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ABSTRACT 

Advances in wireless networking have yielded the development 
of mobile computing applications. Their unique characteristics 
(dynamicity of the system structure, communication with 
unknown partners in local vicinity, context dependency) provide 
new challenges for verification. This paper elaborates on the 

testing technology. As a first step, a review of the state-of-the-art 
is performed together with a case study (a group membership 
protocol in mobile ad hoc settings), which allowed us to gain 
insights into testing problems. Work is then directed toward: (1) 
the definition of a scenario language with extensions to better 
account for mobile settings (spatial relationships, broadcast 
communication with neighbors), and (2) an automated support for 
the off-line analysis of execution traces to identify occurrences of 

described scenarios.   

Categories and Subject Descriptors 

D.2.5 [Testing and Debugging]: Testing tools  

General Terms 

Algorithms, Languages. 

Keywords 

Testing, mobile computing systems, scenario language, graph 
matching.  

1. INTRODUCTION 
Advances in wireless networking technology have yielded the 
emergence of the mobile computing paradigm. Generally 
speaking, mobile computing calls for the use of mobile devices 
(e.g., handsets, personal digital assistants, laptops) that move 

within some physical areas, while being connected to networks by 
means of wireless links (e.g., Blue-tooth, IEEE 802.11). Mobile-
based applications and services may involve device-to-device or 
device-to-infrastructure communication. They have to be aware 
of, and adapt to, contextual changes.  

From a theoretical and technological point of view, mobile 

applications are more complex than their non-mobile-

counterparts, since they involve not only aspects of distributed 
applications (e.g., concurrency, communication, latency), but also 
unique characteristics of mobile systems, such as frequent 
connections and disconnections of mobile nodes, ad hoc 
networking, and dependency on context. These novelties in 
mobile systems let us argue for the necessity of new validation 
methodologies. The objective of our work is to develop solutions 
for testing mobile-based applications and middleware services. 

As a first step, a review of relevant literature has been performed 
together with a case study, a group membership protocol (GMP) 
in ad-hoc networks [12], that allowed us to gain concrete insights 
into testing problems. Work has then been directed toward the 
definition of a scenario-based testing framework that covers (1) 
the definition of a language that describes interaction scenarios in 
mobile settings, and (2) the development of an automated support 
to analyze execution traces, in order to identify occurrences of 
described scenarios. In the latter case, an occurrence may 

correspond to the violation of a functional requirement or to the 
coverage of a test purpose. 

This paper is organized as follows. Section 2 recalls the state-of-
the-art in testing (traditional) distributed systems. To illustrate the 
specificities of mobile computing systems, Section 3 introduces 
the GMP case study and discusses its outcomes in relation with 
the state-of-the-art. Section 4 argues that graphical scenario 
languages, widely used to support the design of testing in 

distributed systems, need extensions to conveniently represent 
interaction scenarios in mobile settings. Section 5 presents initial 
work toward the automated processing of the extended scenario 
descriptions. Section 6 concludes the paper. 

2. TESTING TRADITIONAL 

DISTRIBUTED SYSTEMS 
Distributed systems exhibit specificities that concern their design 
and validation: concurrency, non-determinism, communication 
delays, as well as the fact that there is a priori no consistent view 
of the global state nor a common time reference. As a result, 

testing a distributed system raises difficult controllability and 
observability issues. 

From a technological viewpoint, this means that complex test 
architectures may be required. A system is accessed by means of 
distributed Points of Control of Observation (PCOs) to which test 
components are attached. Synchronization procedures are required 
to coordinate those components. Recently, TTCN-3 (Testing and 
Test Control Notation Version 3) [27] has emerged as a powerful 

language dedicated to the specification and implementation of test 
cases. Compared to its previous versions, TTCN-3 has improved 
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capabilities to accommodate complex test architectures and 
procedures. It may be expected that the language will receive 
increasing acceptance in a variety of application domains, well 
outside its original focus (communication protocols). 

At the conceptual level, graphical scenario languages have proven 

quite useful to support test-related activities. Typical examples of 
languages are UML sequence diagrams or Message Sequence 
Charts (MSCs) [13] and their derivatives [5, 24]. They are widely 
used to represent scenarios of interaction in distributed systems. 
Indeed, the representation of scenarios may serve different 
purposes: capture of requirements [16], specification of test 
purposes (that is, of interaction patterns to be covered by test 
cases) [8], design of test cases [22], or analysis of execution traces 

[2]. Their popularity is due to their user-friendly syntax, which 
facilitates communication while opening the door for formal 
treatments (this however requires that the used notation is given a 
precise semantics). 

