
Policy expression and checking
in XACML, WS-Policies, and the jABC

Martin Karusseit
Chair of Programming

Systems
TU Dortmund, Germany

martin.karusseit@cs.uni-

dortmund.de

Tiziana Margaria
Chair of Service and Software

Engineering
Universität Potsdam

Germany
margaria@cs.uni-potsdam.de

Holger Willebrandt
Chair of Programming

Systems
TU Dortmund, Germany
holger.willebrandt@cs.uni-

dortmund.de

ABSTRACT
Web-based access to sensitive and confidential data is real-
ized today via different approaches, using a variety of meth-
ods to specify and combine access control policies. In an op-
tic of change management and evolution, a structured and
flexible model is needed to handle dynamicity, particularly
when handling rights in systems with many users which hold
different roles. Furthermore the validation of security con-
straints is an important key to warrant the reliability of
control mechanisms.

This paper compares the temporal logic-based approach
for modeling access control used by the jABC framework
with two popular XML-based description languages (XACML
and WS-Policy), which are quasi-standards for policy ex-
pression in Web applications. Its usage is illustrated here
on the example of the web-based Online Conference Ser-
vice (OCS). The respective functionalities are described and
examined in consideration of their ability to validate and
enforce the needed policies.

Keywords
access control, policies, validation, model checking

1. INTRODUCTION
Services that provide sensitive and confidential data and

resources to different users with dissimilar roles and access
permissions need to care about a substantiated framework
to control access to such items. Especially with regard to
web-based services which need to deal with multiple parallel
requests from different users or to aggregate data from other
services, the requirements for access control frameworks rise
in complexity. For users utilizing these services, privacy is
not only a must but taken for granted. This privacy implies
compartmenting the users’ sessions and data in the service
to safely isolate and protect data and resources.

The key to the ability of sophisticated access control is the
capability of defining and expressing access control policies.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
TAV-WEB – Workshop on Testing, Analysis and Verification of Web Soft-
ware, July 21, 2008
Copyright 2008 ACM 978-1-60558-053-1/08/07 ...$5.00.

With the complexity of a service which needs access control,
the complexity of the policies that imply the rules increase
alike. Administrators and service developers need powerful
but yet manageable frameworks that help in creating access
control policies. Policies must be refinable as well as com-
posable to deal with recurrent changes to workflows and to
reflect the compositional character of today’s web services.

Reliability of access control mechanisms is the crucial fac-
tor in web service security. Therefore, the specification of
a policy can only be one step towards securing a service.
Additionally, it must be assured that the policies are actu-
ally met by the real service implementation. Therefore, a
methodology founded on formal methods that ensures the
coherence of model and implementation is essential.

We compare here the popular XML-based policy definition
languages XACML and WS-Policy (Sect. 2, with the tem-
poral logic-based approach for modeling access control sup-
ported by the jABC [?], an application development frame-
work for model-driven, service-oriented design. We illus-
trate jABC’s facilities for policy expression and checking
(Sect. 3.1) on the example of the Online Conference Service
(OCS)[6, 7]. In particular we investigate how to specify, ap-
ply, and verify policies in a dynamic and process-oriented
way and compare them with the previous two (Sect. 4).

2. XACML AND WS-POLICY

2.1 XACML
The eXtensible Access Control Markup Language (XACML)

[1] is an OASIS[14] standard approved in 2003. It was de-
signed to specify access control policies and assertions in
an XML-based style. It is used to define constraints that
must be matched in order to gain access to a service re-
source. These constraints are expressed as combinations of
attributes and data types which are to be checked by the
help of generic functions. Furthermore, Policy Sets can be
formed by using combinational statements (all, at least one,
. . .) that wrap simple policies.

XACML targets web-based systems that need to control
access to service resources for incoming HTTP requests.
Figure 1 (from [2]) shows how the components that build
the XACML access control model interact when a request
arrives. An incoming request is first transformed to an
XACML request that encapsulates information about the
requester, its credentials and the requested resource. This
transformation is done by the Policy Enforcement Point(PEP),
the entity that ensures that only requests that respect de-

20

Figure 1: Request processing in XACML (from [2])

fined security constraints are passed to the system. The PEP
communicates with the Policy Information Point (PIP), which
holds information about mapping HTTP request attributes
and sender information to resource and environment identi-
fiers conform to the XACML schema.

