
Exploring the Relationship of History Characteristics and
Defect Count: An Empirical Study

Timea Illes-Seifert
Institute for Computer Science

University of Heidelberg
Im Neuenheimer Feld 326, D-69120 Heidelberg

+49 (0) 6221 / 54 - 5817

illes@informatik.uni-heidelberg.de

Barbara Paech
Institute for Computer Science

University of Heidelberg
Im Neuenheimer Feld 326, D-69120 Heidelberg

+49 (0) 6221 / 54 - 5810

paech@informatik.uni-heidelberg.de

ABSTRACT
During the lifetime of a project, a huge amount of information is
generated, e.g. in versioning systems or bug data bases. When
analysed appropriately, the knowledge about the previous
project characteristics allows estimating the project’s future
evolution. For example, it is very valuable to know particular
history characteristics of a file indicating its fault proneness
because it helps testers to focus their testing effort on these
specific files. In this paper, we present the results of an
empirical study, exploring the relationship between history
characteristics of software entities and their defects. For this
purpose, we analyze 9 open source java projects. The results
show that there are some history characteristics that highly
correlate with defects in software, e.g. the number of changes
and the number of distinct authors performing changes to a file.
The number of co-changed files does not correlate with the
defect count.

Categories and Subject Descriptors
D.2.7 [Distribution, Maintenance, and Enhancement]: version
control. [Management]: Software quality assurance (SQA). D.2.8
[Metrics]: Process metrics

General Terms
Measurement, Verification.

Keywords
Empirical study, defect database, versioning systems.

1. INTRODUCTION
Versioning control and defect tracking systems contain a large
amount of information documenting the evolution of a software
project. In practice, this information is often not deeply analysed
in order to gain information which facilitates decisions in the
present and permits reliable predictions for the future. Based on
history characteristics extracted from versioning control
systems, e.g. number of changes performed to a file, estimates

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
DEFECTS'08, July 20, 2008, Seattle, Washington, USA.
Copyright 2008 ACM 978-1-60558-051-7/08/07...$5.00.

for the future evolution can be made. Thus, for example, the
expected number of changes can be predicted which allows to
perform accurate cost estimates. Similarly, knowing defect
detection rates over time of former releases, one can make
predictions on remaining defects at the current point of time.
This facilitates the decision if the software can be released or
not. Information contained in versioning control and defect
tracking systems can also be combined. For example, the
relationship between history characteristics (e.g. change
frequency) and software quality (e.g. measured by the defect
count) can be explored. It is very valuable to know particular
history characteristics of a file indicating its fault proneness
because it helps testers to focus their testing effort on these
specific files.

In this paper, we report the results of an empirical study
exploring the relationship between history characteristics and
quality in open source programs. For this purpose, we analyse 9
open source java projects during their whole lifetime. We use
the defect count of a file as an indicator for its software quality
and relate this measure to history characteristics of that file.

The remainder of this paper is organized as follows. Section 2
introduces basic definitions and concepts. Section 3 presents the
design of our study. In Section 4, the data collection and
analysis procedure are reported, whereas Section 5 contains the
results of our empirical study. In Section 6, we discuss the
threats to validity and in Section 7 an overview on related work
is given. Finally, Section 8 concludes the paper and describes
our future work.

2. BASIC TERMS AND DEFINITIONS
Versioning Control Systems (VCS) are useful for recording
the history of documents edited by several developers. In order
to edit a file, a developer has to checkout this file, edit it and
commit this file back into the repository. Each time a developer
commits a file, a message, describing what has been changed,
can be added.

History Touch (HT). We define a history touch to be one of the
commit actions where changes made by developers are
submitted and include modifying, adding or removing files.
Amongst others, each HT has the following attributes: author,
affected file(s), date and message.
History. The history of a file subsumes all HTs that occurred to

11

that file from its birth1 until present2 or until its death3. Release
is a point in time in the history of a project which denotes that a
new or upgraded version is available. We consider only final
releases.

