
Testing Mobile Computing Applications:
Toward a Scenario Language and Tools

Minh Duc Nguyen Hélène Waeselynck Nicolas Rivière
LAAS-CNRS ; Université de Toulouse ; 7, avenue Colonel Roche, F-31077 Toulouse, France

E-mail: {mdnguyen,waeselyn,nriviere}@laas.fr

ABSTRACT

Advances in wireless networking have yielded the development
of mobile computing applications. Their unique characteristics
(dynamicity of the system structure, communication with
unknown partners in local vicinity, context dependency) provide
new challenges for verification. This paper elaborates on the

testing technology. As a first step, a review of the state-of-the-art
is performed together with a case study (a group membership
protocol in mobile ad hoc settings), which allowed us to gain
insights into testing problems. Work is then directed toward: (1)
the definition of a scenario language with extensions to better
account for mobile settings (spatial relationships, broadcast
communication with neighbors), and (2) an automated support for
the off-line analysis of execution traces to identify occurrences of

described scenarios.

Categories and Subject Descriptors

D.2.5 [Testing and Debugging]: Testing tools

General Terms

Algorithms, Languages.

Keywords

Testing, mobile computing systems, scenario language, graph
matching.

1. INTRODUCTION
Advances in wireless networking technology have yielded the
emergence of the mobile computing paradigm. Generally
speaking, mobile computing calls for the use of mobile devices
(e.g., handsets, personal digital assistants, laptops) that move

within some physical areas, while being connected to networks by
means of wireless links (e.g., Blue-tooth, IEEE 802.11). Mobile-
based applications and services may involve device-to-device or
device-to-infrastructure communication. They have to be aware
of, and adapt to, contextual changes.

From a theoretical and technological point of view, mobile

applications are more complex than their non-mobile-

counterparts, since they involve not only aspects of distributed
applications (e.g., concurrency, communication, latency), but also
unique characteristics of mobile systems, such as frequent
connections and disconnections of mobile nodes, ad hoc
networking, and dependency on context. These novelties in
mobile systems let us argue for the necessity of new validation
methodologies. The objective of our work is to develop solutions
for testing mobile-based applications and middleware services.

As a first step, a review of relevant literature has been performed
together with a case study, a group membership protocol (GMP)
in ad-hoc networks [12], that allowed us to gain concrete insights
into testing problems. Work has then been directed toward the
definition of a scenario-based testing framework that covers (1)
the definition of a language that describes interaction scenarios in
mobile settings, and (2) the development of an automated support
to analyze execution traces, in order to identify occurrences of
described scenarios. In the latter case, an occurrence may

correspond to the violation of a functional requirement or to the
coverage of a test purpose.

This paper is organized as follows. Section 2 recalls the state-of-
the-art in testing (traditional) distributed systems. To illustrate the
specificities of mobile computing systems, Section 3 introduces
the GMP case study and discusses its outcomes in relation with
the state-of-the-art. Section 4 argues that graphical scenario
languages, widely used to support the design of testing in

distributed systems, need extensions to conveniently represent
interaction scenarios in mobile settings. Section 5 presents initial
work toward the automated processing of the extended scenario
descriptions. Section 6 concludes the paper.

2. TESTING TRADITIONAL

DISTRIBUTED SYSTEMS
Distributed systems exhibit specificities that concern their design
and validation: concurrency, non-determinism, communication
delays, as well as the fact that there is a priori no consistent view
of the global state nor a common time reference. As a result,

testing a distributed system raises difficult controllability and
observability issues.

From a technological viewpoint, this means that complex test
architectures may be required. A system is accessed by means of
distributed Points of Control of Observation (PCOs) to which test
components are attached. Synchronization procedures are required
to coordinate those components. Recently, TTCN-3 (Testing and
Test Control Notation Version 3) [27] has emerged as a powerful

language dedicated to the specification and implementation of test
cases. Compared to its previous versions, TTCN-3 has improved

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee.
WODA Workshop on Dynamic Analysis, July 21, 2008

Copyright 2008 ACM 978-1-60558-054-8/08/07…$5.00.