The information returned by the PIP is incorporated into
the XACML request, then passed to the policy evaluat-
ing entity, the Policy Decision Point(PDP). This decides
whether a request should be accepted or denied. To evalu-
ate the XACML request the PDP needs to select applicable
policies from a policy store. If appropriate policies are found,
they are evaluated and the PEP delivers the authorization
decision.

As it is possible that multiple policies can be applicable
to one request, the system uses combining algorithms to
deduce a single decision. The combining algorithms also
will be applied when a Policy Set needs to be evaluated.

The root element of a XACML document is one of the
elements <Rule>, <Policy> and <PolicySet>. The rule ele-
ment “consists of a boolean expression that can be evaluated
in isolation”[1]. A rule by itself does not form a valid policy
definition and is not meant to be accessed directly by a PDP:
it has to be part of a Policy. A Policy combines a set of rules,
together with a named procedure that depicts how the rules
should be combined. Policies themselves can be accommo-
dated into a Policy Set, consisting of multiple <Policy> or
<PolicySet> elements. The combining algorithms can also
be specified for the contents of the <PolicySet> element.

Valid combining algorithms for rules and policies are

• Deny-overrides If any rule or policy evaluates to
Deny the whole Policy / Policy Set evaluates to Deny

• Permit-overrides If any rule or policy evaluates to
Permit the whole Policy / Policy Set yields Permit

• First applicable The first applicable rule or policy
encountered determines the evaluation result.

• Only-one-applicable This combining algorithm can
be used to force the evaluation to be based exactly one
policy of a policy set. If exactly one policy is applicable
to the request, it is evaluated, yielding the decision
result. If multiple policies are applicable, the result
will be Indeterminate. If no policy is applicable, it
returns NotApplicable. This combining algorithm can
only be used on policy sets and is not applicable to
force the use of one rule.

01 <?xml version="1.0" encoding="UTF-8"?>
02 <Policy xmlns="urn:oasis:names:tc:xacml:2.0:policy:schema:os"
03 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
04 xsi:schemaLocation="urn:oasis:names:tc:xacml:2.0:policy:
schema:os
05 http://docs.oasis-open.org/xacml/access_control-xacml-2.0-
policy-schema-os.xsd"
06 PolicyId="urn:oasis:names:tc:example:SimplePolicy1"
07 RuleCombiningAlgId="identifier:rule-combining-algorithm:
deny-overrides">
08 <Description>
09 Medi Corp access control policy
10 </Description>
11 <Target/>
12 <Rule RuleId= "urn:oasis:names:tc:xacml:2.0:example:Simple
Rule1" Effect="Permit">
13 <Description>
14 Any subject with an e-mail name in the med.example.com
domain

15 can perform any action on any resource.
16 </Description>
17 <Target>
18 <Subjects>
19 <Subject>
20 <SubjectMatch MatchId="urn:oasis:names:tc:xacml:1.
0:function:rfc822Name-match">
21 <AttributeValue DataType="http://www.w3.org/2001
/XMLSchema#string">
22 med.example.com
23 </AttributeValue>
24 <SubjectAttributeDesignator
25 AttributeId="urn:oasis:names:tc:xacml:1.0:
subject:subject-id"
26 DataType="urn:oasis:names:tc:xacml:1.0:
data-type:rfc822Name"/>
27 </SubjectMatch>
28 </Subject>
29 </Subjects>
30 </Target>
31 </Rule>
32 </Policy>

Figure 2: Example XACML policy (from [1])

Applicability of a rule or a policy depends on a <Target>

element: it specifies (as a predicate) to which subjects, re-
sources, or environments the rule or policy applies. The tar-
get is the first item evaluated when a policy is processed. If
the target matches the request, the evaluation of that policy
is continued. Otherwise, the next policy’s target is checked.

Fig. 2 (taken from [1]) shows an example policy. It has
a single rule (lines 12–31), whose meaning (semantics) is
described verbally inside the <Description> Element (lines
13–16): “Any subject with an e-mail name in the med.example.
com domain can perform any action on any resource”. The
empty <Target> element in line 11 says that this policy ap-
plies to any resource.

