
Using a Diagnostic Corpus of C Programs to Evaluate
Buffer Overflow Detection by Static Analysis Tools*

Kendra Kratkiewicz
MIT Lincoln Laboratory

244 Wood Street
Lexington, MA 02420-9108

Phone: 781-981-2931
Email: KENDRA@LL.MIT.EDU

Richard Lippmann
MIT Lincoln Laboratory

244 Wood Street
Lexington, MA 02420-9108

Phone: 781-981-2711
Email: LIPPMANN@LL.MIT.EDU

ABSTRACT
A corpus of 291 small C-program test cases was developed to
evaluate static and dynamic analysis tools designed to detect
buffer overflows. The corpus was designed and labeled using a
new, comprehensive buffer overflow taxonomy. It provides a
benchmark to measure detection, false alarm, and confusion rates
of tools, and also suggests areas for tool enhancement.
Experiments with five tools demonstrate that some modern static
analysis tools can accurately detect overflows in simple test cases
but that others have serious limitations. For example, PolySpace
demonstrated a superior detection rate, missing only one
detection. Its performance could be enhanced if extremely long
run times were reduced, and false alarms were eliminated for
some C library functions. ARCHER performed well with no false
alarms whatsoever. It could be enhanced by improving inter-
procedural analysis and handling of C library functions. Splint
detected significantly fewer overflows and exhibited the highest
false alarm rate. Improvements in loop handling and reductions
in false alarm rate would make it a much more useful tool. UNO
had no false alarms, but missed overflows in roughly half of all
test cases. It would need improvement in many areas to become a
useful tool. BOON provided the worst performance. It did not
detect overflows well in string functions, even though this was a
design goal.

Categories and Subject Descriptors
D.2.4 [Software Engineering] Software/Program Verification,
D.2.5 [Software Engineering] Testing and Debugging, K.4.4
[Computers and Society] Electronic Commerce Security.

General Terms
Measurement, Performance, Security, Verification.

Keywords
Security, buffer overflow, static analysis, evaluation, exploit, test,
detection, false alarm, source code.

1. INTRODUCTION
Ideally, developers would discover and fix errors in programs
before they are released. This, however, is an extremely difficult
task. Among the many approaches to finding and fixing errors,
static analysis is one of the most attractive. The goal of static

analysis is to automatically process source code and analyze all
code paths without requiring the large numbers of test cases used
in dynamic testing. Over the past few years, static analysis tools
have been developed to discover buffer overflows in C code.

Buffer overflows are of particular interest as they are potentially
exploitable by malicious users, and have historically accounted
for a significant percentage of the software vulnerabilities
published each year [18, 20], such as in NIST’s ICAT Metabase
[9], CERT advisories [1], Bugtraq [17], and other security forums.
Buffer overflows have also been the basis for many damaging
exploits, such as the Sapphire/Slammer [13] and Blaster [15]
worms.

A buffer overflow vulnerability occurs when data can be written
outside the memory allocated for a buffer, either past the end or
before the beginning. Buffer overflows may occur on the stack,
on the heap, in the data segment, or the BSS segment (the
memory area a program uses for uninitialized global data), and
may overwrite from one to many bytes of memory outside the
buffer. Even a one-byte overflow can be enough to allow an
exploit [10]. Buffer overflows have been described at length in
many papers, including [20], and many descriptions of exploiting
buffer overflows can be found online.

This paper focuses on understanding the capabilities of static
analysis tools designed to detect buffer overflows in C code. It
extends a study by Zitser [20, 21] that evaluated the ability of
several static analysis tools to detect fourteen known, historical
vulnerabilities (all buffer overflows) in open-source software.
The Zitser study first found that only one of the tools could
analyze large, open-source C programs. To permit an evaluation,
short, but often complex, model programs were extracted from the
C programs and used instead of the original, much longer
programs. Five static analysis tools were run on model programs
with and without overflows: ARCHER [19], BOON [18], Splint
[6, 12], UNO [8], and PolySpace C Verifier [14]. All use static
analysis techniques, including symbolic analysis, abstract
interpretation, model checking, integer range analysis, and inter-
procedural analysis. Results were not encouraging. Only one of
the five tools performed statistically better than random guessing.
Not only did the tools fail to detect a significant number of
overflows, but they also produced a large number of false alarms,
indicating overflows where none actually existed. Equally
discouraging were the confusion rates, reflecting the number of
cases where a tool reports an error in both the vulnerable and
patched versions of a program.

2005 Workshop on the Evaluation of Software Defect Detection Tools
2005,June 12, Chicago, IL

*This work was sponsored by the Advanced Research and Development
Activity under Force Contract F19628-00-C-0002. Opinions, interpretations,
conclusions, and recommendations are those of the authors and are not
necessarily endorsed by the United States Government.

mailto:KENDRA@LL.MIT.EDU

Given the small number of model programs, and the fact that
buffer overflows were embedded in complex code, it is difficult to
draw conclusions concerning why the tools performed poorly.
This paper describes a follow-on analysis of the five tools
evaluated in the previous study. It’s simpler but broader, and
more diagnostic test cases are designed to determine specific
strengths and weaknesses of tools. Although this research
evaluated only static analysis tools, it provides a taxonomy and
test suite useful for evaluating dynamic analysis tools as well.

2. BUFFER OVERFLOW TAXONOMY
Using a comprehensive taxonomy makes it possible to develop
test cases that cover a wide range of buffer overflows and make
diagnostic tool assessments. Zitser developed a taxonomy
containing thirteen attributes [20]. This taxonomy was modified
and expanded to address problems encountered with its
application, while still attempting to keep it small and simple
enough for practical application. The new taxonomy consists of
twenty-two attributes listed in Table 1.