A defect is “a flaw in a component or system that can cause the
component or system to fail to perform its required function. A
defect, if encountered during execution, may cause a failure of
the component or system” [8]. Thus, a failure is the observable
deviation of a component or system from its expected delivery.

Defect count is the number of defects identified in a file. The
file a is more fault-prone than the file b if the defect count of
the file a is higher than the defect count of the file b.

3. EXPERIMENT DESIGN
In this Section details on the experiment are described.

3.1 Goal and Research Questions
The main goal of this empirical study is to analyse the influence
of a file’s history on its defect count. These are our hypotheses
and their rationale:

H1.1: The more distinct authors perform changes to a file, the
higher the file’s defect count. The rationale behind this
hypothesis is that “too many cooks spoil the broth”.

H1.2: The more changes have been performed to a file, the
higher the defect count. The rationale behind this hypothesis is
that a high amount of changes indicates that particular parts of
the problem are not well understood and often need rework
resulting in fault-prone files.

H1.3: The higher the number of co-changed files, the higher the
defect count. The rationale behind this hypothesis is that a local
change, affecting just one file, will cause fewer defects than
changes affecting more files.

3.2 Dependent and Independent Variables
The dependent variable of our study is a file’s defect count
between two consecutive releases of its history. We relate a
file’s history characteristics prior to release to defects that
occurred after release. In the example in Figure 1 we consider
the number of changes performed in files between Release 1 and
Release 2. Then, we relate this metric to the defect count
measured between Release 2 and Release 3.

The independent variables are history characteristics of a file.
Table 1 summarizes the independent variables and their
description.

1 first occurrence in the VCS repository
2 point of time where our empirical study started
3 the file’s removal point of time

Table 1. Dependent Variables, DA (Distinct Authors), FC
(Frequency of Change), CF (Co-Changed Files)

ID Description

DA
Number of distinct authors that performed HTs to a file
between two consecutive releases.

FC
Number of HTs per file performed between two
consecutive releases.

CF-[SUM,
AVG]

Total/Average number of files that have been conjointly
checked in with a file f between two consecutive releases.

3.3 Subject Projects
In this study we analysed 9 open source projects. We applied the
following criteria to select the projects: 1) A bug tracking
system is available, 2) The number of HTs > 50.000, 3) The
project is written in Java. We included OSCache, a project that
does not fulfil the criteria defined before, in order to compare
the results obtained for all other projects with a smaller but
mature project. Apache Ant (Ant)4 is a Java application for
automating the build process. Apache Formatting Objects
Processor (Apache FOP)5 reads a formatting object (FO) tree
and renders the resulting pages to a specified output, e.g. PDF.
Chemistry Development Kit (CDK)6 is a Java library for bio-
and chemo-informatics and computational chemistry. Freenet7
is a distributed anonymous information storage and retrieval
system. Jetspeed28 is an open portal platform and enterprise
information portal. Jmol9 is a „Java molecular viewer for three-
dimensional chemical structures”. OSCache10 is a Java
application, which allows the performance of fine grained
dynamic caching of JSP content, servlet responses or arbitrary
objects. Pentaho11 is a Java based business intelligence
platform. TV-Browser 12 is a Java based TV guide. Table 2
summarizes the attributes of the analyzed projects.

Table 2. Subject Programs
OS-Project Project since # Defects # HTs LOC # Files Defect Tracker