29

capabilities to accommodate complex test architectures and
procedures. It may be expected that the language will receive
increasing acceptance in a variety of application domains, well
outside its original focus (communication protocols).

At the conceptual level, graphical scenario languages have proven

quite useful to support test-related activities. Typical examples of
languages are UML sequence diagrams or Message Sequence
Charts (MSCs) [13] and their derivatives [5, 24]. They are widely
used to represent scenarios of interaction in distributed systems.
Indeed, the representation of scenarios may serve different
purposes: capture of requirements [16], specification of test
purposes (that is, of interaction patterns to be covered by test
cases) [8], design of test cases [22], or analysis of execution traces

[2]. Their popularity is due to their user-friendly syntax, which
facilitates communication while opening the door for formal
treatments (this however requires that the used notation is given a
precise semantics).

Model-based test generation has been extensively investigated in
the framework of protocol testing. It requires the existence of a
complete formal specification. In the protocol community, a
widely used specification language is SDL (Specification and

Design Language) and there are a number of test generation tools
accepting SDL models, both commercial [15, 14] and academic
[7, 3, 25]. Generally speaking, the generation proceeds by setting
a set of test purposes, and by exploring the specification behavior
so as to exhibit test cases that fulfill the purposes. The purposes
may be associated with specification coverage criteria (e.g.,
transition coverage), but most often they are manually given (e.g.,
using the MSC notation) and represent pieces of behavior that are

deemed important to be tested. The generated test cases include
verdict assignments and are typically produced in the TTCN
language. The test generation technology is now being transferred
to UML behavior models (see e.g., [11]), and is thus expected to
get broader application. However, it is worth noting that such
formal approaches are mainly used to tackle software units and
protocols, not complex distributed systems.

Passive testing (see e.g., [17]) may be the most applicable
approach in the case of complex systems. It consists in running

the system with a real or synthetic workload, in monitoring input
and output events, and in analyzing the recorded trace to check for
violation of properties.

We will now discuss how mobile settings particularize the testing
problems. It is worth noting that there exists two notions of
mobility. The first one is the logical mobility of code, yielding

mobile computation. The second one, as mentioned in the
introduction, refers to the physical mobility of devices, which
defines mobile computing. This paper is concerned with mobile
computing. A case study is introduced for illustrative purposes.

3. A CASE STUDY IN THE AD HOC

DOMAIN
A group membership protocol (GMP) is a fundamental service
lying at the heart of fault-tolerant systems. It aims to maintain a
consistent view of who is in the group, in spite of the faults that
may affect some nodes. The problem has been extensively
investigated for traditional distributed systems. However, it needs
to be revisited in the case of mobile systems. The authors of [12]

propose a solution in the ad hoc domain.

3.1 Overview of the GMP
The goal of this GMP is to offer a membership service that
accommodates the disconnections induced by mobility (when
mobile nodes get out of range). Each group is managed by a

leader that may decide to merge with other groups, or to split its
group. Decision is based on the notion of Safe Distance. If two
nodes are “close enough”, this will prevent motion-induced
disconnection for some time. A group is then safe if any two
members are connected via a path along which all consecutive
hosts are at a safe distance (multi-hop communication is allowed).
When two groups can merge into a single safe group, they have to
do so. When a group is no longer safe, it has to split. The safe
distance criterion ensures that there is time to carry out the

configuration change before a disconnection occurs. The
calculation of the safe distance is based on various parameters
such as the transmission range of mobile nodes, their maximal
speed, and the time needed for a group level operation. Departing
or arriving nodes are detected by having nodes broadcast their
physical location (“hello” message).

The authors of the protocol put strong assumptions on the
environment (e.g., reliable communication, bounded delays). The

membership service is then characterized with the properties
presented in Table 1 (see [12] for more information) that should
hold whenever the assumptions hold.

An open-source implementation of the GMP is given in LIME, a
middleware for mobile systems [19]. The implementation is not
just a small example program: each node consists of about 4000
lines of Java code, contains 22 classes and involves 6 concurrent
threads.

Table 1. General properties of the protocol

Property INFORMAL DEFINITION

Self inclusion (SI) A node is always a part of its membership view.

Local monotonicity (LM) Group identifiers installed on each node are in increasing order.

