
The Impact of Product Development on the
Lifecycle of Defects

Rudolf Ramler
Software Competence Center Hagenberg

Software Park 21
A-4232 Hagenberg, Austria

+43 7236 3343 872

rudolf.ramler@scch.at

ABSTRACT
This paper investigates the defects of a large embedded software
development project over a period of about two years. It describes
how software development and product development are organ-
ized in parallel branches. By mapping the defects reported on
product development branches to the releases on the main line of
software development, the paper shows the impact of the product
development strategy on the defect lifecycle in software devel-
opment.

Categories and Subject Descriptors
D.2.9 [Software Engineering]: Management – life cycle, soft-
ware configuration management, software quality assurance
(SQA).

General Terms
Management, Measurement.

Keywords
Product development, defect lifecycle.

1. INTRODUCTION
Software is the core part of more and more products. It is embed-
ded in telecommunication equipment, medical instruments, house-
hold appliances, entertainment and multimedia devices, automo-
tive components, and industrial machinery. While software is one
of the critical success factors that determines the products’ func-
tionality and quality, it is the product as a whole that customers
and users value. They may not even be aware about the software
embedded in the products they buy and use. Hence, many compa-
nies have to embed software development into product develop-
ment, and so their product strategy defines and constrains how the
software is developed and evolved.
In this paper we investigate the development of a large embedded
software system in the context of product development. The re-
search objective of this paper is to measure the impact of the

product development strategy on the defects in the software sys-
tem. We therefore observe the major points in the lifecycle of
every defect – the point were the defect is introduced, reported,
and resolved in terms of the software release – and we trace back
the defects reported in product development to the corresponding
releases on the main line of software development.
The paper is structured to reflect the selected points of observa-
tion: Defect introduction, defect detection, and defect resolution
in software development and in product development. Thus, after
an overview of the studied project in Section 2, we discuss the
three points of observation for the main line of software develop-
ment in Section 3 and for product development in Section 4. In
Section 5 we analyze the measured impact of product develop-
ment on the main line of software development. Section 6 sum-
marizes and concludes the paper.

2. PROJECT BACKGROUND
The observations in this paper are based on the analysis of the
development of an embedded software system. The software sys-
tem is the basis for a diverse range of products, which integrate
the software system with hardware and peripherals from different
manufacturers. Figure 1 depicts the software system’s architec-
ture. It consists of a runtime kernel and drivers to control the un-
derlying hardware layer, as well as a number of applications pro-
viding functionality for the user. On top of the software system a
generic user interface supports basic user interaction and the
branding and customization of the products for different market
segments and regions in the world.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists, re-
quires prior specific permission and/or a fee.
DEFECTS'08, July 20, 2008, Seattle, Washington, USA.
Copyright 2008 ACM 978-1-60558-051-7/08/07...$5.00.

Real-time Operating System
Hardware & Firmware

Generic User Interface

Software System

Runtime Kernel & Drivers

App. 1 App. 2 App. 3 App. n …

Figure 1: Software System Architecture

21

The software system encompasses more than 700 KLOC C++
code. It has evolved to this size over three to four years of devel-
opment with an increase of about 200 KLOC per year. In this time
not only additional features were added but also new hardware
platforms and peripherals were supported as well as various real-
time operating systems.

Technically, software development and product development are
organized using different branches in the version control system.
Software development is conducted on the main line, products
branch off from the main line and are evolved on parallel
branches. In this study we investigated the evolution of the soft-
ware system by analyzing the defects reported for about 130 re-
leases of the software system and their impact on 14 consecutive
releases on the main line (Figure 2), which capture about two
years of ongoing development. The data used in this study is re-
trieved from the issue repository and the release database.

The issue repository contains more than 3.000 resolved issue
reports. Besides detailed information about the nature of the issue,
a report contains a link to the release in which the issue has been
found. Issue reports concern either defects (68 percent) or en-
hancements (32 percent). In this study we investigate only de-
fects, for which the report describes a failure of the software sys-
tem and contains details about the fault in the code when re-
solved.

Release database: The evolution of the software system and the
activities in context of product development are reconstructed
from combining the data from the issue repository with the re-
lease database. The release database records about 130 releases in
total, on the main line of software development and on the differ-
ent branches. In addition, the release database associates the re-
solved issues to one or more releases in which the issue has been
fixed, including the files that have been changed.