Table 1. Buffer Overflow Taxonomy Attributes

Attribute N ttribute Name umber A
1 Write/Read
2 Upper/Lower Bound
3 Data Type
4 Memory Location
5 Scope
6 Container
7 Pointer
8 Index Complexity
9 Address Complexity
10 Length/Limit Complexity
11 Alias of Buffer Address
12 Alias of Buffer Index
13 Local Control Flow
14 Secondary Control Flow
15 Loop Structure
16 Loop Complexity
17 Asynchrony
18 Taint
19 Runtime Environment Dependence
20 Magnitude
21 Continuous/Discrete
22 Signed/Unsigned Mismatch

Details on the p ble values for each attribute are available in
[11], and are sum arized below. For each attribute, the possible
values are listed in ascending order (i.e. the 0 value first).

Write/Read: des the type of memory access (write, read).
While detecting illegal writes is probably of more interest in
preventing buffer overflow exploits, it is possible that illegal
reads could allow unauthorized access to information or could
constitute one operation in a multi-step exploit.

pper/Lower Bound: describes which buffer bound is violated
the term “buffer overflow” suggests an

ers; buffers of all

ffers (e.g., those allocated by calling a malloc

 and

 scope describes a buffer that is

t it is possible to use a pointer

expression,

ossi
m

cribes

U
(upper, lower). While
access beyond the upper bound of a buffer, it is equally possible
to underflow a buffer, or access below its lower bound (e.g.
buf[-1]).

Data Type: indicates the type of data stored in the buffer
(character, integer, floating point, wide character, pointer,
unsigned character, unsigned integer). Character buffers are often
manipulated with unsafe string functions in C, and some tools
may focus on detecting overflows of those buff
types may be overflowed, however, and should be analyzed.

Memory Location: indicates where the buffer resides (stack,
heap, data region, BSS, shared memory). Non-static variables
defined locally to a function are on the stack, while dynamically
allocated bu
function) are on the heap. The data region holds initialized global
or static variables, while the BSS region contains uninitialized
global or static variables. Shared memory is typically allocated,
mapped into and out of a program’s address space, and released
via operating system specific functions. While a typical buffer
overflow exploit may strive to overwrite a function return value
on the stack, buffers in other locations have been exploited
should be considered as well.

Scope: describes the difference between where the buffer is
allocated and where it is overrun (same, inter-procedural, global,
inter-file/inter-procedural, inter-file/global). The scope is the
same if the buffer is allocated and overrun within the same
function. Inter-procedural scope describes a buffer that is
allocated in one function and overrun in another function within
the same file. Global scope indicates that the buffer is allocated
as a global variable, and is overrun in a function within the same
file. The scope is inter-file/inter-procedural if the buffer is
allocated in a function in one file, and overrun in a function in
another file. Inter-file/global
allocated as a global in one file, and overrun in a function in
another file. Any scope other than “same” may involve passing
the buffer address as an argument to another function; in this case,
the Alias of Buffer Address attribute must also be set accordingly.
Note that the test suite used in this evaluation does not contain an
example for “inter-file/global.”

Container: indicates whether the buffer resides in some type of
container (no, array, struct, union, array of structs, array of
unions). The ability of static analysis tools to detect overflows
within containers (e.g., overrunning one array element into the
next, or one structure field into the next) and beyond container
boundaries (i.e., beyond the memory allocated for the container as
a whole) may vary according to how the tools model these
containers and their contents.

Pointer: indicates whether the buffer access uses a pointer
dereference (no, yes). Note tha
dereference with or without an array index (e.g. *pBuf or
(*pBuf)[10]); the Index Complexity attribute must be set
accordingly. In order to know if the memory location referred to
by a dereferenced pointer is within buffer bounds, a code analysis
tool must keep track of what pointers point to; this points-to
analysis is a significant challenge.

Index Complexity: indicates the complexity of the array index
(constant, variable, linear expression, non-linear
function return value, array contents, N/A). This attribute applies
only to the user program, and is not used to describe how buffer
accesses are performed inside C library functions.

Address Complexity: describes the complexity of the address or
pointer computation (constant, variable, linear expression, non-
linear expression, function return value, array contents). Again,
this attribute is used to describe the user program only, and is not

 “N/A” is used

 that if a C library function

hat pointers point to is a

e, and those within recursive functions

des the overflow

to directly containing the

 > 10)

Only cts whether or not the overflow occurs
is cl s, if a preceding control flow construct
has no bearing on whether or not the subsequent overflow occurs,
it is not considered to be secondary control flow, and this attribute
would be assigned the value “none.”

The rates nested control flow. The inner
if s s the overflow, and we assign the
valu ontrol Flow attribute. The outer if
statement represents secondary control flow, and we assign the
valu Secondary Control Flow attribute as well.

Som -sensitive analyses, and
som ing
approximations in order to keep the problem tractable and the

applied to C library function internals.

Length/Limit Complexity: indicates the complexity of the length
or limit passed to a C library function that overruns the buffer
(N/A, none, constant, variable, linear expression, non-linear
expression, function return value, array contents).
when the test case does not call a C library function to overflow
the buffer, whereas “none” applies when a C library function
overflows the buffer, but the function does not take a length or
limit parameter (e.g. strcpy). The remaining attribute values
apply to the use of C library functions that do take a length or
limit parameter (e.g. strncpy). Note
overflows the buffer, the overflow is by definition inter-file/inter-
procedural in scope, and involves at least one alias of the buffer
address. In this case, the Scope and Alias of Buffer Address
attributes must be set accordingly. Code analysis tools may need
to provide their own wrappers for or models of C library functions
in order to perform a complete analysis.

Alias of Buffer Address: indicates if the buffer is accessed
directly or through one or two levels of aliasing (no, one, two).
Assigning the original buffer address to a second variable and
subsequently using the second variable to access the buffer
constitutes one level of aliasing, as does passing the original
buffer address to a second function. Similarly, assigning the
second variable to a third and accessing the buffer through the
third variable would be classified as two levels of aliasing, as
would passing the buffer address to a third function from the
second. Keeping track of aliases and w
significant challenge for code analysis tools.

Alias of Buffer Index: indicates whether or not the index is
aliased (no, one, two, N/A). If the index is a constant or the
results of a computation or function call, or if the index is a
variable to which is directly assigned a constant value or the
results of a computation or function call, then there is no aliasing
of the index. If, however, the index is a variable to which the
value of a second variable is assigned, then there is one level of
aliasing. Adding a third variable assignment increases the level of
aliasing to two. If no index is used in the buffer access, then this
attribute is not applicable.

