
Painful Java Puzzlers and
Bug Patterns

DevIgnition 2012

Bill Pugh

1

Painful puzzlers

• Java Programming Puzzlers:

• Short program with curious behavior

• What does it print? (multiple choice)

• The mystery revealed

• How to fix the problem

• The moral

• More generally

• mistakes arising from tricky bits of the Java language and APIs

• Things to watch out for
2

No “New” Java
puzzlers

• Java Puzzlers has been a joint effort led by Joshua Bloch,
with help from Neal Gafter, myself, Bob Lee and others

• We’ve scraped the bottle of the barrel

• Waiting for Java 8...

• In honor of that, we have 7 bug
patterns/areas, in no particular order

• ... starting with 3 classic Java puzzlers

3

4

1. “Histogram Mystery”
public class Histogram {
 private static final String[] words =
 { "I", "recommend", "polygene", "lubricants" };
 public static void main(String[] args) {
 int[] histogram = new int[5];
 for (String word1 : words) {
 for (String word2 : words) {
 String pair = word1 + word2;
 int bucket = Math.abs(pair.hashCode())
 % histogram.length;
 histogram[bucket]++;
 }
 }
 int pairCount = 0;
 for (int freq : histogram)
 pairCount += freq;
 System.out.println('C' + pairCount);
 }
}

4

5

What Does It Print?
public class Histogram {
 private static final String[] words =
 { "I", "recommend", "polygene", "lubricants" };
 public static void main(String[] args) {
 int[] histogram = new int[5];
 for (String word1 : words) {
 for (String word2 : words) {
 String pair = word1 + word2;
 int bucket = Math.abs(pair.hashCode())
 % histogram.length;
 histogram[bucket]++;
 }
 }
 int pairCount = 0;
 for (int freq : histogram)
 pairCount += freq;
 System.out.println('C' + pairCount);
 }
}

(a) 83

(b) C16

(c) S

(d) None of the above

5

6

What Does It Print?

(a) 83

(b) C16

(c) S

(d) None of the above – throws
 ArrayOutOfBoundsException

Math.abs(int) can return a negative number,
and so can the % operator

6

7

Another Look
public class Histogram {
 private static final String[] words = // Carefully chosen!

 { "I", "recommend", "polygene", "lubricants" };
 // "polygenelubricants".hashCode() == Integer.MIN_VALUE
 public static void main(String[] args) {

 int[] histogram = new int[5];
 for (String word1 : words) {

 for (String word2 : words) {
 String pair = word1 + word2;

 int bucket = Math.abs(pair.hashCode())
 % histogram.length;

 histogram[bucket]++;
 }

 }
 int pairCount = 0;

 for (int freq : histogram)
 pairCount += freq;

 System.out.println('C' + pairCount);
 }

}

7

8

How Do You Fix It?
public class Histogram {
 private static final String[] words =
 { "I", "recommend", "polygene", "lubricants" };
 public static void main(String[] args) {
 int[] histogram = new int[5];
 for (String word1 : words)
 for (String word2 : words) {
 String pair = word1 + word2;
 int bucket = Math.abs(pair.hashCode()
 % histogram.length); // Math.abs follows %
 histogram[bucket]++;
 }
 int pairCount = 0;
 for (int freq : histogram)
 pairCount += freq;
 System.out.println('C' + pairCount);
 }
}

8

9

Moral
•Math.abs doesn't guarantee nonnegative result

•Integer.MIN_VALUE == -Integer.MIN_VALUE

• The % operator is remainder, not mod; can be negative

• To translate a signed hash value to a bucket

•Math.abs(hashVal % buckets.length)

• Or (hashVal >>> 1) % buckets.length

• Or (hashVal & 0x7fffffff) % buckets.length

• Or use power-of-two length array
(hashVal & (buckets.length – 1))

9

Related problems

• bytes are signed

• and sign extended

• shifting an int by 32 bits, and then converting it to a long

• ints silently converted to float

• methods that return -1 (EOF) or 0-255

• or -1 or an unsigned char

10

11

2. “The Joy of Sets”

public class ShortSet {

 public static void main(String args[]) {

 Set<Short> s = new HashSet<Short>();

 for (short i = 0; i < 100; i++) {

 s.add(i);

 s.remove(i - 1);

