

A non-standard for loop:  
 i<11; )  for (i=0;

{ 

} 
 

Non-standard loops may necess
tatements).  In thes

Flow at ibute should be set accordi

Loops may execute for a large number or even an infinite number 
 or may have exit criterns,

conditions; therefore, it may be imposs
static ana or analyze loops to completion. lysis tools to simulate 

example, some may attempt to simulate a loop for a fixed number 
of iterations, while others may employ heuristics to recognize and 
handle common loop constructs.  The approach taken will likely 
affect a tool’s capabilities to detect overflows that occur within 
various loop structures. 

Loop Complexity: indicates how many loop components 
(initialization, test, increment) are more complex than the 
standard baseline of initializing to a constant, testing against a 
constant, and incrementing or decrementing by one (N/A, none, 

one, two, three).  Of interest here is whether or not the tools 
handle loops with varying complexity in general, rather than 
which particular loop components are handled or not. 

Asynchrony: indicates if the buffer overflow is potentially 
obfuscated by an asynchronous program construct (no, threads, 
forked process, signal handler).  
to realize these constructs are often operating system specific (e.g. 
on Linux, pthread functions; fork, wait, and exit; and 
signal).  A code analysis tool may need detailed, embedded 
knowledge of these constructs and the O/S-specific functions in 
order to properly detect overflows that occur only under these 
special circumstances. 

Taint: describes whether a buffer overflow may be
externally (no, argc/argv, environment variables, file read or 
stdin, socket, process environment).   The occurrence of a buffer 
overflow may depend on command line or stdin input from a user, 
the value of environment variables (e.g. getenv), file contents  
(e.g. fgets, fread, or read), data received through a socket or 
service (e.g. recv), or properties of the process environment, 
such as the current working directory (e.g. getcwd).  All of these 
can be influenced by users external to the program, and are 
therefore considered “t
overflows to detect, as it is ultimately the ability of the external 
user to influence program operation that makes exploits possible.  
As with asynchronous constructs, code analysis tools may require 
detailed modeling of O/S-specific functions in order to properly 
detect related overflows.  Note that the test suite used in this 
evaluation does not contain an example for “socket.” 

Runtime Environment Dependence: indicates whether or not 
the occurrence of the overrun depends on something determined 
at runtime (no, yes).  If the overrun is certain to occur on every 
execution of the program, it is not dependent on the runtime 
environment; otherwise, it is. 

Magnitude: indicates the size of the overflow (none, 1 byte, 8 
bytes, 4096 bytes).  “None” is used to classify the “OK” or 
patched versions of programs that contain overflows.  One would 
expect static analysis tools to detect buffer overflows without 
regard to the size of the overflow, unless they contai
one error in their modeling of library functions.  The same is not 
true of dynamic analysis tools that use runtime instrumentation to 
detect memory violations; different methods may be sensitive to 
different sizes of overflows, which may or may not breach page 
boundaries, etc.  The various
future dynamic tool evaluations in mind.  Overflows of one byte 
test both the accuracy of static analysis modeling, and the 
sensitivity of dynamic instrumentation.  Eight and 4096 byte 
overflows are aimed more exclusively at dynamic tool testing, 
and are designed to cross word-aligned and page boundaries. 

Continuous/Discrete: indicates whether the buffer overflow 
jumps directly out of the buffer (discrete) or accesses consecutive 
elements within the buffer before overflowing past the bounds 
(continuous).  Loop constructs are likely candidates for containing 
continuous overflows.  C library functions that overflow a buffer 
while copying memory or string contents into it demonstrate 
continuous overflows.  An overflow labeled as continuous should 
have the loop-related attributes or the Length Complexity 
attribute (indicating the complexity of the length or limit passed 
to a C library function) set accordingly.  Some dynamic tools

 



on “canaries” at buffer boundaries to detect continuous overflows 
[5], and therefore may miss discrete overflows. 

Signed/Unsigned Mismatch: indicates if the buffer overflow is 
caused by using a signed or unsigned value where the opposite is 
expected (no, yes).  Typically, a signed value is used where an 
unsigned value is expected, and gets interpreted as a very large 
unsigned or positive value, causing an enormous buffer overflow. 