Local Control Flow: describes what kind of program control
flow most immediately surrounds or affects the overflow (none,
if, switch, cond, goto/label, setjmp/longjmp, function pointer,
recursion). For the values “if”, “switch”, and “cond”, the buffer
overflow is located within the conditional construct. “Goto/label”
signifies that the overflow occurs at or after the target label of a
goto statement. Similarly, “setjmp/longjmp” means that the
overflow is at or after a longjmp address. Buffer overflows that
occur within functions reached via function pointers are assigned
the “function pointer” valu
receive the value “recursion”. The values “function pointer” and
“recursion” necessarily imply a global or inter-procedural scope,
and may involve an address alias. The Scope and Alias of Buffer
Address attributes should be set accordingly.

Control flow involves either branching or jumping to another
context within the program; hence, only path-sensitive code

analysis can determine whether or not the overflow is actually
reachable. A code analysis tool must be able to follow function
pointers and have techniques for handling recursive functions in
order to detect buffer overflows with the last two values for this
attribute.

Secondary Control Flow: has the same values as Local Control
Flow, the difference being the location of the control flow
construct. Secondary Control Flow either prece
or contains nested, local control flow. Some types of secondary
control flow may occur without any local control flow, but some
may not. The Local Control Flow attribute should be set
accordingly.

The following example illustrates an if statement that precedes
the overflow and affects whether or not it occurs. Because it
precedes the overflow, as opposed
overflow, it is labeled as secondary, not local, control flow.

int main(int argc, char *argv[])
{
 char buf[10];
 int i = 10;

 if (i
 {
 return 0;
 }

 /* BAD */
 buf[i] = 'A';

 return 0;
}

ntrol flow that affe co
assified. In other word

following example illust
ement directly containtat

e “if” to the Local C

e “if” to the

int main(int argc, char *argv[])
{
 char buf[10];
 int i = 10;

 if (sizeof buf <= 10)
 {
 if (i <= 10)
 {
 /* BAD */
 buf[i] = 'A';
 }
}

 return 0;
 }

e code analysis tools perform path
e do not. Even those that do often must make simplify

solu y mean throwing away some
infor ng precision, at points in the
prog Test cases containing
seco ntrol flow may highlight the capabilities or
limitations of these varying techniques.

Loo ribes the type of loop construct within
which the overflow occurs (none, standard for, standard do-while,

 i++;
(i<11);

Standard

’;
;

 buf[i++] = ‘A’;

itate secondary control flow (such
as additional if s e cases, the Secondary Control

tr ngly. Any value other than
“none” for this attribute requires that the Loop Complexity
attribute be set to something other than “not applicable.”

of iteratio ia that depend on runtime
ible or impractical for

Different tools have different methods for handling loops; for

The functions that may be used

 influenced

aintable.” These may be the most crucial

n an off-by-

 overflow sizes were chosen with

 rely

tion scalable. This ma
mation, and thereby sacrifici

e previous branches rejoin. ram wher
condary

p Structure: desc

standard while, non-standard for, non-standard do-while, non-
standard while). A “standard” loop is one that has an
initialization, a loop exit test, and an increment or decrement of a
loop variable, all in typical format and locations. A “non-
standard” loop deviates from the standard loop in one or more of
these areas. Examples of standard for, do-while, and while
loops are shown below, along with one non-standard for loop
example:

Standard for loop:
for (i=0; i<11; i++)
{

 buf[i] = ‘A’;
}

Standard do-while loop:
i=0;
do
{

 buf[i] = ‘A’;

} while

while loop:
 i=0;

ile (i<11) wh
{

 buf[i] = ‘A
i++

}

A non-standard for loop:
 i<11;) for (i=0;

{

}

Non-standard loops may necess
tatements). In thes

Flow at ibute should be set accordi

Loops may execute for a large number or even an infinite number
 or may have exit criterns,

conditions; therefore, it may be imposs
static ana or analyze loops to completion. lysis tools to simulate

example, some may attempt to simulate a loop for a fixed number
of iterations, while others may employ heuristics to recognize and
handle common loop constructs. The approach taken will likely
affect a tool’s capabilities to detect overflows that occur within
various loop structures.

Loop Complexity: indicates how many loop components
(initialization, test, increment) are more complex than the
standard baseline of initializing to a constant, testing against a
constant, and incrementing or decrementing by one (N/A, none,

one, two, three). Of interest here is whether or not the tools
handle loops with varying complexity in general, rather than
which particular loop components are handled or not.

Asynchrony: indicates if the buffer overflow is potentially
obfuscated by an asynchronous program construct (no, threads,
forked process, signal handler).
to realize these constructs are often operating system specific (e.g.
on Linux, pthread functions; fork, wait, and exit; and
signal). A code analysis tool may need detailed, embedded
knowledge of these constructs and the O/S-specific functions in
order to properly detect overflows that occur only under these
special circumstances.

Taint: describes whether a buffer overflow may be
externally (no, argc/argv, environment variables, file read or
stdin, socket, process environment). The occurrence of a buffer
overflow may depend on command line or stdin input from a user,
the value of environment variables (e.g. getenv), file contents
(e.g. fgets, fread, or read), data received through a socket or
service (e.g. recv), or properties of the process environment,
such as the current working directory (e.g. getcwd). All of these
can be influenced by users external to the program, and are
therefore considered “t
overflows to detect, as it is ultimately the ability of the external
user to influence program operation that makes exploits possible.
As with asynchronous constructs, code analysis tools may require
detailed modeling of O/S-specific functions in order to properly
detect related overflows. Note that the test suite used in this
evaluation does not contain an example for “socket.”

Runtime Environment Dependence: indicates whether or not
the occurrence of the overrun depends on something determined
at runtime (no, yes). If the overrun is certain to occur on every
execution of the program, it is not dependent on the runtime
environment; otherwise, it is.