 }

 System.out.println(s.size());

 }

}

11

12

What Does It Print?

public class ShortSet {

 public static void main(String args[]) {

 Set<Short> s = new HashSet<Short>();

 for (short i = 0; i < 100; i++) {

 s.add(i);

 s.remove(i - 1);

 }

 System.out.println(s.size());

 }

}

(a) 1

(b) 100

(c) Throws exception

(d) None of the above

12

13

What Does It Print?

(a) 1

(b) 100

(c) Throws exception

(d) None of the above

The set contains Short values, but we’re
removing Integer values

13

14

Another Look
public class ShortSet {

 public static void main(String args[]) {

 Set<Short> s = new HashSet<Short>();

 for (short i = 0; i < 100; i++) {

 s.add(i);

 s.remove(i – 1); // int-valued expression

 }

 System.out.println(s.size());

 }

}

14

15

Another ‘nother Look
public class ShortSet {
 public static void main(String args[]) {

 Set<Short> s = new HashSet<Short>();

 for (short i = 0; i < 100; i++) {
 s.add(i);

 s.remove(i – 1); // int-valued expression

 }

 System.out.println(s.size());
 }

}

public interface Set<E>extends Collection<E> {
 public abstract boolean add(E e);

 public abstract boolean remove(Object o);

 ...

}
15

16

How Do You Fix It?

public class ShortSet {

 public static void main(String args[]) {

 Set<Short> s = new HashSet<Short>();

 for(short i = 0; i < 100; i++) {

 s.add(i);

 s.remove((short) (i – 1));

 }

 System.out.println(s.size());

 }

}

16

17

Moral

•Collection<E>.remove takes Object, not E

• Also Collection.contains, Map.get

• Integral arithmetic always results in int or long

• Avoid mixing types

• Avoid short; prefer int and long

• Arrays of short are the only compelling use case

17

Mismatched types

• Lots of places where you can pass in an object of the
wrong type, and nothing happens

• comparing incompatible objects with equals

18

Map interface

public interface Map<K,V> {

V put(K key, V value);

V get(Object key);

boolean containsKey(Object key);

boolean containsValue(Object value);

V remove(Object key);

...

}
19

Map interface is mostly untyped

• It is type safe to pass any object
to these methods

• type parameter ignored

• If it is an incompatible type, the
call will do nothing

• I’m told it had to be this way for
backwards compatibility

• I’m getting to hate backwards
compatibility

20

Comparing objects of different types

• Code that compares an instance of Foo with a String for
equality

• almost always wrong

• might be OK if Foo.equals checks for a String being
passed as an argument

• Foo shouldn’t do this: break symmetry, and confusing as
hell

21

22

3. “Mind the Gap”
import java.io.*;

public class Gap {

 private static final int GAP_SIZE = 10 * 1024;

 public static void main(String args[]) throws IOException {

 File tmp = File.createTempFile("gap", ".txt");

 FileOutputStream out = new FileOutputStream(tmp);

 out.write(1);

 out.write(new byte[GAP_SIZE]);

 out.write(2);

 out.close();

 InputStream in =

 new BufferedInputStream(new FileInputStream(tmp));

 int first = in.read();

 in.skip(GAP_SIZE);

 int last = in.read();

 System.out.println(first + last);

 }

}
22

23

What does it print?
import java.io.*;

public class Gap {

 private static final int GAP_SIZE = 10 * 1024;

 public static void main(String args[]) throws IOException {

 File tmp = File.createTempFile("gap", ".txt");

 FileOutputStream out = new FileOutputStream(tmp);

 out.write(1);

 out.write(new byte[GAP_SIZE]);

 out.write(2);

 out.close();

 InputStream in =

 new BufferedInputStream(new FileInputStream(tmp));

 int first = in.read();

 in.skip(GAP_SIZE);

 int last = in.read();

 System.out.println(first + last);

 }

}

(a) 1

(b) 3

(c) Throws exception

(d) It varies

23

24

What Does It Print?

