Painful Java Puzzlers and
Bug Patterns

Devlgnition 2012

Bill Pugh

Painful puzzlers

ll\l |lll'\l

® |ava Programming Puzzlers: b Comencrers ™
® Short program with curious behavior P éAZ\\Lég\S
® What does it print? (multiple choice) ST,
® The mystery revealed ey

4

® How to fix the problem
® The moral

® More generally

® mistakes arising from tricky bits of the Java language and APlIs

® Things to watch out for

No “New" |ava
puzzlers

® Java Puzzlers has been a joint effort led by Joshua Bloch,
with help from Neal Gafter, myself, Bob Lee and others

® We've scraped the bottle of the barrel
® Waiting for Java 8...

® |n honor of that, we have 7 bug
patterns/areas, in no particular order

® .. starting with 3 classic Java puzzlers

|. “Histogram Mystery”

public class Histogram {
private static final String[] words =
{ "I", "recommend", "polygene", "lubricants" };
public static void main(String[] args) {
int[] histogram = new int[5];
for (String wordl : words) {
for (String word2 : words) {
String pair = wordl + word2;
int bucket = Math.abs(pair.hashCode())
% histogram. length;
histogram[bucket]++;

s
int pairCount = 0;
for (int freq : histogram)
pairCount += freq;
System.out.println('C"' + pairCount);

What Does It Print!?

public class Histogram {
private static final String[] words =
{ "I", "recommend", "polygene", "lubricants" };
public static void main(String[] args) {
int[] histogram = new int[5];
for (String wordl : words) {
for (String word2 : words) {
String pair = wordl + word2;
int bucket = Math.abs(pair.hashCode())
% histogram. length;
histogram[bucket]++;

(a) 83

(b) C16

(c) S

(d) None of the above

s
int pairCount = 0;
for (int freq : histogram)
pairCount += freq;
System.out.println('C"' + pairCount);

What Does It Print!?

(a) 83
(b) C16
(c) S

(d) None of the above — throws
ArrayOutOfBoundsException

Math.abs (int) can return a negative number,

and so can the % operator

6

Another Look

public class Histogram {
private static final String[] words = // Carefully chosen!

{ "I", "recommend", "polygene", "lubricants" };
// "polygenelubricants".hashCode() == Integer.MIN_VALUE

public static void main(String[] args) A
int[] histogram = new int[5];
for (String wordl : words) {
for (String word2 : words) {
String pair = wordl + word2;
int bucket = Math.abs(pair.hashCode())
% histogram. length;

histogram[bucket]++;

s

int pairCount = 0;

for (int freq : histogram)
pairCount += freq;

System.out.println('C"' + pairCount);

How Do You Fix It?

public class Histogram {
private static final String[] words =
{ "I", "recommend", "polygene", "lubricants" };
public static void main(String[] args) {
int[] histogram = new int[5];
for (String wordl : words)
for (String word2 : words) {
String pair = wordl + word2,
int bucket = Math.abs(pair.hashCode()
% histogram. length); // Math.abs follows %
histogram[bucket]++;
s
int pairCount = 0;
for (int freq : histogram)
pairCount += freq;
System.out.println('C' + pairCount);

Moral

Math.abs doesn't guarantee nonnegative result

Integer .MIN VALUE == -Integer.MIN VALUE

® The % operator is remainder, not mod; can be negative

® Jo translate a signed hash value to a bucket
Math.abs (hashVal % buckets.length)
e Or (hashval >>> 1) % buckets.length
e Or (hashval & Ox7fffffff) % buckets.length

® Or use power-of-two length array
(hashVal & (buckets.length - 1))

9

Related problems

® bytes are signed

® and sign extended
® shifting an int by 32 bits, and then converting it to a long
® ints silently converted to float

® methods that return -1 (EOF) or 0-255

® or -| or an unsigned char

10

2. The Joy of Sets”

public class ShortSet {
public static void main(String args[]) {
Set<Short> s = new HashSet<Short>();
for (short i = 0; i < 100; i++) {
s.add(i);
s.remove(i - 1);

}

System.out.println(s.size());

11

What Does It Print!?

public class ShortSet {
public static void main(String args[]) {

Set<Short> s = new HashSet<Short>();

for (short i = 0; i < 100; i++) {
s.add(1i);
s.remove(i — 1);

} (a) 1

System.out.println(s.size()); (b) 100

1 (c) Throws exception

| (d) None of the above

12

What Does It Print!?

