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ABSTRACT 
During the lifetime of a project, a huge amount of information is 
generated, e.g. in versioning systems or bug data bases. When 
analysed appropriately, the knowledge about the previous 
project characteristics allows estimating the project’s future 
evolution. For example, it is very valuable to know particular 
history characteristics of a file indicating its fault proneness 
because it helps testers to focus their testing effort on these 
specific files. In this paper, we present the results of an 
empirical study, exploring the relationship between history 
characteristics of software entities and their defects. For this 
purpose, we analyze 9 open source java projects. The results 
show that there are some history characteristics that highly 
correlate with defects in software, e.g. the number of changes 
and the number of distinct authors performing changes to a file. 
The number of co-changed files does not correlate with the 
defect count. 

Categories and Subject Descriptors 
D.2.7 [Distribution, Maintenance, and Enhancement]: version 
control. [Management]: Software quality assurance (SQA). D.2.8 
[Metrics]: Process metrics 

General Terms 
Measurement, Verification. 

Keywords 
Empirical study, defect database, versioning systems. 

1. INTRODUCTION 
Versioning control and defect tracking systems contain a large 
amount of information documenting the evolution of a software 
project. In practice, this information is often not deeply analysed 
in order to gain information which facilitates decisions in the 
present and permits reliable predictions for the future. Based on 
history characteristics extracted from versioning control 
systems, e.g. number of changes performed to a file, estimates 
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for the future evolution can be made. Thus, for example, the 
expected number of changes can be predicted which allows to 
perform accurate cost estimates. Similarly, knowing defect 
detection rates over time of former releases, one can make 
predictions on remaining defects at the current point of time. 
This facilitates the decision if the software can be released or 
not. Information contained in versioning control and defect 
tracking systems can also be combined. For example, the 
relationship between history characteristics (e.g. change 
frequency) and software quality (e.g. measured by the defect 
count) can be explored. It is very valuable to know particular 
history characteristics of a file indicating its fault proneness 
because it helps testers to focus their testing effort on these 
specific files. 

In this paper, we report the results of an empirical study 
exploring the relationship between history characteristics and 
quality in open source programs. For this purpose, we analyse 9 
open source java projects during their whole lifetime. We use 
the defect count of a file as an indicator for its software quality 
and relate this measure to history characteristics of that file.  

The remainder of this paper is organized as follows. Section 2 
introduces basic definitions and concepts. Section 3 presents the 
design of our study. In Section 4, the data collection and 
analysis procedure are reported, whereas Section 5 contains the 
results of our empirical study. In Section 6, we discuss the 
threats to validity and in Section 7 an overview on related work 
is given. Finally, Section 8 concludes the paper and describes 
our future work. 

2. BASIC TERMS AND DEFINITIONS 
Versioning Control Systems (VCS) are useful for recording 
the history of documents edited by several developers. In order 
to edit a file, a developer has to checkout this file, edit it and 
commit this file back into the repository. Each time a developer 
commits a file, a message, describing what has been changed, 
can be added.  

History Touch (HT). We define a history touch to be one of the 
commit actions where changes made by developers are 
submitted and include modifying, adding or removing files. 
Amongst others, each HT has the following attributes: author, 
affected file(s), date and message. 
History. The history of a file subsumes all HTs that occurred to 
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that file from its birth1 until present2 or until its death3. Release 
is a point in time in the history of a project which denotes that a 
new or upgraded version is available. We consider only final 
releases.  

A defect is “a flaw in a component or system that can cause the 
component or system to fail to perform its required function. A 
defect, if encountered during execution, may cause a failure of 
the component or system” [8]. Thus, a failure is the observable 
deviation of a component or system from its expected delivery. 

Defect count is the number of defects identified in a file. The 
file a is more fault-prone than the file b if the defect count of 
the file a is higher than the defect count of the file b. 