This taxonomy is specifically designed for developing simple 
diagnostic test cases. It may not fully characterize complex buffer 
overflows that occur in real code, and specifically omits complex 
details related to the overflow context.  

For each attribute (except for Magnitude), the zero value is 
assigned to the simplest or “baseline” buffer overflow, shown 
below: 

int main(int argc, char *argv[]) 
{ 
  char buf[10]; 
  /*  BAD  */ 
  buf[10] = 'A'; 
  return 0; 
} 
 

Each test case includes a comment line as shown with the word 
“BAD” 
line where an overflow m

or “OK.” This comment is placed on the line before the 
an 

over  program is 
a w he upper bound of a stack-based 
character buffer that is defined and overflowed within the same 
func t lie within another container, is 
addr xed with a constant.  No C library 
func ess the buffer, the overflow is not within 
any ditional or complicated control flows or asynchronous 

y Classification: 0000000000000000000000 */ 

  ADDRESS COMPLEXITY      0 constant 
LENGTH COMPLEXITY         0 N/A 

S          
     

ROL OW 
L FL  0 

RUCTURE            
EXIT             

NY             

 0 
erflow 

  te 

Whi a airs co ting of a bad 
prog rogram evaluation 
uses ur sions of each test case 
correspond to the four possible values of the Magnitude attribute; 
one no flow), while 
the r ov lows o and 
4096 u  and la ows. 

3. ST SUITE 

Ideally, the test suite would have at least one instance of each 
that could be described by the taxonomy.  

t cases. 

s were also corrected based on initial 

ight occur and it indicates whether 
 does occur. The buffer access in the baselineflow

rite operation beyond t

tion.  The buffer does no
 is indeessed directly, and

 is used to acction
nco

program constructs, and does not depend on the runtime 
environment.  The overflow writes to a discrete location one byte 
beyond the buffer boundary, and cannot be manipulated by an 
external user.  Finally, it does not involve a signed vs. unsigned 
type mismatch. 

Appending the value digits for each of the twenty-two attributes 
forms a string that classifies a buffer overflow, which can be 
referred to during results analysis.  For example, the sample 
program shown above is classified as 
“0000000000000000000100.”  The single “1” in this string 
represents a “Magnitude” attribute indicating a one-byte 
overflow.  This classification information appears in comments at 
the top of each test case file, as shown in the example below: 

/* Taxonom
 
/* 
 *  WRITE/READ  0 write 
 *  WHICH BOUND  0 upper 
 *  DATA TYPE  0 char 
 *  MEMORY LOCATION 0 stack 
 *  SCOPE   0 same 
 *  CONTAINER  0 no 
 *  POINTER   0 no 
 *  INDEX COMPLEXITY 0 constant 
 *
 *  

 *  ADDRESS ALIA    0 none 
 *  INDEX ALIAS          0 none 
 *  LOCAL CONT  FL 0 none 
 *  SECONDARY CONTRO OW none 
 *  LOOP ST 0 no 
 *  LOOP COMPL Y 0 N/A
 *  ASYNCHRO    0 no 
 *  TAINT                       0 no 
 *  RUNTIME ENV. DEPENDENCE no 
 *  MAGNITUDE                 0 no ov
 *  CONTINUOUS/DISCRETE 0 discre
 *  SIGNEDNESS                0 no 
 */ 
 

le the Zitser test cases were progr m p nsis
ram and a corresponding patched p , this 
 program quadruplets.  The fo ver

of these represents the patched program (  over
remaining three indicate buffe erf f one, eight, 
 bytes denoted as minimum, medi m, rge overfl

TE
A full discussion of design considerations in creating test cases is 
provided in [11].  Goals included avoiding tool bias; providing 
samples that cover the taxonomy; measuring detections, false 
alarms, and confusions; naming and documenting test cases to 
facilitate automated scoring and encourage reuse; and maintaining 
consistency in programming style and use of programming 
idioms. 