1. Ant (1.7.0) 2000 4804 62763 234253 1550 Bugzilla
2. FOP (0.94) 2002* 1478 30772 192792 1020 Bugzilla
3. CDK (1.0.1) 2001* 602 55757 227037 1038 Source Forge
4. Freenet (0.7) 1999* 1598 53887 68238 464 Mantis
5. Jetspeed2 (2.1.2) 2005 630 36235 236254 1410 JIRA
6. Jmol (11.2) 2001* 421 39981 117732 332 Source Forge
7. Oscache (2.4.1) 2000 2365 1433 19702 113 JIRA
8. Pentaho (1.6.0) 2005* 856 58673 209540 570 JIRA
9. TV-Browser (2.6) 2003 190 38431 170981 1868 JIRA
A „*“ behind the data in the column “Project since” denotes the
date of the registration of the project in SourceForge13. For the
rest, the year of the first commit in the versioning system is
indicated. The column “OS-Project” contains the name of the
project followed by the project’s latest version for which the
metrics “LOC” (Lines of Code) and the number of files have
been computed. Ant and FOP use Bugzilla14 as defect tracking

4 http://ant.apache.org/
5 http://xmlgraphics.apache.org/fop/index.html
6 http://sourceforge.net/projects/cdk/
7 http://freenetproject.org/whatis.html
8 http://portals.apache.org/jetspeed-2/
9 http://jmol.sourceforge.net/
10 http://www.opensymphony.com/oscache/
11 http://sourceforge.net/projects/pentaho/
12 http://www.tvbrowser.org/
13 http://sourceforge.net/
14 http://www.bugzilla.org/

timeRelease 1 Release 2 Release 3

Characteristic
e.g. FC

Defect count

Figure 1. Defect count and history
characteristics

12

system. CDK and Jmol use the SourceForge13 whereas Freenet
the Mantis15 defect tracker. All other projects use JIRA16.

4. DATA COLLECTION AND ANALYSIS
In order to analyse the relationship between defect count

and history characteristics of files, the number of defects per file
has to be computed. Defect tracking systems usually do not give
any information on which files are affected by the defect. In
order to find out this, information contained in VCS has to be
analysed. For this purpose, we use a 3-level algorithm to
determine the defect count per file. Direct search: First, we
search for messages in the VCS containing the defect-IDs
recorded in the defect tracking system. Messages containing the
defect-ID and a text pattern, e.g. “fixed” or “removed”, are
indicators for defects that have been removed. In this case, the
number of defects of the corresponding file has to be increased.
Keyword search: In the second step, we search for keywords,
e.g. “defect fixed”, “problem fixed”, within the messages which
have not been investigated in the step before. We use about 50
keywords. Multi-defects keyword search: In the last step, we
search for keywords which give some hints that more than one
defect has been removed (e.g. „two defects fixed“). In this case,
we increase the number of defects accordingly. A similar
approach was previously presented e.g. in [16] and in [6]. In
contrast to our 3-level algorithm, these approaches only perform
a direct search. In order to validate our keyword search, we have
randomly chosen messages from each project. We then
classified them as messages in which a defect had been
corrected or not and compared the results obtained manually
with the results computed by running our algorithm. We used
SPSS17, version 11.5, for all statistical analyses.

5. RESULTS AND ANALYSIS
In this section, the results of the empirical study are presented.

5.1 Exploring the relationship between
distinct authors and defect count
On average, 1.14 – 2.91 distinct authors performed HTs to a file.
The minimum count of distinct authors is 1 in all projects,
whereas the maximum count is 40 authors in case of the Freenet
project. Table 3 summarizes basic statistical characteristics.

Table 3. Descriptive Statistics, Correlation Analysis for DA,
All correlations are significant at 0.01 level.

OS-Program
MAX
authors

Min
authors Mean Median

Std.
Deviation Variance

Spearm.
DA

1 Ant 17.00 1.00 2.09 1.00 2.01 4.03 0.664
2 Apache-FOP 14.00 1.00 2.91 2.00 2.03 4.12 0.380
3 CDK 10.00 1.00 1.71 1.00 1.21 1.47 0.415
4 Freenet 40.00 1.00 1.94 1.00 1.88 3.53 0.741
5 Jetspeed2 7.00 1.00 2.00 2.00 0.98 0.96 0.741
6 Jmol 11.00 1.00 1.65 1.00 1.17 1.37 0.160
7 Oscache 4.00 1.00 1.54 1.00 0.79 0.62 0.480
8 Pentaho 3.00 1.00 1.14 1.00 0.37 0.13 0.352
9 TV-Browser 7.00 1.00 1.15 1.00 0.61 0.38 0.471