Model-based test generation has been extensively investigated in 
the framework of protocol testing. It requires the existence of a 
complete formal specification. In the protocol community, a 
widely used specification language is SDL (Specification and 

Design Language) and there are a number of test generation tools 
accepting SDL models, both commercial [15, 14] and academic 
[7, 3, 25]. Generally speaking, the generation proceeds by setting 
a set of test purposes, and by exploring the specification behavior 
so as to exhibit test cases that fulfill the purposes. The purposes 
may be associated with specification coverage criteria (e.g., 
transition coverage), but most often they are manually given (e.g., 
using the MSC notation) and represent pieces of behavior that are 

deemed important to be tested. The generated test cases include 
verdict assignments and are typically produced in the TTCN 
language. The test generation technology is now being transferred 
to UML behavior models (see e.g., [11]), and is thus expected to 
get broader application. However, it is worth noting that such 
formal approaches are mainly used to tackle software units and 
protocols, not complex distributed systems. 

Passive testing (see e.g., [17]) may be the most applicable 
approach in the case of complex systems. It consists in running 

the system with a real or synthetic workload, in monitoring input 
and output events, and in analyzing the recorded trace to check for 
violation of properties. 

We will now discuss how mobile settings particularize the testing 
problems. It is worth noting that there exists two notions of 
mobility. The first one is the logical mobility of code, yielding 

mobile computation. The second one, as mentioned in the 
introduction, refers to the physical mobility of devices, which 
defines mobile computing. This paper is concerned with mobile 
computing. A case study is introduced for illustrative purposes. 

3. A CASE STUDY IN THE AD HOC 

DOMAIN 
A group membership protocol (GMP) is a fundamental service 
lying at the heart of fault-tolerant systems. It aims to maintain a 
consistent view of who is in the group, in spite of the faults that 
may affect some nodes. The problem has been extensively 
investigated for traditional distributed systems. However, it needs 
to be revisited in the case of mobile systems. The authors of [12] 

propose a solution in the ad hoc domain. 

3.1 Overview of the GMP 
The goal of this GMP is to offer a membership service that 
accommodates the disconnections induced by mobility (when 
mobile nodes get out of range). Each group is managed by a 

leader that may decide to merge with other groups, or to split its 
group. Decision is based on the notion of Safe Distance. If two 
nodes are “close enough”, this will prevent motion-induced 
disconnection for some time. A group is then safe if any two 
members are connected via a path along which all consecutive 
hosts are at a safe distance (multi-hop communication is allowed). 
When two groups can merge into a single safe group, they have to 
do so. When a group is no longer safe, it has to split. The safe 
distance criterion ensures that there is time to carry out the 

configuration change before a disconnection occurs. The 
calculation of the safe distance is based on various parameters 
such as the transmission range of mobile nodes, their maximal 
speed, and the time needed for a group level operation. Departing 
or arriving nodes are detected by having nodes broadcast their 
physical location (“hello” message). 

The authors of the protocol put strong assumptions on the 
environment (e.g., reliable communication, bounded delays). The 

membership service is then characterized with the properties 
presented in Table 1 (see [12] for more information) that should 
hold whenever the assumptions hold. 

An open-source implementation of the GMP is given in LIME, a 
middleware for mobile systems [19]. The implementation is not 
just a small example program: each node consists of about 4000 
lines of Java code, contains 22 classes and involves 6 concurrent 
threads.  

Table 1. General properties of the protocol 

Property INFORMAL DEFINITION 

Self inclusion (SI) A node is always a part of its membership view. 

Local monotonicity (LM) Group identifiers installed on each node are in increasing order. 

Membership agreement (MA) If two nodes have the same group id, then they have the same membership view. 

Initial membership view (IMV) A node always installs itself as the only member in its view when it starts. 

Membership change justification (MCJ) The successor of group g w.r.t p is either a proper superset or a proper subset of the group g. 

Same view message delivery (SVD) 
If node p sends a message mpq to node q at time t, and q is in mem(p, t), then mpq is guaranteed 
to be delivered to q at time t0, and mem(q, t0) = mem(p, t).a 

Conditional eventual integration (CEI) 
If two groups satisfy the merging criteria and do so for long enough, they will merge into one 
group. 

Conditional group split (CGS) A group splits only if it is necessary. 
a 

mem(p, t) yields p’s local view of the membership at time t. 
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Our analysis of the GMP [26] involved several steps, including a 
review of the paper specification, and the reverse engineering of 
the source code to produce UML models. We report here mainly 
on the test experiments that were also performed. 

3.2 Testing the GMP 
The test experiments performed in [26] can be seen as a form of 
passive testing: the GMP is run using a synthetic workload 
(random movement of nodes at maximal speed), execution traces 
are collected, and it is automatically checked whether the 
implementation satisfies its high-level requirements listed in 

Table 1. The test platform ensures that the GMP environment 
fulfills the assumptions made by the authors. 