possible buffer overflow 
Unfortunately, this is completely impractical.  Instead, a “basic” 
set of test cases was built by first choosing a simple, baseline 
example of a buffer overflow, and then varying its characteristics 
one at a time.  This strategy results in taxonomy coverage that is 
heavily weighted toward the baseline attribute values. Variations 
were added by automated code-generation software that produces 
C code for the test cases to help insure consistency and make it 
easier to add tes

Four versions of 291 different test cases were generated with no 
overflow and with minimum, medium, and large overflows.  Each 
test case was compiled with gcc, the GNU C compiler [7], on 
Linux to verify that the programs compiled without warnings or 
errors (with the exception of one test case that produces an 
unavoidable warning).  Overflows were verified using CRED, a 
fine-grained bounds-checking extension to gcc that detects 
overflows at run time [16], or by verifying that the large overflow 
caused a segfault. A few problems with test cases that involved 
complex loop condition
results produced by the PolySpace tool. 

4. TEST PROCEDURES 
The evaluation consisted of analyzing each test case (291 
quadruplets), one at a time using the five static analysis tools 
(ARCHER, BOON, PolySpace, Splint, and UNO), and collecting 
tool outputs. Tool-specific Perl programs parsed the output and 
determined whether a buffer overflow was detected on the line 
immediately following the comment in each test case.  Details of 

 



the test procedures are provided in [11].  No annotations were 
added and no modifications were made to the source code for any 
tool. 
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s, while the false alarm rate 
in the patched 

w well a tool can 

 test cases where tool reports overflow  
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ctions.  
s ARCHER 

roduced none.  Splint and UNO each detected roughly half of the 
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false alarms, while a 

 cases 
in 

confusion rate was 
 

Since BOON does not report line
automated tabulation cannot validate that the reported error 
corresponds to the commented buffer access in the test case file.  
Instead, it assumes that any reported error is a valid detection.  
Therefore, BOON detections and false alarms were further 
inspected manually to verify their accuracy, and some were 
dismissed (two detections and two false alarms) since they did not 
refer to the buffer access in question. 

Special handling was required for PolySpace in cases where the 
buffer 
the error in the library function itself, rather than on the line in the 
test case file where the function is called.  Therefore, the results 
tabulator looks for errors reported in the called library function 
and counts those detections irrespective of the associated line 
number.  Additionally, one test case involving wide characters 
required additional command-line options to work around errors 
reported when processing wctype.h. 

5. RESULTS AND ANALYSIS 
All five static analysis tools performed the same regardless of 
overflow size (this would not necessarily hold for dynamic 
analysis).  To simplify the discussion, results for the three 
magnitudes of overflows are thus reported as results for “bad” test 
cases as a whole. 
Table 2 shows the performance metrics computed for each tool.  
The detection rate indicates how well a tool detects the known 
buffer overflows in the bad program
indicates how often a tool reports a buffer overflow 
programs.  The confusion rate indicates ho
distinguish between the bad and patched programs.  When a tool 
reports a detection in both the patched and bad versions of a test 
case, the tool has demonstrated “confusion.”  The formulas used 
to compute these three metrics are shown below: 

            #
                            in bad version 

detection rate =     ------------------------------------------------ 
                                    # test cases tool evaluated 
 

              # test cases where tool reports overflow  
                           in patched version 

false alarm rate =  ------------------------------------------------ 
                                    # of test cases tool evaluated 
 

             # test cases where tool reports overflow 
ed version      in both bad and patch

confusion rate =   ------------------------------------------------- 
verflow                               # test cases where tool reports o

                                           in bad version  

n Table 2, ARCHER and PolySpace both have det
eeding 90%.  PolySpace’s detect

perfect, missing only one out of the 291 possible dete
PolySpace produced seven false alarms, wherea
p

. Splint, however, produced a substantial num
 UNO produced none.  Splint also exhibited 

fairly high confusion rate. In over twenty percent of the
where it properly detected an overflow, it also reported an error 
the patched program.  PolySpace’s 
substantially lower, while the other three tools had no confusions. 
BOON’s detection rate across the test suite was extremely low. 