Magnitude: indicates the size of the overflow (none, 1 byte, 8
bytes, 4096 bytes). “None” is used to classify the “OK” or
patched versions of programs that contain overflows. One would
expect static analysis tools to detect buffer overflows without
regard to the size of the overflow, unless they contai
one error in their modeling of library functions. The same is not
true of dynamic analysis tools that use runtime instrumentation to
detect memory violations; different methods may be sensitive to
different sizes of overflows, which may or may not breach page
boundaries, etc. The various
future dynamic tool evaluations in mind. Overflows of one byte
test both the accuracy of static analysis modeling, and the
sensitivity of dynamic instrumentation. Eight and 4096 byte
overflows are aimed more exclusively at dynamic tool testing,
and are designed to cross word-aligned and page boundaries.

Continuous/Discrete: indicates whether the buffer overflow
jumps directly out of the buffer (discrete) or accesses consecutive
elements within the buffer before overflowing past the bounds
(continuous). Loop constructs are likely candidates for containing
continuous overflows. C library functions that overflow a buffer
while copying memory or string contents into it demonstrate
continuous overflows. An overflow labeled as continuous should
have the loop-related attributes or the Length Complexity
attribute (indicating the complexity of the length or limit passed
to a C library function) set accordingly. Some dynamic tools

on “canaries” at buffer boundaries to detect continuous overflows
[5], and therefore may miss discrete overflows.

Signed/Unsigned Mismatch: indicates if the buffer overflow is
caused by using a signed or unsigned value where the opposite is
expected (no, yes). Typically, a signed value is used where an
unsigned value is expected, and gets interpreted as a very large
unsigned or positive value, causing an enormous buffer overflow.

This taxonomy is specifically designed for developing simple
diagnostic test cases. It may not fully characterize complex buffer
overflows that occur in real code, and specifically omits complex
details related to the overflow context.

For each attribute (except for Magnitude), the zero value is
assigned to the simplest or “baseline” buffer overflow, shown
below:

int main(int argc, char *argv[])
{
 char buf[10];
 /* BAD */
 buf[10] = 'A';
 return 0;
}

Each test case includes a comment line as shown with the word
“BAD”
line where an overflow m

or “OK.” This comment is placed on the line before the
an

over program is
a w he upper bound of a stack-based
character buffer that is defined and overflowed within the same
func t lie within another container, is
addr xed with a constant. No C library
func ess the buffer, the overflow is not within
any ditional or complicated control flows or asynchronous

y Classification: 0000000000000000000000 */

 ADDRESS COMPLEXITY 0 constant
LENGTH COMPLEXITY 0 N/A

S

ROL OW
L FL 0

RUCTURE
EXIT

NY

 0
erflow

 te

Whi a airs co ting of a bad
prog rogram evaluation
uses ur sions of each test case
correspond to the four possible values of the Magnitude attribute;
one no flow), while
the r ov lows o and
4096 u and la ows.

3. ST SUITE

Ideally, the test suite would have at least one instance of each
that could be described by the taxonomy.

t cases.

s were also corrected based on initial

ight occur and it indicates whether
 does occur. The buffer access in the baselineflow

rite operation beyond t

tion. The buffer does no
 is indeessed directly, and

 is used to acction
nco

program constructs, and does not depend on the runtime
environment. The overflow writes to a discrete location one byte
beyond the buffer boundary, and cannot be manipulated by an
external user. Finally, it does not involve a signed vs. unsigned
type mismatch.

Appending the value digits for each of the twenty-two attributes
forms a string that classifies a buffer overflow, which can be
referred to during results analysis. For example, the sample
program shown above is classified as
“0000000000000000000100.” The single “1” in this string
represents a “Magnitude” attribute indicating a one-byte
overflow. This classification information appears in comments at
the top of each test case file, as shown in the example below:

/* Taxonom

/*
 * WRITE/READ 0 write
 * WHICH BOUND 0 upper
 * DATA TYPE 0 char
 * MEMORY LOCATION 0 stack
 * SCOPE 0 same
 * CONTAINER 0 no
 * POINTER 0 no
 * INDEX COMPLEXITY 0 constant
 *
 *

 * ADDRESS ALIA 0 none
 * INDEX ALIAS 0 none
 * LOCAL CONT FL 0 none
 * SECONDARY CONTRO OW none
 * LOOP ST 0 no
 * LOOP COMPL Y 0 N/A
 * ASYNCHRO 0 no
 * TAINT 0 no
 * RUNTIME ENV. DEPENDENCE no
 * MAGNITUDE 0 no ov
 * CONTINUOUS/DISCRETE 0 discre
 * SIGNEDNESS 0 no
 */

le the Zitser test cases were progr m p nsis
ram and a corresponding patched p , this
 program quadruplets. The fo ver

of these represents the patched program (over
remaining three indicate buffe erf f one, eight,
 bytes denoted as minimum, medi m, rge overfl

TE
A full discussion of design considerations in creating test cases is
provided in [11]. Goals included avoiding tool bias; providing
samples that cover the taxonomy; measuring detections, false
alarms, and confusions; naming and documenting test cases to
facilitate automated scoring and encourage reuse; and maintaining
consistency in programming style and use of programming
idioms.

possible buffer overflow
Unfortunately, this is completely impractical. Instead, a “basic”
set of test cases was built by first choosing a simple, baseline
example of a buffer overflow, and then varying its characteristics
one at a time. This strategy results in taxonomy coverage that is
heavily weighted toward the baseline attribute values. Variations
were added by automated code-generation software that produces
C code for the test cases to help insure consistency and make it
easier to add tes

Four versions of 291 different test cases were generated with no
overflow and with minimum, medium, and large overflows. Each
test case was compiled with gcc, the GNU C compiler [7], on
Linux to verify that the programs compiled without warnings or
errors (with the exception of one test case that produces an
unavoidable warning). Overflows were verified using CRED, a
fine-grained bounds-checking extension to gcc that detects
overflows at run time [16], or by verifying that the large overflow
caused a segfault. A few problems with test cases that involved
complex loop condition
results produced by the PolySpace tool.