In order to analyse H 1.1, we first computed the correlation
between the number of distinct authors, performing HTs to a file
(DA), and its defect count. The results are listed in Table 3. The
last column indicates the Spearman rank-order correlation

15 http://www.mantisbt.org/
16 http://www.atlassian.com/software/jira/
17 SPSS, http://www.spss.com/

coefficient. This coefficient is a measure for the dependency
between two variables [18], in our case the number of distinct
authors performing HTs to a file and its defect count. The
coefficient can take values between -1 and 1, whereas 0
represents no linear correlation. In 6 of 9 projects, the
correlation coefficient is higher than 0.4. This confirms H1.1 for
the most part, i.e. the more authors touch a file, the higher its
defect count after release.
In the second step, we performed the Mann-Whitney [18] non-
parametric test18. For this test we divided the data in each
project into two groups: one group contains files that have been
changed by number of authors above average and a second
group that contain files that have been changed by distinct
authors below average. Differences between two populations
can be analyzed with the help of Mann-Whitney test, in our
case, differences between files with lower than average (la) and
higher than average (ha) DA. The null hypothesis is that the
defect count is the same in both groups; the alternative
hypothesis is that it is not. Table 4 summarizes the results of the
Mann-Whitney test. The results are significant for any chosen
significance level. Based on this test, it can be concluded, that
there is strong evidence from the data that files that have been
touched by distinct authors above average have higher defect
count compared to the files touched by distinct authors below
average. This test also supports H1.1.

Table 4. Mann-Whitney Test for DA
Distinct
authors N Mean Rank Rank Sum Mann-Whitney-U Z

1 Ant la 4471.0 3345.7 14958799.5 4961643.5 -33.7
ha 3306.0 4623.7 15285953.5

2 Apache-FOP la 709.0 958.8 679756.5 428061.5 -12.7
ha 1740.0 1333.5 2320268.5

3 CDK la 2645.0 2693.4 7124088.0 3624753.0 -25.5
ha 3676.0 3497.4 12856593.0

4 Freenet la 1633.0 1725.8 2818188.0 1484027.0 -29.9
ha 3182.0 2758.1 8776332.0

5 Jetspeed2 la 1670.0 1569.4 2620896.5 1225611.5 -14.3
ha 1967.0 2030.9 3994806.5

6 Jmol la 839.0 1164.9 977352.0 624972.0 -12.0
ha 1914.0 1470.0 2813529.0

7 Oscache la 107.0 84.4 9026.5 3248.5 -7.7
ha 110.0 133.0 14626.5

8 Pentaho la 4913.0 5043.1 24776740.5 12705499.5 -37.1
ha 7964.0 7300.1 58138262.5

9 TV-Browser la 8807.0 5239.9 46147607.0 7361579.0 -40.6
ha 2065.0 6275.1 12958021.0

5.2 Exploring the relationship between
frequency of change, co-changed files and
defect count
In order to analyse H1.2 and H1.3, we first computed the
Spearman rank correlation coefficient between the FC,
CF_MAX and CF_SUM of a file and its defect count. The
results are listed in Table 5. A high correlation between FC and
its defect count can be determined in all projects. Additionally,
the Spearman rank-order correlation coefficient is higher than
0.4; in 3 projects this coefficient is even higher than 0.6 for all
metrics. This confirms H1.2, i.e. the more changes have been
performed to a file, the higher its defect count. The defect count
of a file does not depend on the number of files simultaneously

18 A non-parametric test does not make any assumptions concerning the

distribution of parameters (in contrast to parametric tests).