(2) 1
(b) 100
(c) Throws exception

(d) None of the above

The set contains Short values, but we’re
removing Integer values

13

13

Another Look

public class ShortSet {
public static void main(String args[]) {
Set<Short> s = new HashSet<Short>();
for (short i = 0; i < 100; i++) {
s.add(1i);
s.remove(i — 1); // int-valued expression

}

System.out.println(s.size());

14

14

Another ‘nother Look

public class ShortSet {
public static void main(String args([]) {
Set<Short> s = new HashSet<Short>();
for (short i = 0; i < 100; i++) {
s.add(i);

s.remove(i — 1); // int-valued expression

}

System.out.println(s.size());

}

public interface Set<E>extends Collection<E> {
public abstract boolean add(E e);

public abstract boolean remove(Object o);

15

15

How Do You Fix

public class ShortSet {
public static void main(String args([]) {
Set<Short> s = new HashSet<Short>();
for(short i = 0; i < 100; i++) {
s.add(1i);
s.remove((short) (i — 1));

}

System.out.println(s.size());

16

It

16

Moral

Collection<E>.remove takes Object, not E
® Also Collection.contains, Map.get

® |ntegral arithmetic always results in int or long

® Avoid mixing types

® Avoid short;prefer int and long

® Arrays of short are the only compelling use case

17

17

Mismatched types

® | ots of places where you can pass in an object of the
wrong type, and nothing happens

® comparing incompatible objects with equals

18

Map interface

public interface Map<K,V> {
V put (K key, V value);
V get(Object key);
boolean containsKey(Object key);
boolean containsValue(Object wvalue);

V remove(Object key);

Map interface is mostly untyped

® |t is type sdfe to pass any object
to these methods

® type parameter ighored

¢ If it is an incompatible type, the
call will do nothing

® I'm told it had to be this way for
backwards compatibility

® I'm getting to hate backwards
compatibility

Comparing objects of different types

Code that compares an instance of Foo with a String for
equality

almost always wrong

might be OK if Foo.equals checks for a String being
passed as an argument

Foo shouldn’t do this: break symmetry, and confusing as
hell

21

3."Mind the Gap”

public class Gap {

import java.10.x%;

private static final int GAP_SIZE = 10 x 1024;

public static void main(String args[]) throws IOException {
File tmp = File.createTempFile("gap", ".txt");
FileOutputStream out = new FileOutputStream(tmp);
out.write(1);
out.write(new byte[GAP_SIZE]);
out.write(2);

out.close();

InputStream in
new BufferedInputStream(new FileInputStream(tmp));

int first = in.read();

in.skip (GAP_SIZE);

int last = in.read();

System.out.println(first + last);

22

What does it print? |0

import java.io.x; (c) Throws exception
public class Gap {

(d) It varies

private static final int GAP_SIZE = 10 x 1024;
public static void main(String args[]) throws IOException {
File tmp = File.createTempFile("gap", ".txt");
FileOutputStream out = new FileOutputStream(tmp);
out.write(1);
out.write(new byte[GAP_SIZE]);
out.write(2);

out.close();

InputStream in
new BufferedInputStream(new FileInputStream(tmp));

int first = in.read();

in.skip (GAP_SIZE);

int last = in.read();

System.out.println(first + last);

23

23

What Does It Print!?

(a) | (in practice)
(b) 3
(c) Throws exception

(d) It varies from run to run (according to spec)

skip returns a value; ignore it at your peril.
Also it is difficult to use correctly.

