
Do Bad Smells Indicate “Trouble” in Code?

Min Zhang

University of Hertfordshire
Hatfield, UK

m.1.zhang@herts.ac.uk

Tracy Hall

Brunel University
Uxbridge, UK

tracy.hall@brunel.ac.uk

Nathan Baddoo

University of Hertfordshire
Hatfield, UK

n.baddoo@herts.ac.uk

Paul Wernick

University of Hertfordshire
Hatfield, UK

p.d.wernick@herts.ac.uk

ABSTRACT

In 1999 Fowler et al. identified 22 Bad Smells in code to direct

the effective refactoring. These are increasingly being used by

software engineers. However, the empirical basis of using Bad

Smells to direct refactoring and to address ‘trouble’ in code is not

clear. Our project aims to empirically investigate the impact of

Bad Smells on software in terms of their relationship to faults.

Categories and Subject Descriptors

D.2.7 [Software Engineering]: Distribution, Maintenance, and

Enhancement – restructuring, reverse engineering, and

reengineering.

General Terms

Design, Reliability, Experimentation, Human Factors.

Keywords

Bad Smells, Faults, Open Source

1. INTRODUCTION
Bad Smells are structures in source code informally

identified by Fowler et al. [5]. Fowler et al. [5] state that Bad

Smells can give “indications that there is trouble that can be

solved by a refactoring”. Bad Smells are widely used for detecting

refactoring opportunities in software [7].

Although Bad Smells make common sense, no empirical

evidence has been provided by Fowler et al. to support the

efficacy of using Bad Smells. Indeed, two recent studies [8, 10]

report that Bad Smells may not indicate problems that

significantly affect software. This may mean that Bad Smells do

not need to be refactored. Furthermore, while Fowler et al. [5]

claim that Bad Smells cause problems that should be fixed by

refactoring, they are not specific about the problems caused by

Bad Smells. A review of the literature shows that there are many

interpretations of the consequences of Bad Smells. However most

researchers focus on Bad Smells in terms of increased faults and

reduced maintainability [8, 10]. Faults are widely cited as an

important indicator of software quality [3]. Consequently we will

investigate the relationship between Bad Smells and faults. Our

research approaches and plans are described in this paper.

2. SYSTMATIC LITERATURE REVIEW
The first thing that we have done is to systematically

investigate the current literature and summarise the current state

of knowledge of Bad Smells. A systematic literature review [6] is

a particularly effective approach for this.

A systematic literature review (SLR) is a methodology to

identify and evaluate all available research relevant to particular

research questions and is a useful approach to "summarise the

existing evidence concerning a treatment or technology" [6]. It is

a research methodology used extensively in medical research.

However, Woodall et al. [11] observe that conducting a full SLR

is too time-consuming, and it can easily extend beyond the time

schedule of a research project. To use the SLR approach

efficiently we developed a light-weight SLR protocol [12].

We have applied our light-weight SLR protocol to review all

studies of Bad Smells published by IEEE in the last 5 years

(2002-2006) [12]. Our findings show that the Duplicated Code

Bad Smell has attracted most attention, and has a research profile

different from that of other Bad Smells. Our results also show that

the status of knowledge varies between different Bad Smells. In

particular the Feature Envy, Long Method and Large Class Bad

Smells have different research features. For example, the

motivation for studies of these Bad Smells is mainly focused on

improved understanding, while the motivation for studies of other

Bad Smells focuses on enhancing the tools or methods for

detecting them. The reasons for these differences need further

investigation. We also found that studies of Bad Smells mainly

use objective research data. Very little subjective data was used in

previous studies of Bad Smells. A better balance of objective and

subjective analysis would also be valuable in future studies of Bad

Smells. Finally, only a few empirical studies have been conducted

to examine the effects of Bad Smells. This evidence suggests that

the impact of Bad Smells remain far from being fully understood.

3. METHODOLOGY
Based on the results of our SLR, an empirical study will be

conducted to further examine the impact of Bad Smells. In

particular, we focus on addressing the following research

question:

• What is the relationship between Bad Smells and faults?

3.1 Experiment Design
We will address the above research question using both

objective and subjective data. Our SLR suggests that relatively

few current studies of Bad Smells use subjective data. However,

the resultant dependence on objective data does not give us the

full picture of Bad Smells. Pfleeger [9] indicates that “software

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. To copy

otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee.

DEFECTS’08, July 20, 2008, Seattle, Washington, USA.

Copyright 2008 ACM 978-1-60558-051-7/08/07…$5.00.

43

development is as much an art as a science”; software engineers’

instinct plays an important part in software development. While

objective data can provide evidence that a new technique is

important, subjective data uncovers whether the technique is

useable. Both aspects need to be addressed in software

engineering studies. Hence, two modes of investigation will be

employed in this research project.