13

checked in. For CF_MAX, there is no project with a Spearman
rank-order correlation coefficient higher than 0.4. For CF_SUM,
in only three cases, a high correlation can be determined. Thus,
H1.3, i.e. the more files have been checked in simultaneously,
the higher the defect count, has to be rejected.

Table 5. Correlation Analysis for FC, CF-MAX and CF-
SUM. Correlations significant at 0.01 level (**), and at 0.05 level (*)

Spearman
FC

Spearman
CF-SUM

Spearman
CF-MAX

1 Ant 0.597 0.504 0.399
2 Apache-FOP 0.431 0.285 0.203
3 CDK 0.437 0.211 0.142
4 Freenet 0.641 0.220 -0.020
5 Jetspeed2 0.641 0.220 -0.020
6 Jmol 0.408 0.141 -0.042
7 Oscache 0.626 0.517 0.036
8 Pentaho 0.503 0.416 0.272
9 TV-Browser 0.442 -0.198 -0.248

OS-Program

In order to analyse H1.2 more in detail, we performed the
Mann-Whitney non-parametric test. For this purpose, we
divided the data in each project into two groups, one group
containing stable files and another group containing unstable
files. Stable files subsume all files that have the FC metric lower
than average, unstable files have an FC value above average.
The null hypothesis is that the defect count is the same in both
groups; the alternative hypothesis is that it is not. Table 6
summarizes the results of the Mann-Whitney test. The results
are significant at any chosen significance level. Based on the
results of this test, it can be concluded that there is strong
evidence from the data that unstable files have a higher defect
count as compared with the stable files. This additional test also
supports H1.2.

Table 6. Mann-Whitney Test Statistics for files with lower
average (la) and higher average (ha) DA.

OS Program Stability Mean Rank Mann-Whitney-U Z
1 Ant Stable 3606.4 5220899.5 -34.9

Unstable 5091.1
2 Apache-FOP Stable 2384.1 1849127.0 -31771.0

Unstable 3677.0

3 CDK Stable 6649.8 19324818.5 -33.6
Unstable 8149.6

4 Freenet Stable 3878.4 2595450.5 -50.5
Unstable 6680.5

5 Jetspeed2 Stable 3536.5 4176924.5 -24.5
Unstable 4736.4

6 Jmol Stable 2757.4 2724067.0 -22.4
Unstable 3487.9

7 Oscache Stable 169.8 11068.0 -7.9
Unstable 239.3

8 Pentaho Stable 9196.6 27871921.0 -80.4
Unstable 15671.9

9 TV-Browser Stable 6749.3 15070004.5 -37.7
Unstable 7988.8

6. THREATS TO VALIDITY
Internal validity is concerned with the degree to which
conclusions about the causal effect of the independent variables
on the dependent variable can be drawn [18]. One threat to
validity is that not all developers deliver meaningful messages
when they check-in files. Developers, for example, can also
check in files without specifying any reason, even though they
had corrected a defect. Thus, the defect count of a file can be
higher than the defect count computed by our algorithm. This

concern is alleviated by the size of the analysed OSPs.
Nevertheless, we assume that meaningless messages are
uniformly distributed among all developers.

External validity is concerned with the degree to which results
can be generalized [18]. This issue is alleviated by the number
and diversity of the analysed OSPs. The more OSP programs
show the same characteristics, the higher the probability that
other OSP programs would also show these characteristics.
Additionally, we choose programs from different application
domains in order to increase the representativeness of the study
results. However, history characteristics of OSP programs and
of commercially produced software may differ from each other.
Furthermore, analyses of additional programs that are intended
in our future work would increase the external validity.