Membership agreement (MA) If two nodes have the same group id, then they have the same membership view.

Initial membership view (IMV) A node always installs itself as the only member in its view when it starts.

Membership change justification (MCJ) The successor of group g w.r.t p is either a proper superset or a proper subset of the group g.

Same view message delivery (SVD)
If node p sends a message mpq to node q at time t, and q is in mem(p, t), then mpq is guaranteed
to be delivered to q at time t0, and mem(q, t0) = mem(p, t).a

Conditional eventual integration (CEI)
If two groups satisfy the merging criteria and do so for long enough, they will merge into one
group.

Conditional group split (CGS) A group splits only if it is necessary.
a

mem(p, t) yields p’s local view of the membership at time t.

30

Our analysis of the GMP [26] involved several steps, including a
review of the paper specification, and the reverse engineering of
the source code to produce UML models. We report here mainly
on the test experiments that were also performed.

3.2 Testing the GMP
The test experiments performed in [26] can be seen as a form of
passive testing: the GMP is run using a synthetic workload
(random movement of nodes at maximal speed), execution traces
are collected, and it is automatically checked whether the
implementation satisfies its high-level requirements listed in

Table 1. The test platform ensures that the GMP environment
fulfills the assumptions made by the authors.

The experiments involved 100 runs, 82 of which violated at least
one property. Violations were for:

• Local properties, Local monotonicity (LM) and Membership
change justification (MCJ).

• Global properties involving several nodes, Membership
Agreement (MA) and Same View delivery (SVD).

A sample of 164 scenarios was extracted for further analysis. As
commented out in [26], the diagnosed problem is always the non-
atomicity of merge operations. A merge may interleave with split
or with another merge. The problem may induce a variety of
failure patterns, ranging from violation of any of the LM, MCJ,
MA or SVD property, to multiple violation patterns.

3.3 Insights from the study and related work
The test results show that the GMP implementation is flawed.
However, our aim in [26] was not so much to reveal flaws in a
research prototype. Rather, it was to tackle a non-trivial example
of mobile-based service, and to gain concrete insights into the
related testing issues. From this perspective, we believe that the
GMP is a challenging example. It is representative of a

fundamental problem (membership agreement) in distributed
computing. It involves ad-hoc networking, a specificity that
makes mobile systems depart from the traditional view of
distributed systems. The GMP also exhibits a high dependency on
the location and movement of nodes.

For such systems, an issue for test platforms is how to
accommodate the wireless technology and the mobility of nodes
during testing. In [18], a telephony application was tested by
having human operators carry handsets in an urban area. In [6],

testing a car-to-car application involved three prototype vehicles
driven on a road. But it is obvious that such kind of testing can
only be limited. In practice, a major part of the testing activities
has to be performed using emulation/simulation facilities. Our test
platform was based on simple facilities offered in the GMP source
code distribution. This was sufficient for quick feedback on the
implementation behavior, but suffered from limitations. A
conclusion in [26] was the need for more advanced facilities,

including:

• A context simulator, to manage the relative position of nodes
according to some mobility model and to produce context data
(e.g., location-based data) needed by the application.

• A network simulator to control the delivery of messages based
on the context (e.g., radio communication in a local vicinity).

Examples of platforms integrating both categories of tools can be
found in [20, 23].

Another conclusion of our study was the need for adequate
formalisms to support V&V activities for mobile systems.
Previous work from the protocol testing community has shown

that it is possible to cope with classical formalisms, to some extent
(SDL models of mobility protocols were used in [4, 21]).
However, this is done at the expense of modeling tricks. The
authors added specific components to capture the notion of
communications with neighbors. They also had to choose a
baseline configuration for test synthesis.

It would be more convenient to work from specification and
design models equipped with primitive concepts for representing

mobile settings. In the GMP example, the reverse engineering
exercise showed that standard UML might be sufficient to
represent one node in isolation, but that system-level behavior and
structure are not easily captured [26]. Some UML extensions have
been proposed in [1, 9] to represent location and mobility. But the
offered concepts mostly consist in entering and exiting boxes,
which may be convenient to represent the movement of a node
from one infrastructure access point to the other, but does not

cover applications with ad hoc networking.