3. DEFECT LIFECYCLES IN THE MAIN
LINE OF SOFTWARE DEVELOPMENT
The main line of software development proceeds in iterations of
approximately eight weeks. Every iteration ends with the release
of a labeled version on the main branch. Per iteration about 50 to
100 defects are reported and about the same number of defects are
resolved. The majority of the defects are reported by the central

testing department, which tests every release while development
continues with the next release.

In the following we describe the three major phases of the defect
lifecycle in the main line of software development.

3.1 Defect Detection
Defects detected on the main line of development are reported for
releases on the main line. Figure 2 displays the cumulative defect
occurrence over time for the 14 analyzed releases. The majority
of the observable curves show a similar pattern, a small initial S-
shape behavior. The number of reported defects varies and, fur-
thermore, the majority of the curves overlap in time, since testing
of one release may continue for several iterations. Yet, the result-
ing “short cycles” of defect detection in Figure 2 can clearly be
attributed to the releases on the main line of development.

3.2 Defect Resolution
Defect reports are assigned to developers for resolution. In our
study we only take defects into account for which a fix had been
applied. Measuring the lifecycle of a defect from the release, in
which the defect has been reported (Rr), to the release, in which
the defect has been fixed (Rf) – see Figure 3 – shows, that about
half (56 percent) of the defects are resolved within one iteration
and the fixes are made available as part of the next release. 89
percent of all defects are fixed within 2 iterations. The remainder
of the reported defects is fixed within at most 10 releases.

3.3 Defect Introduction
Due to the delay between the error, i.e., the event that led to the
introduction of the defect, and the detection of the defect, the
defect may be present in releases previous to the reported release
(Figure 3). The release the defect has been introduced (Ri) is the
first release containing the defect.

As an approximation for Ri, we traced back all reported defects
along the line of releases by the following rule: A defect is present
in releases where all the files changed during a fix remain un-
changed, going backward from the fixed release Rf, excluding the
changes for the fix. This rule has been optimized to avoid false
positives, i.e. tracing a defect to a release that does not actually
contain this defect, as the criterion for terminating the back-

Figure 2: Accumulated number of defects for releases on the main line of development

Releases on the m ain line

R
ep

or
te

d
de

fe
ct

s

1 2 3 4 5 6 7 8 9 10 11 12 13 14

22

tracing is a change to any of the involved files although this
change is not necessarily the cause of the defect.

For 21 percent of the defects reported on the main line of devel-
opment it is possible to trace back the point they had been intro-
duced to a release Ri before the reported release Rr. Computing
the delay in number of iterations from introduction to reporting
for defects where Ri < Rr showed, that 52 percent of these defects
were reported in the next release, 85 percent are reported within 3
iterations, and all defects are reported within at most 10 iterations.

4. DEFECT LIFECYCLE IN PRODUCT
DEVELOPMENT
In this section we put software development in the context of
product development. While the software system is developed on
the main line of development (or main branch) as described in the
previous section, software development in context of product
development takes place in separate branches. On a product
branch, a selected release of the main branch is advanced until it
meets the product’s requirements. Integration branches are used
to integrate a stable release of the product branch with a product’s
target hardware. Figure 4 gives an overview of the different
branches, which are described in the following.

Main line of development. The software system evolves along
the main line of development. In every release new features are
added, new hardware devices and new peripherals are supported,
new user interface elements are implemented, and the integration
with the real-time operation system is improved.

Product development, however, proceeds asynchronously from
software development, usually at a faster pace, since the market is
highly competitive and product lifecycles are short. Thus, product
development does not accommodate for developing hardware or
software from scratch. Instead, product development is dominated
by the procurement and integration of third party components and
the customization for different price segments and the needs of

local markets. Often, a family of products is developed, based on
a single platform but with different marketable features.

Product branches. Software development in the context of prod-
uct development branches off from the main line when a consis-
tent feature set and hardware support has been reached. On the
product branch, the software system is stabilized and – although
not intended but occasionally necessary – the feature set is
evolved further until it meets the product requirements. Fixes and
enhancements are merged back to the main line, where in the
meantime development moves forward to the next generation of
products.

Integration branches. When the software system is stable and
complete, it is integrated with the hardware of the final product.
Integration is a major step and requires close cooperation with
product developers, hardware developers, and suppliers of third
party components. It is therefore organized in a separate project
and a separate integration branch is created. In integration pro-
jects, new releases of the software system are usually produced in
weekly iterations. Often there are several integration projects and
branches, one for every product of a product family.