3. EXPERIMENT DESIGN 
In this Section details on the experiment are described. 

3.1 Goal and Research Questions 
The main goal of this empirical study is to analyse the influence 
of a file’s history on its defect count. These are our hypotheses 
and their rationale: 

H1.1: The more distinct authors perform changes to a file, the 
higher the file’s defect count. The rationale behind this 
hypothesis is that “too many cooks spoil the broth”.  

H1.2: The more changes have been performed to a file, the 
higher the defect count. The rationale behind this hypothesis is 
that a high amount of changes indicates that particular parts of 
the problem are not well understood and often need rework 
resulting in fault-prone files.  

H1.3: The higher the number of co-changed files, the higher the 
defect count. The rationale behind this hypothesis is that a local 
change, affecting just one file, will cause fewer defects than 
changes affecting more files. 

3.2 Dependent and Independent Variables 
The dependent variable of our study is a file’s defect count 
between two consecutive releases of its history. We relate a 
file’s history characteristics prior to release to defects that 
occurred after release. In the example in Figure 1 we consider 
the number of changes performed in files between Release 1 and 
Release 2. Then, we relate this metric to the defect count 
measured between Release 2 and Release 3.  

The independent variables are history characteristics of a file. 
Table 1 summarizes the independent variables and their 
description.  

                                                                 
1 first occurrence in the VCS repository 
2 point of time where our empirical study started 
3 the file’s removal point of time 

Table 1. Dependent Variables, DA (Distinct Authors), FC 
(Frequency of Change), CF (Co-Changed Files)  

ID Description

DA
Number of distinct authors that performed HTs to a file 
between two consecutive releases.

FC
Number of HTs per file performed between two 
consecutive releases.

CF-[SUM, 
AVG]

Total/Average number of files that have been conjointly 
checked in with a file f between two consecutive releases.

 

3.3 Subject Projects 
In this study we analysed 9 open source projects. We applied the 
following criteria to select the projects: 1) A bug tracking 
system is available, 2) The number of HTs > 50.000, 3) The 
project is written in Java. We included OSCache, a project that 
does not fulfil the criteria defined before, in order to compare 
the results obtained for all other projects with a smaller but 
mature project. Apache Ant (Ant)4 is a Java application for 
automating the build process. Apache Formatting Objects 
Processor (Apache FOP)5 reads a formatting object (FO) tree 
and renders the resulting pages to a specified output, e.g. PDF. 
Chemistry Development Kit (CDK)6 is a Java library for bio- 
and chemo-informatics and computational chemistry. Freenet7 
is a distributed anonymous information storage and retrieval 
system. Jetspeed28 is an open portal platform and enterprise 
information portal. Jmol9 is a „Java molecular viewer for three-
dimensional chemical structures”. OSCache10 is a Java 
application, which allows the performance of fine grained 
dynamic caching of JSP content, servlet responses or arbitrary 
objects. Pentaho11 is a Java based business intelligence 
platform. TV-Browser 12 is a Java based TV guide. Table 2 
summarizes the attributes of the analyzed projects.  

Table 2. Subject Programs  
OS-Project Project since # Defects # HTs LOC # Files Defect Tracker

1. Ant (1.7.0 ) 2000 4804 62763 234253 1550 Bugzilla
2. FOP (0.94 ) 2002* 1478 30772 192792 1020 Bugzilla
3. CDK (1.0.1 ) 2001* 602 55757 227037 1038 Source Forge
4. Freenet (0.7 ) 1999* 1598 53887 68238 464 Mantis
5. Jetspeed2 (2.1.2 ) 2005 630 36235 236254 1410 JIRA
6. Jmol (11.2 ) 2001* 421 39981 117732 332 Source Forge
7. Oscache (2.4.1 ) 2000 2365 1433 19702 113 JIRA
8. Pentaho (1.6.0 ) 2005* 856 58673 209540 570 JIRA
9. TV-Browser (2.6 ) 2003 190 38431 170981 1868 JIRA  
A „*“ behind the data in the column “Project since” denotes the 
date of the registration of the project in SourceForge13. For the 
rest, the year of the first commit in the versioning system is 
indicated. The column “OS-Project” contains the name of the 
project followed by the project’s latest version for which the 
metrics “LOC” (Lines of Code) and the number of files have 
been computed. Ant and FOP use Bugzilla14 as defect tracking 