Table 2. Overall Performance on Basic Test Suite (291 cases) 

Tool 
Detection 
Rate 

False Alarm 
Rate 

Confusion 
Rate 

ARCHER 90.7% 0.0% 0.0% 
BOON 0.7% 0.0% 0.0% 
PolySpace 99.7% 2.4% 2.4% 
Splint 56.4% 12.0% 21.3% 
UNO 51.9% 0.0% 0.0% 
 

It is important to note that it was not necessarily
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Figure 1 presents a plot of detection rate vs. false alarm rate for 
each tool.  Each tool’s performance is plotted with a single data 
point representing detection and false alarm percentages.  The 
diagonal line represents the hypothetical performance of a random 
guesser that decides with equal probability if each commented 
buffer access in the test programs results in an overflow or not.  
The difference between a tool’s detection rate and the random 
guesser’s is only statistically significant if it lies more than two 
standard deviations (roughly 6 percentage points when the 
detection rate is 50%) away from the random
same false alarm rate.  In this evaluation, every tool except 
BOON performs significantly better than a random guesser. In 
Zitser’s evaluation [20], only PolySpace was significantly better.  
This difference in performance reflects the simplicity of the 
diagnostic test cases. 
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Figure 1. False Alarm and Detection Rates per Tool 

 



Since PolySpace missed only one detection, and three of the other 
tools did detect the overflow in that test case, one could obtain 
perfect detection across the evaluation test suite by using 
PolySpace as the primary authority, and using one of the other 
tool’s results only when PolySpace did not detect an overflow. 
ARCHER or UNO would be the best choice for this, as neither 
adds false alarms.    

Similarly combining ARCHER and Splint would produce a 
detection rate of ninety-eight percent. ARCHER missed twenty-
seven detections, and Splint detected all but five of those. 
Unfortunately, using Splint would also add thirty-five false 
alarms. 

Table 3. Tool Execution Times 

Tool

 

 

Average 
Time per Test 

 Total Time (secs) Case (secs) 
ARCHER     288   0.247 
BOON      73   0.063 
PolySpace 200,820 (56 hrs) 172.526 
Splint      24   0.021 
UNO      27   0.023 

 
Execution times for the five tools were measured as the total time 

 BOON’s slightly longer execution 
time did not resu

Some general observations can be made from inspecting the 
as a whole.  M d tend to 

If one 
ar test c lly some of 
  For f es, only 

not m the ams.  No 
sets and no individual test cases have perfect detections 

attribute sets contain no false 
at all (Upper/L ound, Data Ty ter, Alias of 

l’s performance in 

ot 
fects analysis and has a 

 limited to 

l.  Most of its twenty-seven missed detections are 

e 

N will not detect 

to run each test case, including tool startup time, and are provided 
in Table 3.  PolySpace’s high detection rate comes at the cost of 
dramatically long execution times.  ARCHER demonstrated both 
the second highest detection rate and the second highest execution 
time.  Splint and UNO, with intermediate detection rates, had the 
two fastest execution times. 

lt in a higher detection rate. 

results issed detections an
nd follow logical patterns.  

false alarms 
group in certain attribute sets a
tool missed a detection on a particul ase, usua
the other tools missed it as well. ive test cas
PolySpace did iss detections in bad progr
attribute 
across all five tools, but eight 
larms a ower B pe, Poin

Buffer Index, Loop Structure, Loop Complexity, Asynchrony, and 
Signed/Unsigned Mismatch).  Without the BOON results, looking 
exclusively at the results of the other four tools, three of the 
attribute sets (Write/Read, Data Type, and Alias of Buffer Index) 
and 108 individual test cases had perfect detections across the 
four tools.  Complete and detailed results are presented in [11]. 

6. Detailed Tool Diagnostics 
The following paragraphs discuss each too
detail, especially compared to the tools’ design goals. 