(a) 1 (in practice)

(b) 3

(c) Throws exception

(d) It varies from run to run (according to spec)

skip returns a value; ignore it at your peril.
Also it is difficult to use correctly.

24

25

Another look
import java.io.*;

public class Gap {

 private static final int GAP_SIZE = 10 * 1024;

 public static void main(String args[]) throws IOException {

 File tmp = File.createTempFile("gap", ".txt");

 FileOutputStream out = new FileOutputStream(tmp);

 out.write(1);

 out.write(new byte[GAP_SIZE]);

 out.write(2);

 out.close();

 InputStream in =

 new BufferedInputStream(new FileInputStream(tmp));

 int first = in.read();

 in.skip(GAP_SIZE); // return value ignored

 int last = in.read();

 System.out.println(first + last);

 }

}
25

26

How Do You Fix It?

static void skipFully(InputStream in, long nBytes)

 throws IOException {

 long remaining = nBytes;

 while (remaining != 0) {

 long skipped = in.skip(remaining);

 if (skipped == 0)

 throw new EOFException();

 remaining -= skipped;

 }

}

26

27

Moral

• The skip method is hard to use and error prone

• Use your skipFully instead of skip

• There is an RFE to add it to InputStream

• More generally, if an API is broken, wrap it

• For API designers

• Don’t violate the principle of least astonishment

• Make it easy to do simple things

27

Developers don’t read the
documentation

• If a developers adds a call to a method without reading the
JavaDoc, are they likely to invoke it correctly?

• does it a call look like it does one thing, but actually does
another?

• Does it return a value that only matters in exceptional
circumstance?

• Is it hard to call the method correctly?

• InputStream.skip(...)

• ConcurrentMap.putIfAbsent(x, y)

28

29

More examples of bad method calls

// com.sun.rowset.CachedRowSetImpl
if (type == Types.DECIMAL || type == Types.NUMERIC)

 ((java.math.BigDecimal)x).setScale(scale);

// com.sun.xml.internal.txw2.output.XMLWriter

try { ... }

catch (IOException e) {

 new SAXException("Server side Exception:" + e);

 }

29

Bad Method Invocations

• Methods whose return value should never be ignored

• Strings are immutable, so functions like trim() and
toLowerCase() return new String

• Methods that rarely return an exceptional value

•File.mkdir()

• Dumb/useless methods

• Invoking toString or equals on an array

• Lots of specific rules about particular API methods

• Hard to memorize, easy to get wrong

30

31

4. Supported after all?

com.sun.corba.se.impl.io.IIOPInputStream:

 protected final Class resolveClass(ObjectStreamClass v)

 throws IOException, ClassNotFoundException {

 throw new IOException(
 "Method resolveClass not supported");

 }

Class extends java.io.ObjectInputStream

Surprisingly, calling resolveClass works same as in OIS, doesn’t throw
exception

31

32

Does it override the
superclass method?

java.io.ObjectInputStream:

 protected Class<?>
 resolveClass(ObjectStreamClass desc)

 throws IOException, ClassNotFoundException { … }

com.sun.corba.se.impl.io.IIOPInputStream:

 protected final Class resolveClass(ObjectStreamClass v)

 throws IOException, ClassNotFoundException { … }

32

33

Look at those elided imports

com.sun.corba.se.impl.io.IIOPInputStream:

import com.sun.corba.se.impl.io.ObjectStreamClass;

protected final Class resolveClass(ObjectStreamClass v)

 throws IOException, ClassNotFoundException { … }

Parameter types are different: same simple name, different packages

Doesn’t override method in superclass

33

identity confusion problems

• Easy to mistakenly refer to or name the wrong thing

• define a method that should but doesn’t override a
method in a superclass

• self assignment of field (see JBoss)

• invoke the wrong version of an overloaded method

34

Interlude

• Why are puzzlers particularly painful/dangerous?