4. TEST PROCEDURES
The evaluation consisted of analyzing each test case (291
quadruplets), one at a time using the five static analysis tools
(ARCHER, BOON, PolySpace, Splint, and UNO), and collecting
tool outputs. Tool-specific Perl programs parsed the output and
determined whether a buffer overflow was detected on the line
immediately following the comment in each test case. Details of

the test procedures are provided in [11]. No annotations were
added and no modifications were made to the source code for any
tool.

 numbers for the errors,

overflow occurs in a C library function. PolySpace reports

s, while the false alarm rate
in the patched

w well a tool can

 test cases where tool reports overflow

As seen i ection
rates exc ion rate is nearly

ctions.
s ARCHER

roduced none. Splint and UNO each detected roughly half of the
overflows ber of
false alarms, while a

 cases
in

confusion rate was

Since BOON does not report line
automated tabulation cannot validate that the reported error
corresponds to the commented buffer access in the test case file.
Instead, it assumes that any reported error is a valid detection.
Therefore, BOON detections and false alarms were further
inspected manually to verify their accuracy, and some were
dismissed (two detections and two false alarms) since they did not
refer to the buffer access in question.

Special handling was required for PolySpace in cases where the
buffer
the error in the library function itself, rather than on the line in the
test case file where the function is called. Therefore, the results
tabulator looks for errors reported in the called library function
and counts those detections irrespective of the associated line
number. Additionally, one test case involving wide characters
required additional command-line options to work around errors
reported when processing wctype.h.

5. RESULTS AND ANALYSIS
All five static analysis tools performed the same regardless of
overflow size (this would not necessarily hold for dynamic
analysis). To simplify the discussion, results for the three
magnitudes of overflows are thus reported as results for “bad” test
cases as a whole.
Table 2 shows the performance metrics computed for each tool.
The detection rate indicates how well a tool detects the known
buffer overflows in the bad program
indicates how often a tool reports a buffer overflow
programs. The confusion rate indicates ho
distinguish between the bad and patched programs. When a tool
reports a detection in both the patched and bad versions of a test
case, the tool has demonstrated “confusion.” The formulas used
to compute these three metrics are shown below:

 #
 in bad version

detection rate = --
 # test cases tool evaluated

 # test cases where tool reports overflow
 in patched version

false alarm rate = --
 # of test cases tool evaluated

 # test cases where tool reports overflow
ed version in both bad and patch

confusion rate = ---
verflow # test cases where tool reports o

 in bad version

n Table 2, ARCHER and PolySpace both have det
eeding 90%. PolySpace’s detect

perfect, missing only one out of the 291 possible dete
PolySpace produced seven false alarms, wherea
p

. Splint, however, produced a substantial num
 UNO produced none. Splint also exhibited

fairly high confusion rate. In over twenty percent of the
where it properly detected an overflow, it also reported an error
the patched program. PolySpace’s
substantially lower, while the other three tools had no confusions.
BOON’s detection rate across the test suite was extremely low.

Table 2. Overall Performance on Basic Test Suite (291 cases)

Tool
Detection
Rate

False Alarm
Rate

Confusion
Rate

ARCHER 90.7% 0.0% 0.0%
BOON 0.7% 0.0% 0.0%
PolySpace 99.7% 2.4% 2.4%
Splint 56.4% 12.0% 21.3%
UNO 51.9% 0.0% 0.0%

It is important to note that it was not necessarily
tool to possible buffer overflow. BOON, for

ly on the e of string manipulation
nd is not ex to detect ot rflows.

 impor realize tha performanc
predictive of how the tools would perform on buffer
n a leased code. The basic test ed in

aluation signed fo ostic purp d the
my coverage exhibited is resentative which

ould be seen in real-world buffer overflows.

 guesser line at the

 the design goal
of each
example, focus

detect every
es on misus

functions, a therefore pected her ove
It is also tant to t these e rates are not
necessarily
overflows i ctual, re suite us

oses, anthis ev was de r diagn
taxono not rep of that
w

Figure 1 presents a plot of detection rate vs. false alarm rate for
each tool. Each tool’s performance is plotted with a single data
point representing detection and false alarm percentages. The
diagonal line represents the hypothetical performance of a random
guesser that decides with equal probability if each commented
buffer access in the test programs results in an overflow or not.
The difference between a tool’s detection rate and the random
guesser’s is only statistically significant if it lies more than two
standard deviations (roughly 6 percentage points when the
detection rate is 50%) away from the random
same false alarm rate. In this evaluation, every tool except
BOON performs significantly better than a random guesser. In
Zitser’s evaluation [20], only PolySpace was significantly better.
This difference in performance reflects the simplicity of the
diagnostic test cases.

Archer

PolySpace

Splint
Uno

40%

60%

80%

100%

De
te

ct
io

n
Ra

te
 (%

)

Boon0%

20%

0% 20% 40% 60% 80% 100%

False Alarm Rate (%)

Figure 1. False Alarm and Detection Rates per Tool

Since PolySpace missed only one detection, and three of the other
tools did detect the overflow in that test case, one could obtain
perfect detection across the evaluation test suite by using
PolySpace as the primary authority, and using one of the other
tool’s results only when PolySpace did not detect an overflow.
ARCHER or UNO would be the best choice for this, as neither
adds false alarms.

Similarly combining ARCHER and Splint would produce a
detection rate of ninety-eight percent. ARCHER missed twenty-
seven detections, and Splint detected all but five of those.
Unfortunately, using Splint would also add thirty-five false
alarms.