From a testing perspective, relevant formalisms may range from
scenario languages to languages for modeling complete behavior.
In this paper, we investigate scenario languages. We propose a set
of extensions to account for mobile settings, and present initial
work toward the automated processing of scenario descriptions.

4. SCENARIO LANGUAGES IN MOBILE

SETTINGS
Scenarios languages typically consider the system behavior in
terms of communication events. Some events are ordered while

others may interleave in a non-deterministic way, hence yielding a
partial order. For illustrative purposes, Figure 1 provides an MSC-
like representation of a fail scenario found by testing the GMP. It
shows a specific interleaving of split and merge operations. At the
end of the scenario, an MCJ (see Table 1) violation occurs on
Node 2.

In the GMP case study, such graphical representations proved
crucially useful to understand the fail behavior during testing. We
reformulated part of the monitored traces into MSC-like diagrams
to get a clearer picture of what was happening.

Graphical representations of scenarios were also useful at the

previous phases of the study, when analyzing the specification and
the design. Still, we found that classical scenario languages could
not capture some specificities of mobile computing applications.

Let us come back to the example in Figure 1. First, it puts
emphasis on the partial order of messages, while the spatial
topology of nodes is equally important to characterize the
scenario. Indeed, the split and merge behavior is governed by
perceived changes in the topology. Second, the MSC notation
does not support the expression of broadcast communication – not

mentioning broadcast to neighbors. Here, “hello” messages (for
group discovery) have not been represented for lack of convenient
language constructs. Note that the sender of an “hello” message
does not a priori know the number and identity of potential
receivers. Whoever is at communication range may process the
message.

31

Let us know consider the extended representation shown in Figure
2. It contains both (a) a graph-like view of the successive spatial
configurations, and (b) an MSC-like view of communication
events with explicit references to the spatial configurations. It is
now clear that the scenario is triggered by the “hello” message

broadcasted by Node 2 after a change in spatial configuration.
Specifically, Node 2 is no longer at a safe distance from Node 4,
while getting close to Node 1. Both the GetLeader message from
Node 1 (initiating a merge) and the GroupChange message from
Node 4 (performing the split) are causally related to the “hello”
message: when receiving the location data from 2, the other nodes
get aware of a change in the topology. Without entering the details
of the scenario, let us insist on the fact that both the ordering of

messages and the topology of nodes are important for the failure
to occur. In particular, it is important that:

• The change in spatial configuration breaks the transitive safe
path between 4 and 3 (it is precisely the inconsistent treatment
of Node 3 in the group change operations received by 2 that will
induce the MCJ violation);

• When asked about its leader address, Node 2 replies before
being informed about the split.

Abstracting from the concrete syntax shown in Figure 2, the

language extensions to conveniently represent scenarios for
mobile computing systems are the following:

• The spatial relationships of nodes need to be considered as first
class concepts. This requires the user to determine the relevant
abstraction for such relationships in the target application. For
example, two spatial relations govern the GMP behavior: being
at a safe distance (which determines decision to split or merge

groups), and being at communication range (which determines
the single-hop connectivity). Labeled graphs are adequate to
capture such relations, and we may retain the principle of using
a visual formalism to represent the successive spatial
configurations.

• Interaction scenarios are decomposed into fragments, where
each fragment takes place in one of the previously defined
spatial configurations, and configuration changes are

represented by a global synchronization (or equivalently, we
have a strong sequential composition of fragments). In this way,
causal dependencies involving both configuration changes and
node interactions are made explicit. It is also explicit which
event occurs in which configuration.

• Broadcast communication is introduced (in Figure 2b, this is
concretely represented by means of a radio transmission sign).
There is a unique send event followed by a set of concurrent
receive events. The notation should allow us to specify a subset

of receiving nodes, by referring to the spatial relations in the
underlying configuration.

Messages in GMP

- GetLeader: Asks for the current leader of a new node detected at a
safe distance.

- LeaderAddress (leader): On receiving a GetLeader message, a node
replies by sending its leader address.

- GroupInfo (connectivity list): During a merge operation, a node
sends its connectivity information to the future new leader.