                                                                 
4 http://ant.apache.org/ 
5 http://xmlgraphics.apache.org/fop/index.html 
6 http://sourceforge.net/projects/cdk/ 
7 http://freenetproject.org/whatis.html 
8 http://portals.apache.org/jetspeed-2/ 
9 http://jmol.sourceforge.net/ 
10 http://www.opensymphony.com/oscache/ 
11 http://sourceforge.net/projects/pentaho/ 
12 http://www.tvbrowser.org/ 
13 http://sourceforge.net/ 
14 http://www.bugzilla.org/ 

timeRelease 1 Release 2 Release 3

Characteristic
e.g. FC

Defect count

Figure 1. Defect count and history 
characteristics 
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system. CDK and Jmol use the SourceForge13 whereas Freenet 
the Mantis15 defect tracker. All other projects use JIRA16. 

4. DATA COLLECTION AND ANALYSIS 
In order to analyse the relationship between defect count 

and history characteristics of files, the number of defects per file 
has to be computed. Defect tracking systems usually do not give 
any information on which files are affected by the defect. In 
order to find out this, information contained in VCS has to be 
analysed. For this purpose, we use a 3-level algorithm to 
determine the defect count per file. Direct search: First, we 
search for messages in the VCS containing the defect-IDs 
recorded in the defect tracking system. Messages containing the 
defect-ID and a text pattern, e.g. “fixed” or “removed”, are 
indicators for defects that have been removed. In this case, the 
number of defects of the corresponding file has to be increased. 
Keyword search: In the second step, we search for keywords, 
e.g. “defect fixed”, “problem fixed”, within the messages which 
have not been investigated in the step before. We use about 50 
keywords. Multi-defects keyword search: In the last step, we 
search for keywords which give some hints that more than one 
defect has been removed (e.g. „two defects fixed“). In this case, 
we increase the number of defects accordingly. A similar 
approach was previously presented e.g. in [16] and in [6]. In 
contrast to our 3-level algorithm, these approaches only perform 
a direct search. In order to validate our keyword search, we have 
randomly chosen messages from each project. We then 
classified them as messages in which a defect had been 
corrected or not and compared the results obtained manually 
with the results computed by running our algorithm. We used 
SPSS17, version 11.5, for all statistical analyses. 

5. RESULTS AND ANALYSIS 
In this section, the results of the empirical study are presented. 

5.1 Exploring the relationship between 
distinct authors and defect count  
On average, 1.14 – 2.91 distinct authors performed HTs to a file. 
The minimum count of distinct authors is 1 in all projects, 
whereas the maximum count is 40 authors in case of the Freenet 
project. Table 3 summarizes basic statistical characteristics. 

Table 3. Descriptive Statistics, Correlation Analysis for DA, 
All correlations are significant at 0.01 level. 

OS-Program
MAX 
authors

Min 
authors Mean Median

Std. 
Deviation Variance

Spearm. 
DA

1 Ant 17.00 1.00 2.09 1.00 2.01 4.03 0.664
2 Apache-FOP 14.00 1.00 2.91 2.00 2.03 4.12 0.380
3 CDK 10.00 1.00 1.71 1.00 1.21 1.47 0.415
4 Freenet 40.00 1.00 1.94 1.00 1.88 3.53 0.741
5 Jetspeed2 7.00 1.00 2.00 2.00 0.98 0.96 0.741
6 Jmol 11.00 1.00 1.65 1.00 1.17 1.37 0.160
7 Oscache 4.00 1.00 1.54 1.00 0.79 0.62 0.480
8 Pentaho 3.00 1.00 1.14 1.00 0.37 0.13 0.352
9 TV-Browser 7.00 1.00 1.15 1.00 0.61 0.38 0.471  