2.2 WS-Policy
The Web Services Policy Framework (WS-Policy) defines

the general assembly of policies based on an XML syntax for
specifying communicating web services’ requirements and
capabilities. These are described as conjunctive and disjunc-
tive combinations of assertions on either the web service’s
own communication abilities or on the requirements a web
service’s communication partner has to meet in order to in-
teract with it. They are therefore propositional in the sense
of propositional logics. The general purpose of the WS-
Policy language is to express domain independent service
policies which are to be connected to domain specific con-
texts via extensions of the WS-Policy framework (e.g. WS-
SecurityPolicy [15] for assertions on secure communication,
WS-PolicyAssertions [16] for assertions on web services’ text

21

01 <wsp:Policy xmlns:sp= "http://schemas.xmlsoap.org/ws/2005/07/
securitypolicy"
02 xmlns:wsp= "http://schemas.xmlsoap.org/ws/2004/09/policy" >
03 <sp:TransportBinding>
04 <wsp:Policy>
05 <sp:AlgorithmSuite>
06 <wsp:Policy>
07 <wsp:ExactlyOne>
08 <sp:Basic256Rsa15 />
09 <sp:TripleDesRsa15 />
10 </wsp:ExactlyOne>
11 </wsp:Policy>
12 </sp:AlgorithmSuite>
13 <sp:TransportToken>
14 <wsp:Policy>
15 <sp:HttpsToken RequireClientCertificate= "true " />
16 </wsp:Policy>
17 </sp:TransportToken>
18 <!-- Details omitted for readability -->
19 </wsp:Policy>
20 </sp:TransportBinding>
21 </wsp:Policy>

Figure 3: Example WS-Policy policy (from [3])

encoding, language support, etc. or WS-MetadataExchange
[17] to incorporate web service metadata). An example for
the use of WS-Policy could concern two web services that
need to negotiate which encryption mechanism should be ap-
plied to their communication. Here, one of them might want
to force encryption with a minimum strength and deny any
non-encrypted service calls, whereas the other might only
offer a limited range of encryption algorithms. With the use
of WS-Policy these requirements and capabilities can be ex-
pressed and used to infer a (possiblx empty) set of applicable
communication parameters.

The individual properties of the behaviour (capabilities
and requirements) of a web service are defined by the Policy
Assertions. They “indicate domain-specific [...] semantics
which are expected to be defined in separate [...] specifica-
tions” [3]. The assertions are therefore subject of the spe-
cific extensions to the WS-Policy framework used. Multi-
ple policy assertions are grouped into Policy Alternatives,
formed by surrounding the assertions with the <wsp:All>

or <wsp:ExactlyOne> Element. <wsp:All> expresses that
all assertions included in the policy alternative must be sat-
isfied, whereas <wsp:ExactlyOne> requires only one asser-
tion to be satisfied. The policy alternatives themselves are
mutually exclusive and can be expressed in a disjunctive
normal form, called Normal Form Policy Expression. The
Compact Policy Expression is an equivalent way to express
policies, it may be converted for evaluation to the corre-
sponding normal form. Furthermore, policy expressions are
associated via Policy Attachments to Policy Scopes, which
are basically a collection of Policy Subjects. The subjects
are entities affected by the policy, like message endpoints or
resources.

Fig. 3 (adapted from [3]) illustrates a policy in compact
form which uses the WS-SecurityPolicy extension.

2.3 Comparing XACML and WS-Policy
Both XACML and WS-Policy define languages to express

policies. While XACML concentrates on access control poli-
cies for service resources, WS-Policy provides a more gen-
eral approach which allows one to define policies by the use
of separate extension modules that add relevant meaning.
Both allow composing complex policies from simpler ones,
to build up a comprehensive rule set.

The two languages need a domain-specific vocabulary to
form the semantics and represent the predicates of a spe-
cific use case. But how the expression of policies depends on
the application domain differs significantly. While XACML
allows the policies to be in a standard form and does not re-
quire domain-specific extensions to express constraints, WS-
Policy depends on the use of specialized modules to build
policies for a concrete domain. In XACML, the policies are
connected to a given domain by generic functions that op-
erate on the attributes of a request, and therefore depend
only on the semantics of the involved data types. In contrast,
WS-Policy uses specialized assertions for every domain, that
are defined in separate specifications. Therefore it is much
more difficult for an implementation of WS-Policy to decide
whether two policies are comparable, equivalent, contradic-
tory, or whether one proposition implies another.