- GroupChange (members, leader): The old leader sends out
GroupChange messages containing new members and new leaders
after performing a merge or a split.

Figure 1. MSC-like view of a fail scenario

(a) Spatial configuration: Graph-like view (b) Events: MSC-like view

Figure 2. Scenario mixing spatial and event views

32

We believe that these three extensions would address needs that
are recurring when trying to model scenarios in mobile settings.
They should be useful whatever the chosen notation variant (e.g.,
standard MSC, MSC derivatives, or UML sequence diagrams) and
whatever the intended purpose of the scenarios (capture of

application requirements, specification of test purposes, of test
cases, reverse engineering from execution traces). As an example,
we are currently working on the extension of UML 2.0 sequence
diagrams, in close collaboration with the Budapest University of
Technology and Economics. Much attention is paid to semantics
issues, so that the formal treatment of scenario descriptions
becomes possible.

5. PROCESSING OF SCENARIO

DESCRIPTIONS
As already mentioned, scenario descriptions may be a useful

support to various V&V activities, ranging from the capture of
application requirements to the specification and design of test
cases. In some cases, the scenarios may be used in conjunction
with a complete model of behavior. For example, it is formally
verified whether the model may violate a requirement scenario. Or
test cases are formally synthesized from the model and a set of
test purpose scenarios. But the usefulness of scenarios does not
require commitment to complete formal specification. Indeed,

some automated treatments become possible by simply using
scenario descriptions (provided the semantics is well-defined).
They include checking whether a test execution trace satisfies a
requirement scenario, or whether a test execution trace covers a
test purpose.

These treatments involve classical treatments in scenario-based
frameworks, such as the comparison of the orders of events in two
scenario representations. In mobile settings, the proposed

extensions now consider the spatial relationships of mobile
devices as first class concepts. We then argue that graph
algorithms, and more specifically algorithms for graph matching
problems, are also needed to support automation of the above
treatments. Such algorithms may even be useful to assist in the
production of contextual data that instantiate a test case, as will be
explained below.

5.1 Relevance of Graph Matching Problems
Suppose a GMP test case has been specified using an extended
notation, as proposed in the previous section. In the test case
specification, movement is abstracted by graph modifications. But
ultimately the tested implementation will need to be fed with
physical location data for each node. How to produce concrete
contextual data, that instantiate the desired evolution of topology,

is an acute problem.

Generally speaking, the location data may have to obey a complex
mobility model (for example, cars moving in a geographical area,
with a given network of roads). Also, the abstractions used in the
labeled graph may be richer than just the distance of nodes. As a
result, the manual production of context data may be cumbersome,
if not unrealistic.

Although we may not be able to manually tune data, it may not be

too difficult to trigger the desired configuration at least once by
random simulation. In test platforms, context simulators are used
to manage the movement of nodes and produce context data
accordingly (see Section 3.3). Our proposal is then to have a

preliminary production phase of context data, based on runs of the
context simulator taken in isolation:

• A run may involve numerous nodes moving according to the
implemented mobility model. At each simulation step, relevant
contextual data for each node are recorded.

• The concrete simulation trace is then abstracted by a series of
graphs representing the evolution of the system topology.

• It is then searched whether sub-graphs can match the desired
evolution pattern (defined in the scenario).

• The list of matches provides alternative baseline configurations
for the implementation of the scenario.

For example, from a simulation run, we may identify four nodes
exhibiting the spatial configurations shown in Figure 2a. The

recorded contextual data for these nodes (e.g., their location
coordinates) can then be extracted from the complete trace, and
replayed for the test case execution.

Graph matching algorithms are also relevant to comparing a test
execution trace to either a test purpose (in order to detect
coverage), or an application requirement (in order to detect
violation). In both cases, the comparison involves two steps:

• Determine which physical nodes can play the role of the nodes

appearing in the specified configuration graphs, according to the
observed topology;

• Analyze the order of events in the identified configurations.

Obviously, the first step is typical from a graph matching
problem.

We now get into the technical aspects of the search for matches,
which calls for building graph homomorphisms.