24

24

Another look

import java.10.x%;
public class Gap {
private static final int GAP_SIZE = 10 x 1024;
public static void main(String args[]) throws IOException {
File tmp = File.createTempFile("gap", ".txt");
FileOutputStream out = new FileOutputStream(tmp);
out.write(1);
out.write(new byte[GAP_SIZE]);
out.write(2);
out.close();
InputStream in =
new BufferedInputStream(new FileInputStream(tmp));
int first = in.read();
in.skip(GAP_SIZE); // return value ignored
int last = in.read();

System.out.println(first + last);

25

How Do You Fix It?

static void skipFully(InputStream in, long nBytes)
throws IOException {
long remaining = nBytes;
while (remaining !'= 0) ({
long skipped = in.skip(remaining) ;
if (skipped == 0)
throw new EOFException() ;

remaining -= skipped;

26

26

Moral

® The skip method is hard to use and error prone
® Use your skipFully instead of skip
® Thereis an RFE to add it to InputStream

® More generally, if an APl is broken, wrap it
® For API designers
® Don’t violate the principle of least astonishment

® Make it easy to do simple things

27

27

Developers don’t read the
documentation

If a developers adds a call to a method without reading the
JavaDoc, are they likely to invoke it correctly?

does it a call look like it does one thing, but actually does
another?

Does it return a value that only matters in exceptional
circumstance?

s it hard to call the method correctly?
InputStream.skip(...)

ConcurrentMap.putlfAbsent(x, y)

28

More examples of bad method calls

/I com.sun.rowset.CachedRowSetImpl
if (type == Types.DECIMAL || type == Types.NUMERIC)

((java.math.BigDecimal) x) .setScale(scale) ;

/I com.sun.xml.internal.txw?2.output. XMLWriter

try { ... }

catch (IOException e) {

new SAXException ("Server side Exception:" + e);

} 4

w[' N %
o 4

\’k’-
29 \Y

29

Bad Method Invocations

Methods whose return value should never be ignored

Strings are immutable, so functions like trim () and
toLowerCase () return new String

Methods that rarely return an exceptional value
File.mkdir()

Dumb/useless methods
Invoking toString or equals on an array

Lots of specific rules about particular APl methods

Hard to memorize, easy to get wrong

30

4. Supported after all?

com.sun.corba.se.impl.io.IIOPInputStream:

protected final Class resolveClass (ObjectStreamClass v)
throws IOException, ClassNotFoundException ({

throw new IOException (
"Method resolveClass not supported") ;

Class extends java.io.ObjectInputStream

Surprisingly, calling resolveClass works same as in OIS, doesn’t throw

exception
31

31

Does it override the
superclass method!?

java.io0.0bjectInputStream:

protected Class<?>
resolveClass (ObjectStreamClass desc)

throws IOException, ClassNotFoundException { .. }
com.sun.corba.se.impl.io0.ITIOPInputStream:

protected final Class resolveClass (ObjectStreamClass v)

throws IOException, ClassNotFoundException { .. }

32

32

Look at those elided imports

com.sun.corba.se.impl.i10.ITIOPInputStream:

import com.sun.corba.se.impl.io. ;

protected final Class resolveClass (V)

throws IOException, ClassNotFoundException { .. }

Parameter types are different: same simple name, different packages

Doesn’t override method in superclass
33

33

identity confusion problems

® Easy to mistakenly refer to or name the wrong thing

® define a method that should but doesn’t override a
method in a superclass

® self assignment of field (see |Boss)

® invoke the wrong version of an overloaded method

34

Interlude

® Why are puzzlers particularly painful/dangerous!?
® Because they look correct
® They slide right through code review

® When trying to debug them, you keep circling them,
checking everything else

® Particularly nasty if they fail silently

35

5. Security bugs

® SQL Injection

® XSS - Cross site scripting

® HT TP response splitting

® CSRF - Cross site request forgery

® Path traversal

36

HI, THIS 15

YOUR SON'S SCHOOL.

WE'RE HAVING SOME
COMPUTER TROUBLE.

\%m

SQL Injection

OH, DEAR - DID HE
BREAK SOMETHING?

IN A WAY

it

DID YOU REALLY
NAME YOUR SON
Robert'); DROP
TABLE Students;-- 7

~OH.YES LITTLE
ROBBY TABLES,
WE CALL HIM.

WELL, WE'VE LOST THIS
YEARS STUDENT RECORDS.
T HOPE YOURE HAPPRY.