Study using code-based metrics data: Firstly, we will

conduct an experiment by using objective data. In particular, we

will use data from Eclipse open source project. We will monitor

Bad Smells using static code analysis techniques in a sequence of

software releases from Eclipse. We will investigate:

1. Whether a class containing Bad Smells correlates to faults.

2. How many faults are caused by classes which contain Bad

Smells

Study using developer opinion: Our second study will

investigate developers’ opinions on the relationship between Bad

Smells and faults. We will conduct an online survey of developers

and researchers. Respondents will be asked to indicate how they

think each Bad Smell relates to faults. The results of this study

will complement the results of the first study to present a

substantive analysis of the impact of Bad Smells.

3.2 Targeting Specific Bad Smells
Because of limited time and resources, this project can not

investigate in detail all 22 Bad Smells [5]. Hence prioritizing Bad

Smells and selecting a target set of Bad Smells is important. We

use the following criteria to select our targeted Bad Smells.

1. Bad Smells which have attracted the least research attention

in previous studies.

2. Bad Smells which are relatively easy to identify using static

source code analysis techniques.

On this basis, five Bad Smells have been selected. They are the

Data Clumps, Switch Statements, Speculative Generality,

Message Chains, and Middle Man.

3.3 Formal Definition of Bad Smells
To define what structures in source code indicate Bad Smells is a

precondition to using static source code analysis techniques in

identifying Bad Smells. We define our target set Bad Smells using

a pattern based approach. Each Bad Smell is defined as a set of

specific source code patterns.

3.4 Automatic Tools
In order to investigate the relationship between Bad Smells and

faults, we need to analyse a large amount of source code. To do

this effectively, we are building a tool to assist our analysis. This

tool will have two main functions: Capturing data from open

source repositories, and identifying Bad Smells and faults from

source code. This tool is based on approaches described by

Zimmermann et al. [13], Fischer et al. [4], and Counsell et al.[2].

4. ISSUES AND PITFALLS
There are several issues and pitfalls need to be handled in

this project. Firstly, our Bad Smells definitions are based on our

own interpretation of Fowler et al.’s [5] definitions of Bad Smells.

To eliminate bias, we will use an expert panel [1] to validate our

definitions. Secondly, we need to find out how accurate our tools

are in identifying Bad Smells and faults. A pilot study using a

small size of Eclipse data will be conducted to test its accuracy.

5. REFERENCES
[1] Beecham, S., Hall, T., Britton, C., Cottee, M. and Rainer, A.

2003. Validating a Requirements Process Improvement

Model, Technical Report 373, University of Hertfordshire.

[2] Counsell, S., Hassoun, Y., Johnson, R., Mannock, K. and

Mendes, E. 2003. Trends in Java code changes: the key to

identification of refactorings? Proceedings of the 2nd

international conference on Principles and practice of

programming in Java, Kilkenny City, Ireland.

[3] Fenton, N.E. and Pfleeger, S.L. Software Metrics: A

Rigorous & Practical Approach. PWS Publishing Company,

Boston, 1997.

[4] Fischer, M., Pinzger, M. and Gall, H., Populating a Release

History Database from version control and bug tracking

systems. in Software Maintenance, 2003. ICSM 2003.

Proceedings. International Conference on, (2003), 23-32.

[5] Fowler, M., Beck, K., Brant, J., Opdyke, W. and Roberts, D.

Refactoring: Improving the Design of Existing Code.

Addison Wesley, 1999.

[6] Kitchenham, B. 2004. Procedures for Performing Systematic

Reviews,TR/SE-0401, Keele University and National ICT

Australia Ltd, 1-28.

[7] Mens, T. and Tourwe, T. 2004. A survey of software

refactoring. Software Engineering, IEEE Transactions on, 30

(2). 126-139.

[8] Monden, A., Nakae, D., Kamiya, T., Sato, S. and

Matsumoto, K., Software quality analysis by code clones in

industrial legacy software. in Software Metrics, 2002.

Proceedings. Eighth IEEE Symposium on, (2002), 87-94.

[9] Pfleeger, S.L. 2002. What software engineering can learn

from soccer. Software, IEEE, 19 (6). 64-65.

[10] Shatnawi, R. and Li, W., An Investigation of Bad Smells in

Object-Oriented Design. in Information Technology: New

Generations, 2006. ITNG 2006. Third International

Conference on (2006), 161-165.

[11] Woodall, P. and Brereton, P. 2006. Conducting a Systematic

Literature Review from the Perspective of a Ph.D.

Researcher 10th International Conference on Evaluation and

Assessment in Software Engineering (EASE), Keele

University, UK.

[12] Zhang, M., Hall, T., Wernick, P. and Baddoo, N. 2008. Code

Bad Smells: A Review of Current Knowledge, Techical

Report 468, STRI, University of Hertfordshire, Hatfield.

[13] Zimmermann, T., Premraj, R. and Zeller, A., Predicting

Defects for Eclipse. in Predictor Models in Software

Engineering, 2007. PROMISE'07: ICSE Workshops 2007.

International Workshop on, (2007), 9-9.

44