5.2 Graph Homomorphisms
Let LV and LE denote sets of labels for vertices and edges, and let
G = (V, E, μ,) denote a graph structure, where:

• V is the set of vertices,

• E V V is the set of edges,

• : V LV is a function assigning labels to the vertices,

• μ : E LE is a function assigning labels to the edges.

A graph homomorphism is a mapping between two graphs that
respects their structure. It can be mathematically defined as
follows.

Definition. Let G1 = (V1, E1, 1, μ1) and G2 = (V2, E2, 2, μ2) be

two graphs. A function f : V1 V2 is a graph homomorphism

from G1 to G2 if and only if:

• It is injective,

• 1 (v1) = 2 (f(v1)) for all v1 V1,

• For any edge e1 = (v1s, v1e) E1, there exists an edge e2 =

(f(v1s), f(v1e)) such that μ1(e1) = μ2(e2).

The definition captures the idea of G1 being matched by a
subgraph of G2. Usually, G1 is called the model graph, and G2 the
host graph. In our work, the model graph is expected to come

33

from a scenario description, while the host graph is extracted from
an execution or simulation trace.

In practice, the basic definitions of graph structure and graph
homomorphism need to be slightly extended to fulfill our needs.
First, it may be convenient to assign tuple of labels to vertices and

edges in order to allow a richer representation of nodes and
relations between nodes. For example, assume that an application
involves both mobile and infrastructure mode. A node could be
characterized by a 2-tuple <id, type>, where id would be a value
uniquely identifying the physical node, and type would be an
element of {Mobile, Infrastructure} that differentiates the mobile
and infrastructure nodes. Second, we need to allow label variables
in the model graph. In a scenario description, a node may be

assigned labels <n1, Mobile> and it should be possible to detect a
matching by a physical node <“10”, Mobile> with substitution
n1:= “10”. As can be seen in this example, introducing variables
means that the graph homomorphism building needs to exhibit a
valuation that consistently unifies the labels.

The problem of graph homomorphism building has been
extensively studied in the literature. It is thus possible for us to use
an existing tool as the basis for the comparison of scenario

descriptions and concrete traces. One of the existing tools has
been developed by colleagues at LAAS-CNRS [10] in the
framework of research on dynamically reconfigurable
architectures. The tool searches for the set of all homomorphisms
(f,Val) from a model graph Gm to a host graph Gh, where f is a
mapping and Val is a valuation. In the definition of graph
structures, the tool offers the following features:

• Vertices may be assigned at most 3 labels, yielding a 3-tuple of

type STRING INT INT.

• Edges have at most one label of type INT.

• Label variables are supported for vertices.

The complexity of the search is polynomial in the number of
vertices of Gh, but exponential in the number of vertices of Gm
(which is not surprising, since the search problem is known to be
NP-complete).

In addition to graph homomorphism building, the tool also offers

other facilities that are convenient for us. For example, the
function VALUATE_VERTEX(G,Val) takes as inputs a graph
and a valuation, and rewrites all vertices according to the
valuation (see [10] for the full functionality of the tool).

5.3 Algorithm for analyzing a simulation run
We retrieved this tool and have used it as a basic element to
develop an algorithm for the analysis of execution traces and
described scenarios, as discussed in Section 5.1.

The algorithm concerns the detection of a sequence of
configurations. Suppose a scenario description involves two
successive configurations, denoted Gm1 and Gm2. Suppose also
that a simulation run is abstracted by a sequence of graphs Gh1,
…, Ghn, where n is the number of simulation steps in the run. We

require that the first label in the 3-tuple represents an id that
uniquely identifies the corresponding node, so as to be able to
trace this node from one simulation step to the other. A
configuration change from Gm1 to Gm2 is then detected when there
is an i, 1 i<n, such that:

• there is an homomorphism (f, Val) from Gm1 to Ghi

• there is an homomorphism (f’, Val’) from
VALUATE_VERTEX (Gm2, Val) to Ghi+1.

Note that it is necessary, at the second step, to retain the valuation
choices made at the first step. Hence, the model graph is not Gm2

but VALUATE_VERTEX (Gm2, Val).

Some additional processing is required to account for nodes that
are explicitly created or eliminated by the configuration change:

• Ghi should not include vertices with the same id as the new
nodes in the second configuration.