In terms of expressive power, which is the central issue in
this paper, both languages support local policies: they refer
to what holds or not at the given point in a process where
they are invoked or checked.

The global character of temporal logics, that have as primi-
tives temporal operators (like next, until, before, after) rang-
ing over sequences of states, is here not part of the language
definition, which in both cases is close to a first order logic.
Recent work on static verification of XACML (as reported
e.g. in [5], containing also a survey) makes it explicit: the
policies considered there are of local nature, thus they are
well suited to being treated by boolean verifiers like e.g.
SAT solvers. Any temporal requirement, however, would
have to be expressed and dealt with outside XACML and
WS-Policy.

3. POLICIES AND ACCESS CONTROL
NEEDS IN OCS

The Online Conference Service (OCS) is a web-based col-
laborative decision support service that proactively helps au-
thors, program committee chairs, program committee mem-
bers, and reviewers to cooperate efficiently during their col-
laborative handling of the composition of a conference pro-
gram. The OCS has been successfully used since 2000 [8]. It
is now hosted by Springer Verlag on their premises in Dor-
drecht (NL) to support events with LNCS proceedings and
it is currently being tightly integrated with Springer’s vol-
ume production process. A description of the service and of
its method of development is available in [6, 7].

Two central characteristics of this application determine
our extended requirements to a suitable policy description
and enforcement system:

• OCS capabilities are not just static, but depend on
the process, i.e. on the single execution trace and on
context information.

• the OCS is customizable and flexibly reconfigurable
online at any time for each role, for each conference,
and for each user. This means that we need to be able
to dynamically change the role and right definition of
a running installation.

The central need that arises here is therefore the capability
to express and check policies with a global character. This
must be ensured by the development environment used to
design and implement the OCS.

22

Figure 4: ReadArticleList Feature - Simplified SLG

Due to the needs of flexibility to support a rich variety of
processes and of evolution, we develop the OCS in a model
driven and service oriented way. To this aim we use the
jABC [9, 10], our framework for modelling, analyzing, exe-
cuting, deploying, and testing applications built in a service-
oriented way [11, 12]. As for any jABC product, the OCS
processes are defined in terms of hierarchical Service Logic
Graphs (SLGs) (see Figure 4): SLGs express in a control
flow-like style the coordination (orchestration) of function-
alities that are themselves basic reusable services called Ser-
vice Independent Building Blocks (SIBs). In jABC we design
and develop complex applications like the OCS as follows:

• Model the service’s business logic according to its func-
tional and non functional requirements. This is done
in terms of SLGs that orchestrate reusable services ex-
pressed as SIBs. Complex services are built hierarchi-
cally, a heavily used feature in the OCS.

• Model the (mostly process-dependent) policies and the
interoperability and interference constraints between
several (sub)services in terms of temporal logic for-
mulas. Here, we use mainly CTL [4], for which the
jABC offers a user-friendly pattern-based graphical ed-
itor (the FormulaBuilder [13]).

• Model check the designed SLGs wrt. the policies using
these libraries of constraints: we can at any time en-
sure the compliance of the service logic to the policies.

In the following we illustrate how this is realized in jABC
for the OCS.

3.1 Global OCS Policies
Policies in the OCS define the cooperation of SIBs/Services

and their dependencies. For example the capability of read-
ing submitted articles depends on the user’s role, on conference-
dependent customs, and on his/her personal conflict situa-
tion with single submissions. We consider here a simplified

model of the business logic underlying the ReadArticleList
feature, a subservice of the OCS and purely role-related poli-
cies 1 Simple role-specific access policies for the article list
are as follows:

• Policy 1: Only users logged in as PC Chair can read
all articles.

• Policy 2: Users logged in as PC Member are only
permitted to read articles delegated to them.

• Policy 3: Users logged in as Author are only permit-
ted to read their own articles.

Figure 4 shows the simplified workflow for accessing the
article list in the OCS. It distinguishes three ways to ac-
cess the SIB ShowArticles, which dynamically displays the
articles loaded either by the SIB LoadAllArticles, or Load-
DelegatedArticles, or LoadOwnArticles (which in reality
include more complex subprocesses). Once the user has re-
quested in the online service the ReadArticleList service,
the decision which articles must be loaded and shown in the
next webpage is delegated to the three Check SIBs. They
examine the permissions of this user, who may be associated
in general to several roles, and evaluate the context infor-
mation, which tells for instance that this user, who is both
a reviewer and an author, is currently logged in as reviewer.
A role is defined as a collections of rights, whereby a right
specifies the permission to access an object or a service.