Integration is also the last resort to find and fix defects. Once the
product has been released on the market, it is usually not feasible
to collect defect reports from end-users or to update the software
integrated with the product. Thus, all relevant software defects
have to be found and fixed before the product is released. Field
defects do not play a major role for software development any
more, even though they are carefully monitored and cared by
product management.

4.1 Defect Detection
Over the analyzed period of two years of development, two prod-
uct development cycles can be observed. Figure 5 depicts the
number of defects reported per month over these two years for (a)
the main line of development, (b) product branches, and (c) inte-
gration branches. The two product development cycles appear as
two major peaks in the trend of the overall number of defects
reported. The apparent two “long cycles” are a result of the over-
lying product development strategy, which defers testing and
stabilization for product specific requirements until they become
available.

At the time of the first release of the first product (marked as P1
in Figure 5) the number of defects reported for the main line of
development rapidly dropped as many resources from develop-
ment were shifted to support the stabilization on the product
branch. Thus, the total number of reported defects still increased.
Once the software system had been stabilized on the product
branch, integration for the product started with relatively few
additional defects reported and development on the main line
regained speed.

For the second product (marked as P2 in Figure 5) additional
resources where involved and, thus, development on the main line
continued comparatively unaffected. Still, the total number of
defects increased significantly due to the work on the product
branch and – in this case, where several products of a product
family had to be supported – also on the integration branches.

t

Rr Ri Rf

Figure 3: Releases containing defects (marked black)

defect introduced

defect reported

defect fixed

Figure 4: Branches in product development

t

product branch

main line of development

integration branch

23

The main purpose of product and integration branches is the stabi-
lization of the software system, i.e., finding and fixing of defects
in the light of specific product requirements and hardware con-
figurations. Hence, the defects reported on product and integra-
tion branches are detected in addition to what is continually found
and fixed on the main line of development. On average, over the
total time period observed, 45 percent of all defects were reported
on product and integration branches. At the peak of the develop-
ment of the first product, 90 percent of all defects reported were
due to product and integration branches; 75 percent at the peak of
the development of the second product.

4.2 Defect Resolution
In the studied project it is a strict policy that all changes have to
be merged to the main line of development. Hence, development
on the main line does not continue unaffected by the work on
product and integration branches. Besides the fixes for the defects
reported for a particular release on the main line, additional fixes
are applied to the main line (Rf’ in Figure 6) due to defects re-
ported and fixed on parallel branches (Rf in Figure 6).

4.3 Defect Introduction
The defects reported on product and integration branches have
either been introduced already in the main line of development,
before branching, or in the course of stabilization due to a defec-
tive fix. As all changes are merged back to the main line, the de-
fects reported on product and integration branches are present on
the main line in any case.

The approach used to approximate the defective releases on the
main line is illustrated in Figure 6. In a first step, the rule de-
scribed in Section 3.3 was applied to trace the defect back on the
product or integration branch, for which it had been reported,
considering the files changed during the fix. When in tracing back
the starting point of the branch had been reached, the rule was
applied recursively for the release of the branch below, which had
been used to create the branch. In a second step, if defect intro-
duction had not yet been traced back to a release on the main
branch, the defect was mapped to the chronologically next release
on the main branch, making use of the fact that all changes are
merged to the main branch. The so identified release Ri’ is the
earliest release on the main line containing the defect, unless an
earlier release could be identified by tracing the defect back on
the main line from release Rf’.

5. IMPACT AND IMPLICATIONS
In this section we show the impact, the defects reported on prod-
uct and integration branches have on the releases on the main line
of development. The impact is measured in terms of the increase
in the number of defects introduced per release, the number of
defects fixed per release, and the number of open defects per re-
lease on the main line. Our findings are summarized in Table 1.

The values given in the table are calculated as the percentage of
the total number of introduced, reported, fixed or open defects
due to defects reported on branches. In release 4, for example, 82
percent of the all defects introduced in that particular release were
traced back from defects reported on a product or integration
branches.

The first column of the table, defects introduced, shows an in-
crease in these numbers for all releases. In half of the releases, the
share of defect introductions found via reports on branches was
even more than 50 percent.

For defects reported on branches there is no meaningful mapping
to defects reported for releases on the main line. So, for this point
in the defect lifecycle, there is no directly observable impact and
the second column is therefore zero for all releases.