• Ghi+1 should not include vertices with the same id as the
eliminated nodes in the first configuration.

In addition to detecting the configuration change, we also need to

identify the temporal window for the two configurations. This is
so because when we will analyze the event view, we need to be
sure that a given trace event occurs in the expected configuration.
Hence, we have to determine the start date 1 s i of the first
configuration, and the end date i+1 e n of the second one,
again using graph homomorphisms with appropriate valuations.

An obvious problem with this set of on-going developments is
that we consider all possible matches for the n simulation steps,

which adds to the complexity problem. We are currently studying
how to alleviate the problem, by taking advantage of the fact that
successive graphs differ only slightly from one step to the other.
Also, we may consider a bounded number of matches rather than
all of them.

6. CONCLUSION AND PERSPECTIVE
This paper elaborates on testing technology. It discusses some
issues in testing mobile computing applications, from both
technological and conceptual viewpoints. The issues are
exemplified by the GMP case study. We then present orientation
of our work towards the definition of a scenario language that
aims to better account for mobile settings. This language is based
on graphical scenario languages with the following extensions:

• The spatial relationships of nodes are now considered as first

class concepts, and introduced in labeled graph representations.

• The event view makes it explicit which communication event

occurs in which spatial configuration, and configuration changes

are introduced as global events.

• Broadcast communication in a local vicinity is introduced by

means of special symbols.

The language has been informally presented, and we are currently

working on a precise definition of both the syntax and the
semantics.

Since scenario descriptions now involve graph constructs, their
formal treatment has to include graph matching algorithms. We
have started to develop an algorithm, based on an existing graph
tool, to search for the matches of scenarios in a simulation run.
Future work will investigate how to accommodate richer
descriptions of the node configurations in the scenarios, such as

the introduction of min, max duration constraints for the
configurations. For example, a scenario may require that a given
configuration lasts at least k steps.

34

Our ultimate goal is the development of a scenario-based testing
framework, which we believe would be a pragmatic contribution
to the difficult issue of testing mobile computing applications.

7. ACKNOWLEDGEMENTS
This work was partially supported by the ReSIST Network of
Excellence (IST 026764) and the HIDENETS project (IST 26979)
funded by the European Union under the Information Society
Sixth Framework Program.

8. REFERENCES
[1] H. Baumeister et al., “UML for Global Computing”, Global

Computing, LNCS 2874, Springer-Verlag, 2003, pp. 1-24.

[2] L. Briand, Y. Labiche and J. Leduc, “Toward the Reverse
Engineering of UML Sequence Diagrams for Distributed
Java Software”, IEEE Trans. on Software Engineering 32(9),
Sept. 2006, pp. 642-663.

[3] A. Cavalli et al., “Hit-or-jump: An algorithm for embedded
testing with applications to IN services”, Proc. of the IFIP
Int. Conf. FORTE/PSTV '99, Elevier, Oct. 1999, pp. 41-56.

[4] A. Cavalli et al., “A validation Model for the DSR protocol”,
Proc. of the 24th Int. Conf. on Distributed Computing

Systems Workshops (ICDCSW’04), IEEE CS Press, Japan,
Mar. 2004, pp. 768-773.

[5] W. Damm and D. Harel, “LSCs: Breathing life into message
sequence charts”, Proc. of the 3rd Int. Conf. on Formal

Methods for Open Object-Based Distributed Systems

(FMOODS’99), Kluwer Academic Publishers, Italy, Feb.
1999, pp. 293-312.

[6] D. de Bruin et al., “Design and test of a cooperative adaptive
cruise control system”, Intelligent Vehicles symposium,
IEEE CS Press, Italy, June 2004, pp. 392-396.

[7] J.-C. Fernandez et al., “Using on-the-fly Verification

Techniques for the Generation of Test Suites”, Proc. Conf.

on Computer-Aided Verification (CAV'96), LNCS 1102,
Springer Verlag, Aug. 1996, pp. 348-359.

[8] J. Grabowski, D. Hogrefe and R. Nahm, “Test Case
Generation with Test Purpose Specification by MSCs”, Proc.

of the 6th SDL Forum, North Holland, Oct. 1993, pp. 253-
166.