{

AND I HOPE
< YOUVE LEARNED
t TOSANMIZE YOUR

DATARASE INPUTS.

37

SQL injection

® building SQL statements with string concatenation of
untrusted/unchecked user input

® |n Java, use PreparedStatements

® only case where SQL strings shouldn’t be constant is
when the table/column names need to be parameterized

® be scared of such code

® |[n 201 |, SQL injection was responsible for the compromises
of many high-profile organizations, including Sony Pictures,
PBS, MySQL.com, security company HBGary Federal, and
many others.

38

XSS - cross site scripting

® Reflected XSS - When a web server echos untrusted user
data as part of a response to a request

® Stored XSS - when a web server stored untrusted data
into a store, and then includes that data as part of
responses to requests

39

XSS - why is this a problem

® untrusted data could include Javascript

® which is executed in the context of the owner’s web page,
having access to cookies, session, etc

® can take actions on your behalf, or hijack your session

40

HI1 TP response splitting

® Putting untrusted user input into an HT TP header

® Can include new lines, take over entire response

41

CSRF - cross site request
forgery

® Post a web page that says “check out my book on Amazon”
® tweet/promote the web page

® |f anyone visiting your web page, it generates a request to
the Amazon server to “Buy now”

® |f you are already logged into Amazon, it will send the
cookie that authenticates you to Amazon

42

Preventing XSRF

® All web pages that perform an action should be POST
requests, not GET requests

® restrict POST requests to only those that have an
appropriate referer

® possible to spoof referer, requires broken plugins, etc
® Can also include a secure hidden hash value in the form

® only present on and send from authorized pages

43

Path traversal

® Using String concatenation or
new File(f, request.getParameter(name))
to form file names, using untrusted user input

® untrusted user input can include ../../..

44

2011 CWE/SANS Top 25 Most
Dangerous Software Errors

® http://cwe.mitre.org/top25/index.html

® SQL injection
® OS Command Injection
® Buffer Copy without Checking Size of Input

® |mproper Neutralization of Input During Web Page
Generation ('Cross-site Scripting')

® Missing Authentication for Critical Function

45

http://cwe.mitre.org/top25/index.html
http://cwe.mitre.org/top25/index.html

6. Concurrency bugs

® |0 years ago, a lot of us saw multicore coming, and we
know that most coders didn’t know how to write correct
concurrent code

® mostly, they still don't
® but it hasn’t been the disaster many suspected

® but I've heard reports that it is a disaster on |68 core
machines

® Maybe mistakes that only bite less than one in a million
times aren’t the biggest problem software has

46

concurrency bugs

® Dataraces

® multiple threads simultaneously accessing something that
isn’t thread-safe

® Atomicity failure

® A thread performs a sequence of operations on a thread-
safe object

® Deadlock -- not much of a problem in practice

® caused due to inconsistent lock ordering

47

Datarace bug

® Did some performance tests of |Boss
® Ran running 30 clients against a JBoss server with 24 cores

® After load test was complete, load average on server
stayed at |16

48

bug, continued

® Multiple threads were putting some debugging information
into a shared unsychronized HashMap

® just debugging information, not criticial

® except that if two threads try to resize a HashMap at the
same time, they can introduce a cycle into the linked list
of entries in a bucket

® once that happens, threads that go into that bucket never
come out

49

Atomicity failure

ConcurrentHashMap map;
void foo(Object key, Object value) {
if (map.get(key) == null)
anyMap.put(key, value);

Using putlfAbsent

® ConcurrentHashMap supports putlfAbsent, to do this
atomically

® but can be tricky to use correctly

® putlfAbsent returns null if it succeeded, returns the current
value if it fails

51

Using putlfAbsent
correctly

V cachedComputation(K key) {
V value = map.get(key);
if (value !'= null) return value;

value = computeValue(key);
Value v?2
= map.putIfAbsent(key, value);
if (v2 '= null)
value = v2;

return value:

}

Preventing concurrency bugs

® When possible, use higher level concurrency abstractions
® no spaghetti concurrency control
® try to avoid mixing concurrency logic and business logic
® Document your concurrent designs e

® Read Java Concurrency in Practice

® Understand and use java.util.concurrent

® Fork/]Join framework in Java 7 is really nice

® and parallel array constructs coming in Java 8 will be even
nicer

53

http://www.javaconcurrencyinpractice.com
http://www.javaconcurrencyinpractice.com

/. Untested code

® |[f a method isn’t ever executed, high chance that it doesn’t
work

® A system test might be OK if not ideal

® |f you don’t have any situation that causes the method to
be executed, why did you write it!