Table 3. Tool Execution Times

Tool

Average
Time per Test

 Total Time (secs) Case (secs)
ARCHER 288 0.247
BOON 73 0.063
PolySpace 200,820 (56 hrs) 172.526
Splint 24 0.021
UNO 27 0.023

Execution times for the five tools were measured as the total time

 BOON’s slightly longer execution
time did not resu

Some general observations can be made from inspecting the
as a whole. M d tend to

If one
ar test c lly some of
 For f es, only

not m the ams. No
sets and no individual test cases have perfect detections

attribute sets contain no false
at all (Upper/L ound, Data Ty ter, Alias of

l’s performance in

ot
fects analysis and has a

 limited to

l. Most of its twenty-seven missed detections are

e

N will not detect

to run each test case, including tool startup time, and are provided
in Table 3. PolySpace’s high detection rate comes at the cost of
dramatically long execution times. ARCHER demonstrated both
the second highest detection rate and the second highest execution
time. Splint and UNO, with intermediate detection rates, had the
two fastest execution times.

lt in a higher detection rate.

results issed detections an
nd follow logical patterns.

false alarms
group in certain attribute sets a
tool missed a detection on a particul ase, usua
the other tools missed it as well. ive test cas
PolySpace did iss detections in bad progr
attribute
across all five tools, but eight
larms a ower B pe, Poin

Buffer Index, Loop Structure, Loop Complexity, Asynchrony, and
Signed/Unsigned Mismatch). Without the BOON results, looking
exclusively at the results of the other four tools, three of the
attribute sets (Write/Read, Data Type, and Alias of Buffer Index)
and 108 individual test cases had perfect detections across the
four tools. Complete and detailed results are presented in [11].

6. Detailed Tool Diagnostics
The following paragraphs discuss each too
detail, especially compared to the tools’ design goals.

ARCHER’s strategy is to detect as many bugs as possible while
minimizing the number of false alarms. It is designed to be inter-
procedural, path-sensitive, context-sensitive, and aware of pointer
aliases. It performs a fully-symbolic, bottom-up data flow
analysis, while maintaining symbolic constraints between
variables (handled by a linear constraint solver). ARCHER
checks array accesses, pointer dereferences, and function calls

that take a pointer and size. It is hard-coded to recognize and
handle a small number of memory-related functions, such as
malloc [19].

The authors discuss many limitations of the current version of
ARCHER. It does not handle function pointers, and imposes a
five second limit on the analysis of any particular function.
Furthermore, it loses precision after function calls, as it does n
perform a proper inter-procedural side ef
very simple alias analysis. It does not understand C library string
functions, nor does it keep track of null pointers or the length of
null-terminated strings. Its linear constraint solver is
handling at most two non-linearly related variables. Finally,
some of the techniques it uses to reduce false alarms will
necessarily result in missed detections. For instance, if no bounds
information is known about a variable used as an array index,
ARCHER assumes the array access is trusted and does not issue a
warning. Similarly, it only performs a bounds check on the length
and offset of a pointer dereference if bounds information is
available; otherwise it remains quiet and issues no warning [19].

With close to a 91% detection rate and no false alarms, ARCHER
performs wel
easily explained by its limitations. Twenty of these were inter-
procedural, and this seems to be ARCHER’s main weakness. The
twenty inter-procedural misses include fourteen cases that call C
library functions. While the authors admit to ignoring string
functions, one might have expected memcpy() to be one of the
few hard-coded for special handling. The other inter-procedural
misses include cases involving shared memory, function pointers,
recursion, and simple cases of passing a buffer address through
one or two functions. Of the remaining seven misses, three
involve function return values, two depend on array contents, and
two involve function pointers and recursion.

While some of the missed detections occurred on cases whose
features may not be widespread in real code (such as recursion),
the use of C library functions and other inter-procedural
mechanisms are surely prevalent. Indeed, ARCHER’s poor
performance in [20] is directly attributable to the preponderanc
of these features. ARCHER detected only one overflow in this
prior evaluation, which was based on overflows in real code. Of
the thirteen programs for which ARCHER reported no overflows,
twelve contained buffer overflows that would be classified
according to this evaluation’s taxonomy as having inter-
procedural scope, and nine of those involve calls to C library
functions. To perform well against a body of real code, ARCHER
needs to handle C library functions and other inter-procedural
buffer overflows correctly.

BOON’s analysis is flow-insensitive and context-insensitive for
scalability and simplicity. It focuses exclusively on the misuse of
string manipulation functions, and the authors intentionally
sacrificed precision for scalability. BOO
overflows caused by using primitive pointer operations, and
ignores pointer dereferencing, pointer aliasing, arrays of pointers,
function pointers, and unions. The authors expect a high false
alarm rate due to the loss of precision resulting from the
compromises made for scalability [18].

In this evaluation, BOON properly detected only two out of
fourteen string function overflows, with no false alarms. The two
detected overflows involve the use of strcpy() and fgets(). BOON

failed to detect the second case that calls strcpy(), all six cases
that call strncpy(), the case that calls getcwd, and all four cases
that call memcpy(). Despite the heavy use of C library string
functions in [20], BOON achieved only two detections in that
evaluation as well.

PolySpace is the only commercial tool included in this

sis tractable.

 not too surprising, as it is impractical for a

 static analysis and heuristics that

larm rates in the developers’ own tests [6, 12].

ty-five false alarms are attributable to

and all

ith the loss of precision leading to

program. It appears

tants and scalars, but not computed

e, but did miss

evaluation. Details of its methods and implementation are
proprietary. We do know, however, that its approach uses
techniques described in several published works, including:
symbolic analysis, or abstract interpretation [2]; escape analysis,
for determining inter-procedural side effects [4]; and inter-
procedural alias analysis for pointers [3]. It can detect dead or
unreachable code. Like other tools, it may lose precision at
junctions in code where previously branched paths rejoin, a
compromise necessary to keep the analy

PolySpace missed only one detection in this evaluation, which
was a case involving a signal handler. The PolySpace output for
this test case labeled the signal handler function with the code
“UNP,” meaning “unreachable procedure.” PolySpace reported
seven false alarms across the test suite. These included all four of
the taint cases, shared memory, using array contents for the buffer
address, and one of the calls to strcpy(). The false alarm on the
array contents case is
tool to track the contents of every location in memory. PolySpace
does not, however, report a false alarm on the other two cases
involving array contents. The other six false alarms are on test
cases that in some way involve calls to C library or O/S-specific
function calls. Not all such cases produced false alarms, however.
For instance, only one out of the two strcpy() cases produced a
false alarm: the one that copies directly from a constant string
(e.g., “AAAA”). Without more insight into the PolySpace
implementation, it is difficult to explain why these particular
cases produced false alarms.