7. RELATED WORK
To our knowledge, this is the first study that deeply analyses the
influence of a file’s history on its defect count.
The most similar work to our study is presented by Graves et al.
in [7]. The authors explore to which extent history
characteristics of a file are successful in predicting its defects. In
contrast to our study, this study focuses on the development of
several statistical models in order to identify the best performing
one. Additionally, the authors in [7] perform their analysis on
one legacy commercial system in detail, whereas our study
analyses 9 open source projects in breadth. Another difference
between our study and the study presented in [7] is the
granularity of the analysed entity. Graves et al. analyse history
characteristics of modules and relate these characteristics to the
module’s defect count. We compare both studies below. The
best statistical model that predicts a module’s defect count in [7]
uses (beside others) the number of changes of a module in its
history as parameter. This result is similar to our results.
Another result derived in [7] is that the number of changes to a
module is a better indicator for its defect count than its length.
We computed the Spearman correlation coefficient of the LOC
metric and the defect count in all projects. In 8 of 9 projects, the
FC metric has higher correlation coefficients than the LOC
metric. Thus, we can confirm the results in [7]. The main
difference between the two studies is that in [7] the number of
developers who had changed a module is not a good indicator
for its defect count. This contrasts with our results. A possible
explanation is that there is no common understanding of the
problem domain in open source development, so that changes to
a software entity, performed by different developers induce
more defects than it is in the case of commercial development.
There are several other studies that focus on predicting the
defect count of a software entity by combining product metrics
and history metrics ([1], [9], [12], [14], [3], [17], [16]). One of
the main differences that distinguishes our study from these
studies is its magnitude. While most of the studies considered
only one program, we have analysed 9 open source projects.
Additionally, in contrast to our study, the aim of these studies is
defect prediction. Our main goal is to analyse to what extend
history characteristics influence software’s defect count without
selecting the best prediction model. Another difference to these
studies, except of the study reported in [16], is that all other
studies analyse commercial software. Except the study reported
in [16], all other studies support our findings with respect to the

14

influence of changes on the defect count of a software entity. In
[16], only pre-release defects (these are defects found 6 month
before release) correlate with the number of changes performed
to software entities. Only the studies presented in [3], [17] and
[16] consider the influence of the number of authors performing
changes to a software entity on the entity’s defect count. The
study reported in [17] confirms our results. In [16], only pre-
release defects correlate with the number of authors performing
changes. The results reported in [3] differ to our results. The
number of co-changed files is not reported in any study. Most
studies analysing this relationship are more fine-grained, i.e.
they analyse to what extent the number of changed lines of code
have impact on the defect count e.g. in [15] or [10]. A huge
amount of research papers analyses the influence of other
metrics of a software entity and its defect count, amongst others
in [5], [2], [4], and in [11].

8. DISCUSSION AND FUTURE WORK
In this paper, we investigated the influence of a file’s history on
its defect count. Two of our initial hypotheses could be
confirmed: The defect count of a file is influenced by the
number of changes performed to that file and the number of
authors that have touched it. This knowledge is useful for
different roles in the development process. Testers can focus
their testing activities on particularly these files. Additionally,
they can use these metrics as parameters to build more complex
prediction models. Quality engineers can monitor development
activities and initiate reviews for often changed files in order to
prevent a high defect count. Additionally, files changed by too
many authors can be indicators for bad design. Thus,
maintainers can identify candidates for refactorings. The
hypotheses concerning the number of co-changed files could not
be confirmed. Certainly, more precise metrics could be defined
for the size of change, e.g. the number of lines of code edited.
But we wanted to explore a coarser metric which can be easily
computed.
In our future work we will focus on analysing the relationship
between the file’s age and its defect count. Additionally, we will
analyse to what extent history characteristics combined with
code characteristics, e.g. code complexity metrics, can be
considered as good indicators for a file’s defect count.

9. REFERENCES
[1] Arisholm, E. and Briand, L. C. 2006. Predicting fault-prone

components in a java legacy system. In Proceedings of the
2006 ACM/IEEE international Symposium on Empirical
Software Engineering (Rio de Janeiro, Brazil, September 21 -
22, 2006). ISESE '06. ACM, New York, NY, 8-17.

[2] Basili, V. R., Briand, L. C., and Melo, W. L. 1996. A
validation of object-oriented design metrics as quality
indicators. IEEE Transactions on Software Engineering vol.
22, pp. 751-761.