If the user has the right to see all the articles, the SIB
CheckReadAllArticles evaluates positively, thus the out-
going branch labelled permitted is selected and the service
logic leads to the execution of LoadAllArticles as next SIB.
Otherwise, the branch denied is followed, leading to the next
Check SIB in the workflow. These Check SIBs implement
in a reusable and modular way the role access control mech-
anism used in the OCS and will be explained later on.

3.2 Model Checking the Policies
An advantage of model driven development is the abil-

ity of checking policy compliance already at design time,
on the models. In this case, since we deal with intellec-
tual property-sensitive data (unpublished scientific papers),
this is of particular importance, for trust and non-disclosure
issues. In jABC, we express graphically the policies as col-
lections of (temporal) logic constraints using the Formula-
rBuilder plugin [13] and automatically check them wrt. the
SLG by means of the GEAR [18] model checker.
In the following we will use Computation Tree Logic (CTL) [4]
to express desired system properties.

Definition 1. Syntax of CTL
For p ∈ AP, the set of CTL formulas is defined by:

φ ::= p | ¬φ | φ ∨ φ | EX[φ] | E[φ U φ] | A[φ U φ]

The semantics of CTL is defined using paths in a Kripke
Transition System (KTS), a transition system with action
labels on the edges and atomic propositions on the nodes.
These paths represent the possible execution traces of the
system.

1More elaborate policies that consider context and personal
overrides are also defined and enforced similarly, but require
a detailed model of the business logic that we cannot disclose
here. We will show corresponding examples at the workshop.

23

Definition 2. Path
A path is a sequence of states s0, s1, s2, · · · , such that
(si, a, si+1) ∈→ for some a ∈ Act. Sω denotes the set of
all paths. We refer to the (i + 1)-th state of a path π ∈ Sω

as π[i].
PK(s) = {π ∈ Sω|π[0] = s} denotes the set of paths

starting from state s in the Kripke Transition System K.

Definition 3. Semantics of CTL
Let K = (S, Act,→, I) be a Kripke Transition System over
atomic propositions AP, p ∈ AP be an atomic proposition,
s ∈ S be a state, and φ, ψ be CTL formulas. The satisfaction
relation |= is defined by:

s |= p iff p ∈ I(s)
s |= ¬φ iff s |= φ does not hold
s |= φ ∨ ψ iff s |= φ or s |= ψ
s |= EX[φ] iff ∃ π ∈ PK(s).π[1] |= φ
s |= E[φ U ψ] iff ∃ π ∈ PK(s).∃ j ≥ 0.π[j] |= ψ∧

∀ 0 ≤ k < j.π[k] |= φ
s |= A[φ U ψ] iff ∀ π ∈ PK(s).∃ j ≥ 0.π[j] |= ψ∧

∀ 0 ≤ k < j.π[k] |= φ

As usual, we can derive the following (dual) operators.

• φ ⇒ ψ ≡ ¬φ ∨ ψ and φ ∧ ψ ≡ ¬(¬φ ∨ ¬ψ)

• AX[φ] ≡ ¬EX[¬φ]

• EF[φ] ≡ E[true U φ] and AF[φ] ≡ A[true U φ]

• EG[φ] ≡ ¬AF[¬φ] and AG[φ] ≡ ¬EF[¬φ]

Structurally, CTL operators consist of a path quantifier that
specifies whether we are interested in at least one possible
execution trace (E) or every possible execution trace (A),
and a path formula describing the behavior along paths.

• X (next-time) talks about the next state

• F (finally) talks about a state that is reached eventually

• G (generally) talks about the entire path

• φ U ψ (until) requires φ to hold until ψ holds at some
future state, or ψ may also hold immediately

We interpret SLGs as Kripke Transition Systems where a
SLG’s SIBs are the nodes and its branches are the edges of
the KTS. The atomic propositions in the formulas can reflect
the existence of a SIB itself, the values of SIB parameters,
and the accessibility of SIBs/Services via branches.