[9] V. Grassi et al., “A UML Profile to Model Mobile Sytem”,
LNCS 3273, Springer-Verlag, 2004, pp. 128-142.

[10] M. K. Guennoun, “Architectures Dynamiques dans le
Contexte des Applications à Base des Composants et
Orientés Services”, PhD Thesis, University of Toulouse III,
France, Dec. 2006.

[11] A. Hartman and K. Nagin, “The AGEDIS tools for model
based testing”, Proc. of the ACM/SIGSOFT Int. Symp. on

Software Testing and Analysis (ISSTA 2004), ACM Sigsoft
SE notes 29(4), July 2004, pp. 129-132.

[12] Q. Huang, C. Julien, and G. Roman, “Relying on Safe
Distance to Achieve Strong Partitionable Group Membership
in Ad Hoc Networks”, IEEE Transactions on Mobile
Computing 3(2), Apr. 2004, pp. 192-205.

[13] Z. 120 ITU-TS Recommendation Z. 120: Message Sequence
Chart (MSC), ITU-TS, Geneva, Sept. 1999.

[14] A. Kerbrat et al., “Automated test generation from SDL
specifications”, SDL Forum, 1999, pp. 135-152.

[15] B. Koch et al., ”Autolink- A Tool for Automatic Test
Generation from SDL Specifications”, Proc. of the IEEE Int.

Workshop on Industrial Strength Formal Specication
Techniques (WIFT98), USA ,Oct. 1998, pp. 114-125.

[16] H. Kugler et al., “Testing Scenario-Based Models”, Proc.

Fundamental Approaches to Software Engineering

(FASE’07), LNCS 4422, Springer-Verlag, 2007, pp. 306-
320.

[17] B.T. Ladani, B. Alcalde and A. Cavalli, “Passive testing – a
constrained invariant checking approach”, Proc. 17th IFIP

Int. Conf. on Testing of Communicating Systems, LNCS
3502, Springer-Verlag, 2005, pp. 9-22.

[18] K. R.P.H Leung, Joseph K-Y Ng and W.L. Yeung,
“Embedded Program Testing in Untestable Mobile

Environment: An Experience of Trustworthiness Approach”,
Proc. of the 11th Asia-Pacific Software Engineering
Conference, IEEE CS Press, Korea, Dec. 2004, pp. 430-437.

[19] LIME, URL: http://lime.sourceforge.net

[20] R. Morla and N. Davies, “Evaluating a Location-Based

Application: A Hybrid Test and Simulation Environment”,
IEEE Pervasive computing 3(2), Jul.-Sep. 2004, pp. 48-56.

[21] F. N. Noudem and C. Viho, “Modeling, Verifying and

Testing the Mobility Management in the Mobile Ipv6
Protocol”, Proc. 8th Int. Conf. on Telecommunications, IEEE
CS Press, Croatia, June 2005, pp. 619-626.

[22] S. Pickin and J-M. Jézéquel, “ Using UML sequence
diagrams as the basis for a formal test description language”,
Proc. of 4th Int. Conf. on Integrated Formal Methods,
LNCS 2999, Springer-Verlag, 2004, pp. 481-500.

[23] C. Schroth et al., “Simulating the traffic effects of vehicle-to-
vehicle messaging systems”, 5th Int. Conf. on ITS

Telecommunications (ITST 2005), France, June 2005, pp.
155-179.

[24] B. Sengupta and R. Cleaveland, “Triggerred Message
Sequence Charts”, IEEE Trans. on Software Engineering,
32(8), Aug. 2006, pp. 587-607.

[25] G.J. Tretmans and H. Brinksma, ”Côte de Resyste --
Automated Model Based Testing”, Proc. of the 3

rd
 Progress

Works. on Embedded Systems, Netherlands, Oct. 2002,
pp. 246-255.

[26] H. Waeselynck et al., “Mobile Systems from a Validation
Perspective: a Case study”, Proc. of the 6th Int. Symp. on

Parallel and Distributed Computing (ISPDC’07), IEEE CS
Press, Austria, July 2007.

[27] C. Willcock et al., An Introduction to TTCN-3, Wiley, 2005.

35