ARCHER’s strategy is to detect as many bugs as possible while 
minimizing the number of false alarms.  It is designed to be inter-
procedural, path-sensitive, context-sensitive, and aware of pointer 
aliases.  It performs a fully-symbolic, bottom-up data flow 
analysis, while maintaining symbolic constraints between 
variables (handled by a linear constraint solver).  ARCHER 
checks array accesses, pointer dereferences, and function calls 

that take a pointer and size.  It is hard-coded to recognize and 
handle a small number of memory-related functions, such as 
malloc [19]. 

The authors discuss many limitations of the current version of 
ARCHER.  It does not handle function pointers, and imposes a 
five second limit on the analysis of any particular function.  
Furthermore, it loses precision after function calls, as it does n
perform a proper inter-procedural side ef
very simple alias analysis.  It does not understand C library string 
functions, nor does it keep track of null pointers or the length of 
null-terminated strings.  Its linear constraint solver is
handling at most two non-linearly related variables.  Finally, 
some of the techniques it uses to reduce false alarms will 
necessarily result in missed detections.  For instance, if no bounds 
information is known about a variable used as an array index, 
ARCHER assumes the array access is trusted and does not issue a 
warning.  Similarly, it only performs a bounds check on the length 
and offset of a pointer dereference if bounds information is 
available; otherwise it remains quiet and issues no warning [19]. 

With close to a 91% detection rate and no false alarms, ARCHER 
performs wel
easily explained by its limitations.  Twenty of these were inter-
procedural, and this seems to be ARCHER’s main weakness.  The 
twenty inter-procedural misses include fourteen cases that call C 
library functions.  While the authors admit to ignoring string 
functions, one might have expected memcpy() to be one of the 
few hard-coded for special handling.  The other inter-procedural 
misses include cases involving shared memory, function pointers, 
recursion, and simple cases of passing a buffer address through 
one or two functions. Of the remaining seven misses, three 
involve function return values, two depend on array contents, and 
two involve function pointers and recursion. 

While some of the missed detections occurred on cases whose 
features may not be widespread in real code (such as recursion), 
the use of C library functions and other inter-procedural 
mechanisms are surely prevalent.  Indeed, ARCHER’s poor 
performance in [20] is directly attributable to the preponderanc
of these features.  ARCHER detected only one overflow in this 
prior evaluation, which was based on overflows in real code.  Of 
the thirteen programs for which ARCHER reported no overflows, 
twelve contained buffer overflows that would be classified 
according to this evaluation’s taxonomy as having inter-
procedural scope, and nine of those involve calls to C library 
functions.  To perform well against a body of real code, ARCHER 
needs to handle C library functions and other inter-procedural 
buffer overflows correctly. 

BOON’s analysis is flow-insensitive and context-insensitive for 
scalability and simplicity. It focuses exclusively on the misuse of 
string manipulation functions, and the authors intentionally 
sacrificed precision for scalability.  BOO
overflows caused by using primitive pointer operations, and 
ignores pointer dereferencing, pointer aliasing, arrays of pointers, 
function pointers, and unions.  The authors expect a high false 
alarm rate due to the loss of precision resulting from the 
compromises made for scalability [18]. 

In this evaluation, BOON properly detected only two out of 
fourteen string function overflows, with no false alarms.  The two 
detected overflows involve the use of strcpy() and fgets().  BOON 

 



failed to detect the second case that calls strcpy(), all six cases 
that call strncpy(), the case that calls getcwd, and all four cases 
that call memcpy().  Despite the heavy use of C library string 
functions in [20], BOON achieved only two detections in that 
evaluation as well.   