In order to analyse H 1.1, we first computed the correlation 
between the number of distinct authors, performing HTs to a file 
(DA), and its defect count. The results are listed in Table 3. The 
last column indicates the Spearman rank-order correlation 
                                                                 
15 http://www.mantisbt.org/ 
16 http://www.atlassian.com/software/jira/ 
17 SPSS, http://www.spss.com/ 

coefficient. This coefficient is a measure for the dependency 
between two variables [18], in our case the number of distinct 
authors performing HTs to a file and its defect count. The 
coefficient can take values between -1 and 1, whereas 0 
represents no linear correlation. In 6 of 9 projects, the 
correlation coefficient is higher than 0.4. This confirms H1.1 for 
the most part, i.e. the more authors touch a file, the higher its 
defect count after release.  
In the second step, we performed the Mann-Whitney [18] non-
parametric test18. For this test we divided the data in each 
project into two groups: one group contains files that have been 
changed by number of authors above average and a second 
group that contain files that have been changed by distinct 
authors below average. Differences between two populations 
can be analyzed with the help of Mann-Whitney test, in our 
case, differences between files with lower than average (la) and 
higher than average (ha) DA. The null hypothesis is that the 
defect count is the same in both groups; the alternative 
hypothesis is that it is not. Table 4 summarizes the results of the 
Mann-Whitney test. The results are significant for any chosen 
significance level. Based on this test, it can be concluded, that 
there is strong evidence from the data that files that have been 
touched by distinct authors above average have higher defect 
count compared to the files touched by distinct authors below 
average. This test also supports H1.1. 

Table 4. Mann-Whitney Test for DA 
Distinct 
authors N Mean Rank Rank Sum Mann-Whitney-U Z

1 Ant la 4471.0 3345.7 14958799.5 4961643.5 -33.7
ha 3306.0 4623.7 15285953.5

2 Apache-FOP la 709.0 958.8 679756.5 428061.5 -12.7
ha 1740.0 1333.5 2320268.5

3 CDK la 2645.0 2693.4 7124088.0 3624753.0 -25.5
ha 3676.0 3497.4 12856593.0

4 Freenet la 1633.0 1725.8 2818188.0 1484027.0 -29.9
ha 3182.0 2758.1 8776332.0

5 Jetspeed2 la 1670.0 1569.4 2620896.5 1225611.5 -14.3
ha 1967.0 2030.9 3994806.5

6 Jmol la 839.0 1164.9 977352.0 624972.0 -12.0
ha 1914.0 1470.0 2813529.0

7 Oscache la 107.0 84.4 9026.5 3248.5 -7.7
ha 110.0 133.0 14626.5

8 Pentaho la 4913.0 5043.1 24776740.5 12705499.5 -37.1
ha 7964.0 7300.1 58138262.5

9 TV-Browser la 8807.0 5239.9 46147607.0 7361579.0 -40.6
ha 2065.0 6275.1 12958021.0  

 
5.2 Exploring the relationship between 
frequency of change, co-changed files and 
defect count 
In order to analyse H1.2 and H1.3, we first computed the 
Spearman rank correlation coefficient between the FC, 
CF_MAX and CF_SUM of a file and its defect count. The 
results are listed in Table 5. A high correlation between FC and 
its defect count can be determined in all projects. Additionally, 
the Spearman rank-order correlation coefficient is higher than 
0.4; in 3 projects this coefficient is even higher than 0.6 for all 
metrics. This confirms H1.2, i.e. the more changes have been 
performed to a file, the higher its defect count. The defect count 
of a file does not depend on the number of files simultaneously 

                                                                 
18 A non-parametric test does not make any assumptions concerning the 

distribution of parameters (in contrast to parametric tests). 
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checked in. For CF_MAX, there is no project with a Spearman 
rank-order correlation coefficient higher than 0.4. For CF_SUM, 
in only three cases, a high correlation can be determined. Thus, 
H1.3, i.e. the more files have been checked in simultaneously, 
the higher the defect count, has to be rejected. 