Policy 1 defines abstractly that only users logged in with
role PC Chair have read access to all articles. On the basis
of the current service collection, the SIB CheckReadAllAr-

ticles that checks if the current user has the corresponding
right should always precede the execution of the SIB Load-

AllArticles. We model this graphically with the Formula-
Builder, yielding the formula graph shown in Figure 5.

The DIAB temporal operator (read diamond backward)
acts like the EX operator with the transition arrow reversed.
From now we name this behavior EXB, specifying that at
least one predecessor SIB exists with that name, that is
reachable backwards over a branch with that label.

The shown graph is translated in CTL syntax:

((’ShowArticles => EXB[ok] ’LoadAllArticles)

/\ (’LoadAllArticles => EXB[permitted]

’CheckReadAllArticles))

Figure 5: Policy 1 (PC Chair access) in jABC

Figure 6: The ReadArticleList Feature is Policy 1
compliant

This constraint is translated internally in µ-calculus for
the GEAR model checker.

Ensuring that the SLG complies to this policy amounts
now to model checking the corresponding SLG wrt. this
property. We see in Figure 6 that the property is satisfied
by the entire SLG. All SIBs satisfying the property are high-
lighted with a (green) rectangle by our model checker, thus
the SLG is compliant to Policy 1.

In our experience, SLGs and policies evolve separately. It
is quite frequent that concrete features modify their SLGs,
mostly due to the introduction of additional cases or to re-
finement of the workflow. Policies, on the contrary, have
proven to be much more stable. In Figure 7 we show a
new version of the SLG where the branch ok of the SIB
LoadAllArticles has been redirected to SIB LoadDelegated

Articles. This could be an intermediate step in an evolu-
tion of the workflow. Checking this version of the SLG we
see that a violating node is detected and highlighted with a
(red) rectangle by the model checker. Additionally we have
emphasized this node using a circle. This means that at
least a path originating in that node now violates Policy 1.

3.3 Basic Access Control in the OCS
In the OCS we use an own concept of role-based manage-

ment of user rights, as described in [6]. A role is a collection
of rights, which gives users the permission to access an ob-
ject, feature, or service. Features are seen as a collection of

24

Figure 7: Violation of Policy 1 in the modified
ReadArticleList Feature

functionalities of a service. In the OCS, service functionali-
ties have unique names, with naming scheme

F-<FeatureCategory>-<SubfeatureID>.<Filter>

• The FeatureCategory is the name of a service, imple-
mented as an own SLG in the main service.

• The SubfeatureID specifies a subservice of a service.
Subservices can either have an own SLG within the
service, or be SIBs.

• The Filter suffix is optional and allows steering the
fine granular right management: it restricts the run-
time access to capabilities of the business objects.

As an example, the OCS FeatureCategory ART contains all
the specific rights to access and work with articles. Sect. 3.1
already presented some policies for reading articles. The
concrete permission for these policies is F-ART-05. This per-
mission says that the subservice that provides access to the
content of a submission can be executed, but it does not
specify on which articles. This is realized through filters,
which define a finer granular access to the articles. The per-
mission F-ART-05.all gives read access for all articles and
is equivalent to the scope of Policy 1, F-ART-05.delegated
specifies the permission to read only articles delegated to
that user, as defined in Policy 2. F-ART.05.own is equiva-
lent to Policy 3 and allows reading of own articles.

The set of permissions compactly describes the space of
possible actions on objects, features, or services. At runtime
the access to service functionalities depends on

• the user’s role, which defines the allowed permissions.

• the user’s specific permissions and restrictions. It is
possible to assign additional permissions to a user,
which are not included in his role. Also the specifi-
cation of restrictions is supported.

• the object’s permissions, which specify the needed ac-
cess rights depending on the object’s state.

• the conference’s restrictions, which depend on the con-
ference deadlines. Once a deadline is expired, e.g. ar-
ticle submission deadline, the corresponding right to
submit articles is revoked.

All the elements just listed are highly dynamic, because
they can be modified automatically (by the service, due to a
expired deadline), or manually (by the conference leader) at
any time. Because of this dynamics, authorization is com-
puted at every request in the OCS as follows:

1. Calculate the current user’s permissions Perm, which
include role, object, and user’s permissions and restric-
tions, and the conference’s restrictions:

Perm = ((roleperm ∪ userperm) ∩Objectperm)

\userrestr \ conferencerestr

2. Check if this set contains the necessary access permis-
sions for the object:

Accessperm ⊆ Perm

3. If this is true, the user is allowed to perform the action
on the object.

This computation is done by our access control engine [6]
during runtime. The engine takes into account all specific
permissions and restrictions, and is responsible for active
control of varying user’s rights.