PolySpace is the only commercial tool included in this 

sis tractable. 

 not too surprising, as it is impractical for a 

 static analysis and heuristics that 

larm rates in the developers’ own tests [6, 12]. 

ty-five false alarms are attributable to 

and all 

ith the loss of precision leading to 

program.  It appears 

tants and scalars, but not computed 

e, but did miss 

evaluation.  Details of its methods and implementation are 
proprietary.  We do know, however, that its approach uses 
techniques described in several published works, including: 
symbolic analysis, or abstract interpretation [2]; escape analysis, 
for determining inter-procedural side effects [4]; and inter-
procedural alias analysis for pointers [3].  It can detect dead or 
unreachable code.  Like other tools, it may lose precision at 
junctions in code where previously branched paths rejoin, a 
compromise necessary to keep the analy

PolySpace missed only one detection in this evaluation, which 
was a case involving a signal handler.  The PolySpace output for 
this test case labeled the signal handler function with the code 
“UNP,” meaning “unreachable procedure.”  PolySpace reported 
seven false alarms across the test suite.  These included all four of 
the taint cases, shared memory, using array contents for the buffer 
address, and one of the calls to strcpy().  The false alarm on the 
array contents case is
tool to track the contents of every location in memory.  PolySpace 
does not, however, report a false alarm on the other two cases 
involving array contents.  The other six false alarms are on test 
cases that in some way involve calls to C library or O/S-specific 
function calls.  Not all such cases produced false alarms, however.  
For instance, only one out of the two strcpy() cases produced a 
false alarm: the one that copies directly from a constant string 
(e.g., “AAAA”).  Without more insight into the PolySpace 
implementation, it is difficult to explain why these particular 
cases produced false alarms. 

PolySpace did not perform as well in Zitser’s evaluation [20].  
Again, without more knowledge of the tool’s internals, it is 
difficult to know why its detection rate was lower.  Presumably 
the additional complexity of real code led to approximations to 
keep the problem tractable, but at the expense of precision.  The 
majority of the false alarms it reported in Zitser’s evaluation were 
on overflows similar to those for which it reported false alarms in 
this evaluation: those involving memory contents and C library 
functions. 

PolySpace’s performance comes with additional cost in money 
and in time.  The four other tools were open source when this 
evaluation was performed, and completed their analyses across 
the entire corpus in seconds or minutes. PolySpace is a 
commercial program and ran for nearly two days and eight hours, 
averaging close to three minutes of analysis time per test case file.  
This long execution time may make it difficult to incorporate into 
a code development cycle. 

Splint employs “lightweight”
are practical, but neither sound nor complete.  Like many other 
tools, it trades off precision for scalability.  It implements limited 
flow-sensitive control flow, merging possible paths at branch 
points.  Splint uses heuristics to recognize loop idioms and 
determine loop bounds without resorting to more costly and 
accurate abstract evaluation.  An annotated C library is provided, 
but the tool relies on the user to properly annotate all other 

functions to support inter-procedural analysis.  Splint exhibited 
high false a

The basis test suite used in this evaluation was not annotated for 
Splint for two reasons.  First, it is a more fair comparison of the 
tools to run them all against the same source code, with no special 
accommodations for any particular tool.  Second, expecting 
developers to completely and correctly annotate their programs 
for Splint seems unrealistic. 

Not surprisingly, Splint exhibited the highest false alarm rate of 
any tool.  Many of the thir
inter-procedural cases; cases involving increased complexity of 
the index, address, or length; and more complex containers and 
flow control constructs.  The vast majority, 120 out of 127, of 
missed detections are attributable to loops.  Detections were 
missed in all of the non-standard for() loop cases (both discrete 
and continuous), as well as in most of the other continuous loop 
cases.  The only continuous loop cases handled correctly are the 
standard for loops, and it also produces false alarms on nearly all 
of those.  In addition, it misses the lower bound case, the “cond” 
case of local flow control, the taint case that calls getcwd, 
four of the signed/unsigned mismatch cases. 

While Splint’s detection rate was similar in this evaluation and 
the Zitser evaluation [20], its false alarm rate was much higher in 
the latter.  Again, this is presumably because code that is more 
complex results in more situations where precision is sacrificed in 
the interest of scalability, w
increased false alarms. 

Splint’s weakest area is loop handling.  Enhancing loop heuristics 
to more accurately recognize and handle non-standard for loops, 
as well as continuous loops of all varieties, would significantly 
improve performance.  The high confusion rate may be a source 
of frustration to developers, and may act as a deterrent to Splint’s 
use.  Improvements in this area are also important. 