PolySpace did not perform as well in Zitser’s evaluation [20].
Again, without more knowledge of the tool’s internals, it is
difficult to know why its detection rate was lower. Presumably
the additional complexity of real code led to approximations to
keep the problem tractable, but at the expense of precision. The
majority of the false alarms it reported in Zitser’s evaluation were
on overflows similar to those for which it reported false alarms in
this evaluation: those involving memory contents and C library
functions.

PolySpace’s performance comes with additional cost in money
and in time. The four other tools were open source when this
evaluation was performed, and completed their analyses across
the entire corpus in seconds or minutes. PolySpace is a
commercial program and ran for nearly two days and eight hours,
averaging close to three minutes of analysis time per test case file.
This long execution time may make it difficult to incorporate into
a code development cycle.

Splint employs “lightweight”
are practical, but neither sound nor complete. Like many other
tools, it trades off precision for scalability. It implements limited
flow-sensitive control flow, merging possible paths at branch
points. Splint uses heuristics to recognize loop idioms and
determine loop bounds without resorting to more costly and
accurate abstract evaluation. An annotated C library is provided,
but the tool relies on the user to properly annotate all other

functions to support inter-procedural analysis. Splint exhibited
high false a

The basis test suite used in this evaluation was not annotated for
Splint for two reasons. First, it is a more fair comparison of the
tools to run them all against the same source code, with no special
accommodations for any particular tool. Second, expecting
developers to completely and correctly annotate their programs
for Splint seems unrealistic.

Not surprisingly, Splint exhibited the highest false alarm rate of
any tool. Many of the thir
inter-procedural cases; cases involving increased complexity of
the index, address, or length; and more complex containers and
flow control constructs. The vast majority, 120 out of 127, of
missed detections are attributable to loops. Detections were
missed in all of the non-standard for() loop cases (both discrete
and continuous), as well as in most of the other continuous loop
cases. The only continuous loop cases handled correctly are the
standard for loops, and it also produces false alarms on nearly all
of those. In addition, it misses the lower bound case, the “cond”
case of local flow control, the taint case that calls getcwd,
four of the signed/unsigned mismatch cases.

While Splint’s detection rate was similar in this evaluation and
the Zitser evaluation [20], its false alarm rate was much higher in
the latter. Again, this is presumably because code that is more
complex results in more situations where precision is sacrificed in
the interest of scalability, w
increased false alarms.

Splint’s weakest area is loop handling. Enhancing loop heuristics
to more accurately recognize and handle non-standard for loops,
as well as continuous loops of all varieties, would significantly
improve performance. The high confusion rate may be a source
of frustration to developers, and may act as a deterrent to Splint’s
use. Improvements in this area are also important.

UNO is an acronym for uninitialized variables, null-pointer
dereferencing, and out-of-bounds array indexing, which are the
three types of problems it is designed to address. UNO
implements a two-pass analysis; the first pass performs intra-
procedural analysis within each function, while the second pass
performs a global analysis across the entire
that the second pass focuses only on global pointer dereferencing,
in order to detect null pointer usage; therefore, UNO would not
seem to be inter-procedural with respect to out-of-bounds array
indexing. UNO determines path infeasibility, and uses this
information to suppress warnings and take shortcuts in its
searches. It handles cons
indices (expressions on variables, or function calls), and easily
loses precision on conservatively-computed value ranges. It does
not handle function pointers, nor does it attempt to compute
possible function return values. Lastly, UNO does not handle the
setjmp/longjmp construct [8].

UNO produced no false alarms in the basic test suit
nearly half of the possible detections (140 out of 291), most of
which would be expected based on the tool’s description. This
included every inter-procedural case, every container case, nearly
every index complexity case (the only one it detected was the
simple variable), every address and length complexity case, every
address alias case, the function and recursion cases, every

signed/unsigned mismatch, nearly every continuous loop, and a
small assortment of others. It performed well on the various data
types, index aliasing, and discrete loops. Given the broad variety
of detections missed in the basic test suite, it is not surprising that
UNO exhibited the poorest performance in Zitser’s evaluation
[20].

7. CONCLUSIONS
A corpus of 291 small C-program test cases was developed to
evaluate static and dynamic analysis tools that detect buffer
overflows. The corpus was designed and labeled using a new,

.

oped can serve as a type of litmus

that a tool doesn’t provide some assistance when

comprehensive buffer overflow taxonomy. It provides a
benchmark to measure detection, false alarm, and confusion rates
of tools, and can be used to find areas for tool enhancement.
Evaluations of five tools validate the utility of this corpus and
provide diagnostic results that demonstrate the strengths and
weaknesses of these tools. Some tools provide very good
detection rates (e.g. ARCHER and PolySpace) while others fall
short of their specified design goals, even for simple
uncomplicated source code. Diagnostic results provide specific
suggestions to improve tool performance (e.g. for Splint, improve
modeling of complex loop structures; for ARCHER, improve
inter-procedural analysis). They also demonstrate that the false
alarm and confusion rates of some tools (e.g. Splint) need to be
reduced

The test cases we have devel
test for tools. Good performance on test cases that fall within the
design goals of a tool is a prerequisite for good performance on
actual, complex code. Additional code complexity in actual code
often exposes weaknesses of the tools that result in inaccuracies,
but rarely improves tool performance. This is evident when
comparing test case results obtained in this study to results
obtained by Zitser [20] with more complex model programs.
Detection rates in these two studies are shown in Table 4. As can
be seen, the two systems that provided the best detection rates on
the model programs (PolySpace and Splint) also had high
detection rates on test cases. The other three tools performed
poorly on model programs and either poorly (BOON) or well
(ARCHER and UNO) on test cases. Good performance on test
cases (at least on the test cases within the tool design goals) is a
necessary but not sufficient condition for good performance on
actual code. Finally, poor performance on our test corpus does not
indicate
searching for buffer overflows. Even a tool with a low detection
rate will eventually detect some errors when used to analyze
many thousands of lines of code.