54

Improving software
quality

Improving software quality

® Many different things can catch mistakes and/or improve
software quality

Each technique more efficient at finding some
mistakes than others

Each subject to diminishing returns
No magic bullet

Find the right combination for you and for the
mistakes that matter to you

Test, test, test...

® Many times FindBugs will identify bugs
® that leave you thinking “Did anyone test this code?”
® And you find other mistakes in the same vicinity

® FindBugs might be more useful as an untested code detector than as a
bug detector

® Opverall, testing is far more valuable than static analysis
® [’'m agnostic on unit tests vs. system tests

® But no one writes code so good you don’t need to check that it does
the right thing

® [|'ve learned this from personal painful experience

57

Dead code

® Many projects contain lots of dead code

® abandoned packages and classes

® classes that implement |2 methods; only 3 are used
® Code coverage is a very useful tool

® but pushing to very high code coverage may not be
worthwhile

® youd have to cover lots of code that never gets
executed in production

58

Code coverage from
production

® |f you can sample code coverage from production, great

® |ook for code executed in production but not
covered in unit or system test

Cool idea

® [f you can’t get code coverage from production
® Just get list of loaded classes

® just your code, ignoring classes loaded from core
classes or libraries

® Very light weight instrumentation
® | og the data

® could then ask queries such as “Which web services
loaded the FooBar class this month?”

60

Using FindBugs to find
mistakes

® FindBugs is accurate at finding coding mistakes

® /5+% evaluated as a mistake that should be fixed
® But many mistakes have low costs

® memory/type safety lowers cost of mistakes

® |f applied to existing production code, many expensive
mistakes have already been removed

® perhaps painfully

® Need to lower cost of using FindBugs to sell to some
projects/teams

61

FindBugs integration at
Google

® FindBugs has been in use for years at Google

® |n the past week, finally turned on as a presubmit check
at Google

® VWhen you want to commit a change, you need a code
review

® now, FindBugs will comment on your code and you
need to respond to newly introduced issues and
discuss them with the person doing your code review

First research paper published in 2004
FindBugs 1.0 released in 2006

|.7+ million downloads from 160+ countries
2.0.1 released

e 2.0.2 out within a week

FindBugs 2.0

® FindBugs analysis engine continues to improve, but only
incrementally

® Focus on efficiently incorporating static analysis into the
large scale software development

® Review of issues done by a community
® Once issue is marked as “not a bug”, never forget

® Integration into bug tracking and source code version
control systems

64

Bug ranking

® FindBugs reported a priority for an issue, but it was only
meaningful when comparing instances of the same bug
pattern

® a medium priority X bug might be more important
than a high priority Y bug

® Now each issue receives a bug rank (a score, 1-20)
® Can be customized according to your priorities

® Grouped into Scariest, Scary, Troubling, and Of
Concern

65

FindBugs community review

® VWhenever / where ever you run FindBugs, after
completing or loading an analysis

® it talks to the cloud
® sees how we've been seeing this issue

® sees if anyone has marked the issue as “should fix” or
“not a bug”

® As soon you classify an issue or enter text about the
issue, that is sent to the cloud

® TJalk

66

More cloud integration

® Integration with bug tracking systems

® One click to bring up pre-populated web page in bug
tracker describing issue

® [f bug already filed against issue, click shows you
existing issue in bug tracker

® Integration with web based source viewers, such as
FishEye

® Allow viewing of file history, change lists, etc.

Questions!

kl L]e ONLY VACid] M€ ASURE Men/ T

QF Coche @MQL.IT'\/I \/\f_rFS/miMV(‘ré

1
>—
1

WTF

c ocle

(c) 2008 Focus Shift /OSNews/Thom Holwerda - http://www.osnews.com/comics

68