UNO is an acronym for uninitialized variables, null-pointer 
dereferencing, and out-of-bounds array indexing, which are the 
three types of problems it is designed to address.  UNO 
implements a two-pass analysis; the first pass performs intra-
procedural analysis within each function, while the second pass 
performs a global analysis across the entire 
that the second pass focuses only on global pointer dereferencing, 
in order to detect null pointer usage; therefore, UNO would not 
seem to be inter-procedural with respect to out-of-bounds array 
indexing.  UNO determines path infeasibility, and uses this 
information to suppress warnings and take shortcuts in its 
searches.  It handles cons
indices (expressions on variables, or function calls), and easily 
loses precision on conservatively-computed value ranges.  It does 
not handle function pointers, nor does it attempt to compute 
possible function return values.  Lastly, UNO does not handle the 
setjmp/longjmp construct [8]. 

UNO produced no false alarms in the basic test suit
nearly half of the possible detections (140 out of 291), most of 
which would be expected based on the tool’s description.  This 
included every inter-procedural case, every container case, nearly 
every index complexity case (the only one it detected was the 
simple variable), every address and length complexity case, every 
address alias case, the function and recursion cases, every 

 



signed/unsigned mismatch, nearly every continuous loop, and a 
small assortment of others.  It performed well on the various data 
types, index aliasing, and discrete loops. Given the broad variety 
of detections missed in the basic test suite, it is not surprising that 
UNO exhibited the poorest performance in Zitser’s evaluation 
[20].   

7. CONCLUSIONS 
A corpus of 291 small C-program test cases was developed to 
evaluate static and dynamic analysis tools that detect buffer 
overflows. The corpus was designed and labeled using a new, 

. 

oped can serve as a type of litmus 

that a tool doesn’t provide some assistance when 

comprehensive buffer overflow taxonomy. It provides a 
benchmark to measure detection, false alarm, and confusion rates 
of tools, and can be used to find areas for tool enhancement.  
Evaluations of five tools validate the utility of this corpus and 
provide diagnostic results that demonstrate the strengths and 
weaknesses of these tools. Some tools provide very good 
detection rates (e.g. ARCHER and PolySpace) while others fall 
short of their specified design goals, even for simple 
uncomplicated source code. Diagnostic results provide specific 
suggestions to improve tool performance (e.g. for Splint, improve 
modeling of complex loop structures; for ARCHER, improve 
inter-procedural analysis).  They also demonstrate that the false 
alarm and confusion rates of some tools (e.g. Splint) need to be 
reduced

The test cases we have devel
test for tools. Good performance on test cases that fall within the 
design goals of a tool is a prerequisite for good performance on 
actual, complex code. Additional code complexity in actual code 
often exposes weaknesses of the tools that result in inaccuracies, 
but rarely improves tool performance. This is evident when 
comparing test case results obtained in this study to results 
obtained by Zitser [20] with more complex model programs. 
Detection rates in these two studies are shown in Table 4. As can 
be seen, the two systems that provided the best detection rates on 
the model programs (PolySpace and Splint) also had high 
detection rates on test cases. The other three tools performed 
poorly on model programs and either poorly (BOON) or well 
(ARCHER and UNO) on test cases. Good performance on test 
cases (at least on the test cases within the tool design goals) is a 
necessary but not sufficient condition for good performance on 
actual code. Finally, poor performance on our test corpus does not 
indicate 
searching for buffer overflows. Even a tool with a low detection 
rate will eventually detect some errors when used to analyze 
many thousands of lines of code.  

Table 4. Comparison of detection rates with 291 test cases and 
with 14 more complex model programs in Zitser [20]. 

Tool 
Test Case 
Detection 

Model 
Program 
Detection [20] 

ARCHER 90.7% 1% 
BOON 0.7% 5% 
PolySpace 99.7% 87% 
Splint 56.4% 57% 
UNO 51.9% 0.0% 

 

The test corpus could be improved by adding test cases to cover 
attribute values currently underrepresented, such as string 
functions.  It may also be used to evaluate the performance of 
dynamic analysis approaches.  Anyone wishing to use the test 
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