Table 4. Comparison of detection rates with 291 test cases and
with 14 more complex model programs in Zitser [20].

Tool
Test Case
Detection

Model
Program
Detection [20]

ARCHER 90.7% 1%
BOON 0.7% 5%
PolySpace 99.7% 87%
Splint 56.4% 57%
UNO 51.9% 0.0%

The test corpus could be improved by adding test cases to cover
attribute values currently underrepresented, such as string
functions. It may also be used to evaluate the performance of
dynamic analysis approaches. Anyone wishing to use the test

8.
We would like to thank Rob Cunningham and Tim Leek for
discussions, and Tim
running also than ans for his help with Splint,
David W nsw estions about BOON, Yichen Xie
and Dawson Engler for their help with ARCHER, and Chris Hote
and Vince Hopson for answering questions about C-Verifier and
providing a temporary l

9. RE ENCE
] CERT (2004). CERT Coordination Center Advisories,

corpus should send email to the authors.

ACKNOWLEDGMENTS

for help with getting tools installed and
k David Ev. We

agner for a ering qu

icense.

FER S
[1

http://www.cert.org/advisories/, Carnegie Mellon University,
Software Engineering Institute, Pittsburgh, PA

[2] Cousot, P. and Cousot, R. (1976). Static determination of
dynamic properties of programs, Proceedings of the 2nd
International Symposium on Programming, Paris, France,

xtension for protecting applications

106--130
[3] Deutsch, A. (1994). Interprocedural may-alias analysis for

pointers: beyond k-limiting, Proceedings of the ACM
SIGPLAN'94 Conference on Programming Language Design
and Implementation, Orlando, Florida, 230--241

[4] Deutsch, A. (1997). On the complexity of escape analysis,
Proceedings of the 24th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, Paris,
France, 358--371

[5] Etoh, H. (2004). GCC e
from stack smashing attacks,
http://www.trl.ibm.com/projects/security/ssp/
Evans, D. and Larochelle, D. (2002). Improving[6] security

, using extensible lightweight static analysis, IEEE Software
19 (1), 42--51
GCC Home Page (2004). Free Software Foundation, Bosto
MA,

[7] n,
/gcc.gnu.org/http:/

r
ell

[9]

[8] Holzmann, G. (2002). UNO: Static source code checking fo
user-defined properties, Bell Labs Technical Report, B
Laboratories, Murray Hill, NJ, 27 pages
ICAT (2004). The ICAT Metabase,
http://icat.nist.gov/icat.cfm, National Institute of Standards
and Technology, Computer Security Division, Gait
MD

 klog (1999). The f

hersburg,

[10] rame pointer overwrite, Phrack Magazine,
9 (55), http://www.tegatai.com/~jbl/overflow-papers/P55-08

[11] lysis Tools for
’s Thesis,

[12]
erflow vulnerabilities, Proceedings of the

 Kratkiewicz, K. (2005). Evaluating Static Ana
Detecting Buffer Overflows in C Code, Master
Harvard University, Cambridge, MA, 285 pages

 Larochelle, D. and Evans, D. (2001). Statically detecting
likely buffer ov
10th USENIX Security Symposium, Washington, DC, 177--
190

http://www.cert.org/advisories/
http://www.trl.ibm.com/projects/security/ssp/

[13] Moore, D., Paxson, V., Savage, S., Shannon, C., Staniford,
S., and Weaver, N. (2003). The Spread of the
Sapphire/Slammer Worm,

s/2003/sapphire/sapphirhttp://www.caida.org/outreach/paper
e.html

 PolySpace Technologies (2003). PolySpace C Developer
Editio

[14]
n, http://www.polyspace.com/datasheets/c_psde.htm,

[15]
Paris, France
PSS Security Response Team (2003). PSS Security Response
Team Alert - New Worm: W32.Blaster.worm,
http://www.microsoft.com/technet/treeview/default.asp?url=/
technet/security/alerts/msblaster.asp, Microsoft Corporation,

er

,

Redmond, WA
[16] Ruwase, O. and Lam, M. (2004). A practical dynamic buff

overflow detector, Proceedings of the 11th Annual Network
and Distributed System Security Symposium, San Diego, CA
159--169

[17] Security Focus (2004). The Bugtraq mailing list,
http://www.securityfocus.com/archive/1, Security
Semantec Corporation, Cupertino, CA

Focus,

 System Security Symposium, San Diego, CA, 3--

[19] g
ct memory access

l

[20] er, M. (2003). Securing Software: An Evaluation of

0

[21]
open-

he 12 ACM SIGSOFT

[18] Wagner, D., Foster, J.S., Brewer, E.A., and Aiken, A.
(2000). A first step towards automated detection of buffer
overrun vulnerabilities, Proceedings of the Network and
Distributed
17

 Xie, Y., Chou, A., and Engler, D. (2003). ARCHER: Usin
symbolic, path-sensitive analysis to dete
errors, Proceedings of the 9th European Software
Engineering Conference/10th ACM SIGSOFT Internationa
Symposium on Foundations of Software Engineering,
Helsinki, Finland, 327--336

 Zits
Static Source Code Analyzers, Master’s Thesis,
Massachusetts Institute of Technology, Cambridge, MA, 13
pages

 Zitser, M., Lippmann, R., and Leek, T. (2004). Testing static
analysis tools using exploitable buffer overflows from
source code, Proceedings of t th

International Symposium on Foundations of Software
Engineering, Newport Beach, CA, 97--106

http://icat.nist.gov/icat.cfm
http://icat.nist.gov/icat.cfm
http://www.caida.org/outreach/papers/2003/sapphire/sapphire.html

	INTRODUCTION
	BUFFER OVERFLOW TAXONOMY
	TEST SUITE
	TEST PROCEDURES
	RESULTS AND ANALYSIS
	Detailed Tool Diagnostics
	CONCLUSIONS
	ACKNOWLEDGMENTS
	REFERENCES