As one sees, in order to be efficient at runtime we must
have permission sets of static nature: any process-oriented
requirement, like the precedence constraint we saw in Policy
1 must be ensured once and forever on the SLG. Maintaining
permission sets that include histories would be computation-
ally awkward and extremely difficult to evolve and maintain.
Therefore, for the OCS and similar applications the capabil-
ity of expressing and checking policies that include temporal
constraints is of central importance.

4. COMPARISON WITH OUR APPROACH
As described in Sect. 2.3, both XML-based languages al-

low combining simple policies to complex policy expressions
by means of simple operands. However, these complex ex-
pressions are of propositional (conjunctive or disjunctive)
nature. Temporal operands are not foreseen, therefore pure
XACML or WS-Policy-like approaches are insufficient for
our needs, since they cover only the description of the per-
mission sets.

Conversely, policies specified in XACML or WS-Policy can
easily be modeled as a (predicate logic) graph with our For-
mulaBuilder. Because of the hierarchical structure of the
formula graphs (they are themselves just specialized SLGs)
it would be simple to reuse and combine several policies to
one complex propositional constraint. The tool based edit-
ing enables users in fact to maintain and understand even
very large rule sets.

Another central point for the successful usage of policies is
the close association between the specified policies and the
application they were designed for. The WS-Policy specifi-
cation does not state how the policy should be applied to the
service, leaving this to a different aspect of the global design.
In contrast XACML’s Policy Enforcement Point ensures at
runtime that policies are used to secure the requests. As
described in section 3.3 we have an own role access control

25

mechanism and engine, which supports the link to the policy
compliance validation. Here we miss the validation aspect
in the original XACML approach.

We can also specify the communication between services
in WS-Policy style. Our advantage is that we can graphi-
cally describe the dependencies between services and their
service parameters. Thus permissions can be made depen-
dent on the state of a service and this relationship can be
automatically validated by the model checker.

Neither XACML nor WS-Policy support or provide state
dependent policies or mechanisms for the validation of poli-
cies. We know by experience that the complexity of policies
comes along with the increasing size of the service’s func-
tionalities. It is very difficult to manually maintain very
large rule sets, keeping them consistent and aligned. Espe-
cially the editing of huge XML files represents an enormous
challenge for humans. An XML-based approach to express
access policies does not imply that the execution of these
policies automatically secures a service: there is no guar-
antee that the policies themselves are correct or that they
cover all application aspects. Of course it is possible to test
a service manually, but this is a time consuming and error
prone practice, especially when policies overlap or depend
on dynamic and context conditions.

Ensuring that the whole application/service is covered by
all policies requires an automatic validation mechanism at
design time. From our point of view this mechanism should
be based on formal methods, since services like the OCS
require high compliance standards. XACML and WS-Policy
have broad specifications and guidelines on how to define
and use local policies. Approaches as in [5] however require
first complex translations and encodings of the policies, to
make them amenable to model checking.

From our point of view it is essential to have an inte-
grated solution for application development which provides
the possibility to continuously check service policies natively,
from the very beginning, so that the policies can be incre-
mentally refined and curated along the development of the
service, this way adequately supporting change management
and evolution. The current standard proposals are therefore
still insufficient for our needs.

5. CONCLUSIONS
Access to sensible data via complex online services re-

quires an adequate mechanism to define, verify, and enact
policy compliance, that ensures the trustability of a service.

We described and compared the XML-based description
languages XACML and WS-Policy with the constraint and
graph-based approach for modeling access control as used by
the web-based Online Conference Service (OCS). In an op-
tic of change management and evolution, a structured and
flexible policy model is needed to handle dynamicity, par-
ticularly when handling rights in systems with many users
which hold different roles.

While XACML and WS-Policy can be sufficient to de-
scribe local role/rights models, adequate to express static
policies, for the OCS we need to express process-oriented
policies: such policies embed local policies in a temporal
component, in the sense of linear time temporal logics or as
in our case branching time temporal logics. This is elegantly
covered by the jABC based capabilities, but not covered by
XACML nor WS-Policy, which are purely propositional.