Table 5. Correlation Analysis for FC, CF-MAX and CF-
SUM.  Correlations significant at 0.01 level (**), and at 0.05 level (*) 

Spearman
FC

Spearman
CF-SUM

Spearman
CF-MAX

1 Ant 0.597 0.504 0.399
2 Apache-FOP 0.431 0.285 0.203
3 CDK 0.437 0.211 0.142
4 Freenet 0.641 0.220 -0.020
5 Jetspeed2 0.641 0.220 -0.020
6 Jmol 0.408 0.141 -0.042
7 Oscache 0.626 0.517 0.036
8 Pentaho 0.503 0.416 0.272
9 TV-Browser 0.442 -0.198 -0.248

OS-Program

 
In order to analyse H1.2 more in detail, we performed the 
Mann-Whitney non-parametric test. For this purpose, we 
divided the data in each project into two groups, one group 
containing stable files and another group containing unstable 
files. Stable files subsume all files that have the FC metric lower 
than average, unstable files have an FC value above average. 
The null hypothesis is that the defect count is the same in both 
groups; the alternative hypothesis is that it is not. Table 6 
summarizes the results of the Mann-Whitney test. The results 
are significant at any chosen significance level. Based on the 
results of this test, it can be concluded that there is strong 
evidence from the data that unstable files have a higher defect 
count as compared with the stable files. This additional test also 
supports H1.2. 

Table 6. Mann-Whitney Test Statistics for files with lower 
average (la) and higher average (ha) DA.  

OS Program Stability Mean Rank Mann-Whitney-U Z
1 Ant Stable 3606.4 5220899.5 -34.9

Unstable 5091.1
2 Apache-FOP Stable 2384.1 1849127.0 -31771.0

Unstable 3677.0

3 CDK Stable 6649.8 19324818.5 -33.6
Unstable 8149.6

4 Freenet Stable 3878.4 2595450.5 -50.5
Unstable 6680.5

5 Jetspeed2 Stable 3536.5 4176924.5 -24.5
Unstable 4736.4

6 Jmol Stable 2757.4 2724067.0 -22.4
Unstable 3487.9

7 Oscache Stable 169.8 11068.0 -7.9
Unstable 239.3

8 Pentaho Stable 9196.6 27871921.0 -80.4
Unstable 15671.9

9 TV-Browser Stable 6749.3 15070004.5 -37.7
Unstable 7988.8  

6. THREATS TO VALIDITY 
Internal validity is concerned with the degree to which 
conclusions about the causal effect of the independent variables 
on the dependent variable can be drawn [18]. One threat to 
validity is that not all developers deliver meaningful messages 
when they check-in files. Developers, for example, can also 
check in files without specifying any reason, even though they 
had corrected a defect. Thus, the defect count of a file can be 
higher than the defect count computed by our algorithm. This 

concern is alleviated by the size of the analysed OSPs. 
Nevertheless, we assume that meaningless messages are 
uniformly distributed among all developers.  

External validity is concerned with the degree to which results 
can be generalized [18]. This issue is alleviated by the number 
and diversity of the analysed OSPs. The more OSP programs 
show the same characteristics, the higher the probability that 
other OSP programs would also show these characteristics. 
Additionally, we choose programs from different application 
domains in order to increase the representativeness of the study 
results. However, history characteristics of OSP programs and 
of commercially produced software may differ from each other. 
Furthermore, analyses of additional programs that are intended 
in our future work would increase the external validity. 