• Because they look correct

• They slide right through code review

• When trying to debug them, you keep circling them,
checking everything else

• Particularly nasty if they fail silently

35

5. Security bugs

• SQL Injection

• XSS - Cross site scripting

• HTTP response splitting

• CSRF - Cross site request forgery

• Path traversal

36

SQL Injection

37

SQL injection

• building SQL statements with string concatenation of
untrusted/unchecked user input

• In Java, use PreparedStatements

• only case where SQL strings shouldn’t be constant is
when the table/column names need to be parameterized

• be scared of such code

• In 2011, SQL injection was responsible for the compromises
of many high-profile organizations, including Sony Pictures,
PBS, MySQL.com, security company HBGary Federal, and
many others.

38

XSS - cross site scripting

• Reflected XSS - When a web server echos untrusted user
data as part of a response to a request

• Stored XSS - when a web server stored untrusted data
into a store, and then includes that data as part of
responses to requests

39

XSS - why is this a problem

• untrusted data could include Javascript

• which is executed in the context of the owner’s web page,
having access to cookies, session, etc

• can take actions on your behalf, or hijack your session

40

HTTP response splitting

• Putting untrusted user input into an HTTP header

• Can include new lines, take over entire response

41

CSRF - cross site request
forgery

• Post a web page that says “check out my book on Amazon”

• tweet/promote the web page

• If anyone visiting your web page, it generates a request to
the Amazon server to “Buy now”

• If you are already logged into Amazon, it will send the
cookie that authenticates you to Amazon

•

42

Preventing XSRF

• All web pages that perform an action should be POST
requests, not GET requests

• restrict POST requests to only those that have an
appropriate referer

• possible to spoof referer, requires broken plugins, etc

• Can also include a secure hidden hash value in the form

• only present on and send from authorized pages

43

Path traversal

• Using String concatenation or
 new File(f, request.getParameter(name))
to form file names, using untrusted user input

• untrusted user input can include ../../..

44

2011 CWE/SANS Top 25 Most
Dangerous Software Errors
• http://cwe.mitre.org/top25/index.html

• SQL injection

• OS Command Injection

• Buffer Copy without Checking Size of Input

• Improper Neutralization of Input During Web Page
Generation ('Cross-site Scripting')

• Missing Authentication for Critical Function

• ...

45

http://cwe.mitre.org/top25/index.html
http://cwe.mitre.org/top25/index.html

6. Concurrency bugs

• 10 years ago, a lot of us saw multicore coming, and we
know that most coders didn’t know how to write correct
concurrent code

• mostly, they still don’t

• but it hasn’t been the disaster many suspected

• but I’ve heard reports that it is a disaster on 168 core
machines

• Maybe mistakes that only bite less than one in a million
times aren’t the biggest problem software has

46

concurrency bugs

• Dataraces

• multiple threads simultaneously accessing something that
isn’t thread-safe

• Atomicity failure

• A thread performs a sequence of operations on a thread-
safe object

• Deadlock -- not much of a problem in practice

• caused due to inconsistent lock ordering

47

Datarace bug

• Did some performance tests of JBoss

• Ran running 30 clients against a JBoss server with 24 cores

• After load test was complete, load average on server
stayed at 16

48

bug, continued

• Multiple threads were putting some debugging information
into a shared unsychronized HashMap

• just debugging information, not criticial

• except that if two threads try to resize a HashMap at the
same time, they can introduce a cycle into the linked list
of entries in a bucket

• once that happens, threads that go into that bucket never
come out

49

Atomicity failure

ConcurrentHashMap map;
void foo(Object key, Object value) {
 if (map.get(key) == null)
 anyMap.put(key, value);
 }

50

Using putIfAbsent

• ConcurrentHashMap supports putIfAbsent, to do this
atomically

• but can be tricky to use correctly

• putIfAbsent returns null if it succeeded, returns the current
value if it fails

51

Using putIfAbsent
correctly

V cachedComputation(K key) {
 V value = map.get(key);
 if (value != null) return value;
 value = computeValue(key);
 Value v2
 = map.putIfAbsent(key, value);
 if (v2 != null)
 value = v2;
 return value;
 }