The third column, defects fixed, shows the number of fixes
merged to a release on the main line due to defects reported on
branches. For the first three releases there are simply no parallel

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Su
m

 o
f d

ef
ec

ts
 re

po
rte

d
pe

r m
on

th

Integration branch
Product branch
Main branch

P2P1

Figure 5: Defects reported on the main line, product branch, and integration branch per month

Rr

Ri

Rf’

Figure 6: Mapping defects from branches to the main line

t

defect introduced

defect reported

defect fixed

Rf
defect fixed

Ri’
defect introduced

24

or earlier branches, so no fixes had been merged. In seven of the
eleven remaining releases, the share of defect fixes merged from
branches is larger than 50 percent.

Defects open is the number of defects reported for this release
plus the defects from earlier release, which have not yet been
fixed. When analyzing the defects of a particular release, e.g.,
when constructing defect models based on the release’s proper-
ties, the actual number of defects present, i.e. open, in this release
is important. The last column in Table 1 shows the impact of de-
fects reported on branches on the number of open defects. For
example, in release 4 about two third (67 percent) of the open
defects were reported on branches and mapped to the main line.

Table 1: Impact of defects from branches on the main line

Re-
lease

Defects
introduced

Defects
reported

Defects
fixed

Defects
open

1 3% 0% 8%

2 5% 0% 8%

3 58% 0% 40%

4 82% 57% 67%

5 44% 80% 38%

6 23% 64% 24%

7 15% 26% 19%

8 19% 3% 22%

9 23% 5% 28%

10 56% 12% 48%

11 72% 32% 62%

12 80% 57% 69%

13 63% 70% 67%

14 65%

0%

70% 62%

Figure 7 further analyzes the observed increase in the number of
open defects by comparing the number of open defects per re-
lease, showing both, the share resulting from the branches and
from the main line. The distribution of open defects due to
branches and main line can be explained by the product develop-
ment cycles as depicted in Figure 5.

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Releases

D
ef

ec
ts

 p
re

se
nt

 p
er

 re
le

as
e

due to branches
due to main line

Figure 7: Impact of defects reported on branches on open

defects per release on the main line

6. SUMMARY AND CONCLUSIONS
In this paper we investigated the defects of a large embedded
software development project over a period of about two years.
We described how software development and product develop-
ment are organized as parallel branches, constituting the main line
of software development, product development, and integration.
By mapping the defects reported on branches to the releases on
the main line, we were able to show the significant impact of the
product development strategy on the lifecycle of the defects on
the main line of software development.

Branching and merging in software development has been subject
to several studies (e.g., [3, 4]) and some approaches and tools
(e.g., [1, 5]) take the evolution of a software system across
branches into account. The novelty in our work is the mapping of
the defects reported on product and integration branches to re-
leases on the main line of software development, including meas-
uring the impact of defects reported on branches for the main line.
Furthermore, in this paper we were able to explain the measured
impact as a result of the pursued product development strategy.

From our observations and findings we can conclude that defects
reported on branches have to be mapped to releases on the main
line in order to obtain a complete and realistic status of the soft-
ware system’s defects. Our observations further imply that there
is a latency caused by defect introduction on the main line and
defect detection on branches during stabilization (bug-fix time
[2]). Thus, when analyzing releases on the main line, the time
frame has to be selected large enough to encompass all defects on
branches which have an impact on the analyzed releases. We
therefore currently study how long defects remain open to deter-
mine this latency and the corresponding impact of the product
development strategy.

7. ACKNOWLEGEMENTS
This work was funded by the Austrian COMET Program. The
author also thanks Prof. Giancarlo Succi and Prof. Barbara Russo
from the Free University of Bolzano-Bozen for their support.

8. REFERENCES
[1] Fischer, M., Pinzger, M., and Gall, H. 2003 Populating a

Release History Database from Version Control and Bug
Tracking Systems. International Conference on Software
Maintenance (ICSM’03), Amsterdam, Netherlands.

[2] Kim, S. and Whitehead, Jr., E. J. 2006 How Long Did It
Take To Fix Bugs?. Workshop on Mining Software Reposi-
tories, ICSE 2006, Shanghai, China.

[3] Perry, D.E., Siy, H.P., and Votta, L.G. 1998. Parallel
Changes in Large Scale Software Development: An Obser-
vational Case Study. International Conference on Software
Engineering (ICSE’98), Kyoto, Japan.

[4] Williams C.C. and Spacco J.W. 2008. Branching and merg-
ing in the repository. Workshop on Mining Software Reposi-
tories, ICSE 2008, Leipzig, Germany.

[5] Zimmermann, T., P. Weibgerber, S. Diehl, and Zeller, A.
2004 Mining version histories to guide software changes. In-
ternational Conference on Software Engineering (ICSE’04),
Edinburgh, UK.

25