7. RELATED WORK 
To our knowledge, this is the first study that deeply analyses the 
influence of a file’s history on its defect count.  
The most similar work to our study is presented by Graves et al. 
in [7]. The authors explore to which extent history 
characteristics of a file are successful in predicting its defects. In 
contrast to our study, this study focuses on the development of 
several statistical models in order to identify the best performing 
one. Additionally, the authors in [7] perform their analysis on 
one legacy commercial system in detail, whereas our study 
analyses 9 open source projects in breadth. Another difference 
between our study and the study presented in [7] is the 
granularity of the analysed entity. Graves et al. analyse history 
characteristics of modules and relate these characteristics to the 
module’s defect count. We compare both studies below. The 
best statistical model that predicts a module’s defect count in [7] 
uses (beside others) the number of changes of a module in its 
history as parameter. This result is similar to our results. 
Another result derived in [7] is that the number of changes to a 
module is a better indicator for its defect count than its length. 
We computed the Spearman correlation coefficient of the LOC 
metric and the defect count in all projects. In 8 of 9 projects, the 
FC metric has higher correlation coefficients than the LOC 
metric. Thus, we can confirm the results in [7]. The main 
difference between the two studies is that in [7] the number of 
developers who had changed a module is not a good indicator 
for its defect count. This contrasts with our results. A possible 
explanation is that there is no common understanding of the 
problem domain in open source development, so that changes to 
a software entity, performed by different developers induce 
more defects than it is in the case of commercial development. 
There are several other studies that focus on predicting the 
defect count of a software entity by combining product metrics 
and history metrics ([1], [9], [12], [14], [3], [17], [16]). One of 
the main differences that distinguishes our study from these 
studies is its magnitude. While most of the studies considered 
only one program, we have analysed 9 open source projects. 
Additionally, in contrast to our study, the aim of these studies is 
defect prediction. Our main goal is to analyse to what extend 
history characteristics influence software’s defect count without 
selecting the best prediction model. Another difference to these 
studies, except of the study reported in [16], is that all other 
studies analyse commercial software. Except the study reported 
in [16], all other studies support our findings with respect to the 
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influence of changes on the defect count of a software entity. In 
[16], only pre-release defects (these are defects found 6 month 
before release) correlate with the number of changes performed 
to software entities. Only the studies presented in [3], [17] and 
[16] consider the influence of the number of authors performing 
changes to a software entity on the entity’s defect count. The 
study reported in [17] confirms our results. In [16], only pre-
release defects correlate with the number of authors performing 
changes. The results reported in [3] differ to our results. The 
number of co-changed files is not reported in any study. Most 
studies analysing this relationship are more fine-grained, i.e. 
they analyse to what extent the number of changed lines of code 
have impact on the defect count e.g. in [15] or [10]. A huge 
amount of research papers analyses the influence of other 
metrics of a software entity and its defect count, amongst others 
in [5], [2], [4], and in [11].  

8. DISCUSSION AND FUTURE WORK 
In this paper, we investigated the influence of a file’s history on 
its defect count. Two of our initial hypotheses could be 
confirmed: The defect count of a file is influenced by the 
number of changes performed to that file and the number of 
authors that have touched it. This knowledge is useful for 
different roles in the development process. Testers can focus 
their testing activities on particularly these files. Additionally, 
they can use these metrics as parameters to build more complex 
prediction models. Quality engineers can monitor development 
activities and initiate reviews for often changed files in order to 
prevent a high defect count. Additionally, files changed by too 
many authors can be indicators for bad design. Thus, 
maintainers can identify candidates for refactorings. The 
hypotheses concerning the number of co-changed files could not 
be confirmed. Certainly, more precise metrics could be defined 
for the size of change, e.g. the number of lines of code edited. 
But we wanted to explore a coarser metric which can be easily 
computed.  
In our future work we will focus on analysing the relationship 
between the file’s age and its defect count. Additionally, we will 
analyse to what extent history characteristics combined with 
code characteristics, e.g. code complexity metrics, can be 
considered as good indicators for a file’s defect count. 
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