52

Preventing concurrency bugs

• When possible, use higher level concurrency abstractions

• no spaghetti concurrency control

• try to avoid mixing concurrency logic and business logic

• Document your concurrent designs

• Read Java Concurrency in Practice

• Understand and use java.util.concurrent

• Fork/Join framework in Java 7 is really nice

• and parallel array constructs coming in Java 8 will be even
nicer

53

http://www.javaconcurrencyinpractice.com
http://www.javaconcurrencyinpractice.com

7. Untested code

• If a method isn’t ever executed, high chance that it doesn’t
work

• A system test might be OK if not ideal

• If you don’t have any situation that causes the method to
be executed, why did you write it?

54

Improving software
quality

55

Improving software quality

• Many different things can catch mistakes and/or improve
software quality

• Each technique more efficient at finding some
mistakes than others

• Each subject to diminishing returns

• No magic bullet

• Find the right combination for you and for the
mistakes that matter to you

56

Test, test, test...

• Many times FindBugs will identify bugs

• that leave you thinking “Did anyone test this code?”

• And you find other mistakes in the same vicinity

• FindBugs might be more useful as an untested code detector than as a
bug detector

• Overall, testing is far more valuable than static analysis

• I’m agnostic on unit tests vs. system tests

• But no one writes code so good you don’t need to check that it does
the right thing

• I’ve learned this from personal painful experience

57

Dead code

• Many projects contain lots of dead code

• abandoned packages and classes

• classes that implement 12 methods; only 3 are used

• Code coverage is a very useful tool

• but pushing to very high code coverage may not be
worthwhile

• you’d have to cover lots of code that never gets
executed in production

58

Code coverage from
production

• If you can sample code coverage from production, great

• look for code executed in production but not
covered in unit or system test

59

Cool idea

• If you can’t get code coverage from production

• Just get list of loaded classes

• just your code, ignoring classes loaded from core
classes or libraries

• Very light weight instrumentation

• Log the data

• could then ask queries such as “Which web services
loaded the FooBar class this month?”

60

Using FindBugs to find
mistakes

• FindBugs is accurate at finding coding mistakes

• 75+% evaluated as a mistake that should be fixed

• But many mistakes have low costs

• memory/type safety lowers cost of mistakes

• If applied to existing production code, many expensive
mistakes have already been removed

• perhaps painfully

• Need to lower cost of using FindBugs to sell to some
projects/teams

61

FindBugs integration at
Google

• FindBugs has been in use for years at Google

• In the past week, finally turned on as a presubmit check
at Google

• When you want to commit a change, you need a code
review

• now, FindBugs will comment on your code and you
need to respond to newly introduced issues and
discuss them with the person doing your code review

62

• First research paper published in 2004

• FindBugs 1.0 released in 2006

• 1.7+ million downloads from 160+ countries

• 2.0.1 released

• 2.0.2 out within a week

63

FindBugs 2.0

• FindBugs analysis engine continues to improve, but only
incrementally

• Focus on efficiently incorporating static analysis into the
large scale software development

• Review of issues done by a community

• Once issue is marked as “not a bug”, never forget

• Integration into bug tracking and source code version
control systems

64

Bug ranking

• FindBugs reported a priority for an issue, but it was only
meaningful when comparing instances of the same bug
pattern

• a medium priority X bug might be more important
than a high priority Y bug

• Now each issue receives a bug rank (a score, 1-20)

• Can be customized according to your priorities

• Grouped into Scariest, Scary, Troubling, and Of
Concern

65

FindBugs community review

• Whenever / where ever you run FindBugs, after
completing or loading an analysis

• it talks to the cloud

• sees how we’ve been seeing this issue

• sees if anyone has marked the issue as “should fix” or
“not a bug”

• As soon you classify an issue or enter text about the
issue, that is sent to the cloud

• Talk
66

More cloud integration

• Integration with bug tracking systems

• One click to bring up pre-populated web page in bug
tracker describing issue

• If bug already filed against issue, click shows you
existing issue in bug tracker

• Integration with web based source viewers, such as
FishEye

• Allow viewing of file history, change lists, etc.

67

Questions?

68