Furthermore, the model based validation of policy con-

straints via model checking is an important key to warrant
the reliability of service control mechanisms. This enables
the continuous compliance checking along the incremental
refinement and evolution along the entire lifetime of the ser-
vice, this way adequately supporting he alignment between
a service and its policy set. This is for the moment provided
in the jABC, but not by XACML and WS- Policy, which are
therefore still insufficient for our needs.

6. REFERENCES
[1] T. Moses (Ed.): eXtensible Access Control Markup

Language (XACML) Version 2.0, Feb. 2005
http://docs.oasis-open.org/xacml/2.0/access control-
xacml-2.0-core-spec-os.pdf,

[2] P. Griffin: Introduction to XACML, February 2004
http://dev2dev.bea.com/pub/a/2004/02/xacml.html

[3] B. Siddharth et al.: Web Services Policy 1.2 - Framework
(WS-Policy), April 2006, http://www.w3.org/Submission
/2006/SUBM-WS-Policy-20060425/

[4] E. A. Emerson, C. S. Jutla, A. P. Sistla. On
model-checking for fragments of µ-calculus. 1993.

[5] G. Hughes, T. Bultan: Automated Verification of XACML
Policies Using a SAT Solver. WQVV 2007, Worksh. on
Web Quality, Verification and Validation, at 7th ICWE,
Como (I), July 2007, Worksh. Proc. pp. 378-392.

[6] M. Karusseit, T. Margaria: A Web-based Runtime-Recon-
figurable Role Management Service Proc. WWV’06, 2nd
Int. Worksh. on Automated Specification and Verification
of Web Sites, Cyprus, 2006, IEEE Press, pp.53-60.

[7] M. Karusseit, T. Margaria: Feature-based Modelling of a
Complex, Online-Reconfigurable Decision Support Service
Proc. WWV’05, 1st Int. Worksh. on Automated
Specification and Verification of Web Sites, Valencia (E),
March 2005, ENTCS N. 1132.

[8] T. Margaria, M. Karusseit: Community Usage of the
Online Conference Service: an Experience Report from
three CS Conferences, 2nd IFIP Conf. on ”e-commerce,
e-business, e-government” (I3E 2002), Lisboa (P), Oct.
2002, Kluwer, pp.497-511.

[9] jABC: JavaABC Framework http://www.jABC.de
[10] B. Steffen, T. Margaria, R. Nagel, S. Jörges, C. Kubczak:

Model-Driven Development with the jABC, Proc. HVC’06,
IBM Haifa Verification Conf., Haifa (IL), LNCS 4383,
Springer Verlag, 2006.

[11] T. Margaria, B. Steffen: Service Engineering: Linking
Business and IT, Computer, IEEE Computer Society,
October 2006, pp.45-55

[12] B. Steffen, P. Narayan: Full Life-Cycle Support for
End-to-End Processes, Computer, IEEE Computer Society,
November 2007, pp.64-73

[13] S. Jörges, T. Margaria, B. Steffen: FormulaBuilder: A Tool
for Graph-based Modelling and Generation of Formulae,
ICSE 2006, Shanghai, China, ACM Press, pp. 815-818.

[14] OASIS http://www.oasis-open.org/home/index.php
[15] Della-Libera et al.: Web Services Security Policy Language

(WS-SecurityPolicy) Version 1.1, July 2005
http://specs.xmlsoap.org/ws/2005/07/securitypolicy/ws-
securitypolicy.pdf

[16] D. Box et al.: Web Services Policy Assertions Language
(WS-PolicyAssertions) Version 1.1, May 2003
http://xml.coverpages.org/ws-policyassertionsV11.pdf

[17] K.Ballinger et al.: Web Services Metadata Exchange (WS-
MetadataExchange) Version 1.1 August 2006
http://specs.xmlsoap.org/ws/2004/09/mex/WS-
MetadataExchange.pdf,

[18] M. Bakera, T. Margaria, C. Renner, B. Steffen:
Game-based Model Checking for Reliable Autonomy,
SMC-IT’06, 2nd IEEE Int. Conf. on Space Mission
Challenges for Information Technology, Workshop on
Autonomous and Autonomic Systems, July 2006.

26