[3] Bell, R. M., Ostrand, T. J., and Weyuker, E. J. 2006. Looking
for bugs in all the right places. 2006. In Proceedings of the
2006 international Symposium on Software Testing and
Analysis ISSTA '06. ACM, New York, NY, 61-72

[4] Denaro, G., Morasca, S. and Pezzè, M. 2002. Deriving models
of software fault-proneness. In Proceedings of the 14th
International Conference on Software Engineering and
Knowledge Engineering Ischia, Italy, pp. 361 - 368.

[5] Denaro, G and Pezzè, M. 2002. An empirical evaluation of
fault-proneness models. In Proceedings of the International
Conference on Software Engineering (ICSE 2002), Orlando,
Florida, USA, pp. 241-251.

[6] Fischer, M., Pinzger, M., and Gall, H. 2003. Populating a
Release History Database from Version Control and Bug
Tracking Systems. In Proceedings of the international
Conference on Software Maintenance. ICSM. IEEE Computer
Society, Washington, DC, 23.

[7] Graves, T. L., Karr, A. F., Marron, J. S., and Siy, H. 2000.
Predicting fault incidence using software change history. IEEE
Transactions on Software Engineering, vol. 26.

[8] International Software Testing Qualifications Board. 2005.
ISTQB Standard Glossary of Terms used in Software Testing
V1.1.

[9] Khoshgoftaar, T. M., Allen, E. B., Halstead, R., Trio, G. P.,
and Flass, R. M. 1998. Using Process History to Predict
Software Quality. Computer 31, 4 (Apr. 1998), 66-72.

[10] Nagappan, N. and Ball, T. 2005. Use of relative code churn
measures to predict system defect density. In Proceedings of
the 27th international Conference on Software Engineering.
ICSE '05. ACM, New York, NY, 284-292.

[11] Nagappan, N., Ball, T., and Zeller, A. 2006. Mining metrics to
predict component failures. In Proceedings of the International
Conference on Software Engineering (ICSE 2006), Shanghai,
China.

[12] Ohlsson, M. C., von Mayrhauser, A., McGuire, B.,Wohlin, C.
1999. Code Decay Analysis of Legacy Software through
Successive Releases. Proceedings of IEEE Aerospace
Conference, pp 69-81.

[13] Ostrand, T. J., Weyuker, E.J, Bell, R.M. 2004. Where the Bugs
Are, Proceedings of the 2004 ACM SIGSOFT International
Symposium on Software Testing and Analysis (ISSTA), pp 86-
96.

[14] Ostrand, T. J., Weyuker, E. J., and Bell, R. M. 2005.
Predicting the location and number of faults in large software
systems. IEEE Trans. Software Eng., vol. 31, pp. 340-355.

[15] Purushothaman, R. 2005. Toward Understanding the Rhetoric
of Small Source Code Changes. IEEE Trans. Softw. Eng. 31, 6
(Jun. 2005), 511-526.

[16] Schröter, A., Zimmermann,T. Premraj, R., and , R.,Zeller, A.
If Your Bug Database Could Talk. 2006. In Proceedings of the
5th International Symposium on Empirical Software
Engineering. (Rio de Janeiro, Brazil, September 2006),
Volume II: Short Papers and Posters, pp. 18-20, 2006.

[17] Weyuker, E. J., Ostrand, T. J., and Bell, R. M. 2007. Using
Developer Information as a Factor for Fault Prediction. In
Proceedings of the Third international Workshop on Predictor
Models in Software Engineering (May 20 - 26, 2007).
International Conference on Software Engineering. IEEE
Computer Society, Washington, DC, 8.

[18] Wohlin, C., Runeson, P., Höst, M., Ohlsson, M. C., Regnell,
B., and Wesslén, A. 2000. Experimentation in Software
Engineering: an Introduction. Kluwer Academic Publishers.

15