The experiments involved 100 runs, 82 of which violated at least 
one property. Violations were for:  

• Local properties, Local monotonicity (LM) and Membership 
change justification (MCJ). 

• Global properties involving several nodes, Membership 
Agreement (MA) and Same View delivery (SVD). 

A sample of 164 scenarios was extracted for further analysis. As 
commented out in [26], the diagnosed problem is always the non-
atomicity of merge operations. A merge may interleave with split 
or with another merge. The problem may induce a variety of 
failure patterns, ranging from violation of any of the LM, MCJ, 
MA or SVD property, to multiple violation patterns. 

3.3 Insights from the study and related work 
The test results show that the GMP implementation is flawed. 
However, our aim in [26] was not so much to reveal flaws in a 
research prototype. Rather, it was to tackle a non-trivial example 
of mobile-based service, and to gain concrete insights into the 
related testing issues. From this perspective, we believe that the 
GMP is a challenging example. It is representative of a 

fundamental problem (membership agreement) in distributed 
computing. It involves ad-hoc networking, a specificity that 
makes mobile systems depart from the traditional view of 
distributed systems. The GMP also exhibits a high dependency on 
the location and movement of nodes. 

For such systems, an issue for test platforms is how to 
accommodate the wireless technology and the mobility of nodes 
during testing. In [18], a telephony application was tested by 
having human operators carry handsets in an urban area. In [6], 

testing a car-to-car application involved three prototype vehicles 
driven on a road. But it is obvious that such kind of testing can 
only be limited. In practice, a major part of the testing activities 
has to be performed using emulation/simulation facilities. Our test 
platform was based on simple facilities offered in the GMP source 
code distribution. This was sufficient for quick feedback on the 
implementation behavior, but suffered from limitations. A 
conclusion in [26] was the need for more advanced facilities, 

including: 

• A context simulator, to manage the relative position of nodes 
according to some mobility model and to produce context data 
(e.g., location-based data) needed by the application. 

• A network simulator to control the delivery of messages based 
on the context (e.g., radio communication in a local vicinity).  

Examples of platforms integrating both categories of tools can be 
found in [20, 23]. 

Another conclusion of our study was the need for adequate 
formalisms to support V&V activities for mobile systems. 
Previous work from the protocol testing community has shown 

that it is possible to cope with classical formalisms, to some extent 
(SDL models of mobility protocols were used in [4, 21]). 
However, this is done at the expense of modeling tricks. The 
authors added specific components to capture the notion of 
communications with neighbors. They also had to choose a 
baseline configuration for test synthesis. 

It would be more convenient to work from specification and 
design models equipped with primitive concepts for representing 

mobile settings. In the GMP example, the reverse engineering 
exercise showed that standard UML might be sufficient to 
represent one node in isolation, but that system-level behavior and 
structure are not easily captured [26]. Some UML extensions have 
been proposed in [1, 9] to represent location and mobility. But the 
offered concepts mostly consist in entering and exiting boxes, 
which may be convenient to represent the movement of a node 
from one infrastructure access point to the other, but does not 

cover applications with ad hoc networking. 

From a testing perspective, relevant formalisms may range from 
scenario languages to languages for modeling complete behavior. 
In this paper, we investigate scenario languages. We propose a set 
of extensions to account for mobile settings, and present initial 
work toward the automated processing of scenario descriptions.  

4. SCENARIO LANGUAGES IN MOBILE 

SETTINGS 
Scenarios languages typically consider the system behavior in 
terms of communication events. Some events are ordered while 

others may interleave in a non-deterministic way, hence yielding a 
partial order. For illustrative purposes, Figure 1 provides an MSC-
like representation of a fail scenario found by testing the GMP. It 
shows a specific interleaving of split and merge operations. At the 
end of the scenario, an MCJ (see Table 1) violation occurs on 
Node 2. 

In the GMP case study, such graphical representations proved 
crucially useful to understand the fail behavior during testing. We 
reformulated part of the monitored traces into MSC-like diagrams 
to get a clearer picture of what was happening.  

Graphical representations of scenarios were also useful at the 

previous phases of the study, when analyzing the specification and 
the design. Still, we found that classical scenario languages could 
not capture some specificities of mobile computing applications.  

Let us come back to the example in Figure 1. First, it puts 
emphasis on the partial order of messages, while the spatial 
topology of nodes is equally important to characterize the 
scenario. Indeed, the split and merge behavior is governed by 
perceived changes in the topology. Second, the MSC notation 
does not support the expression of broadcast communication – not 

mentioning broadcast to neighbors. Here, “hello” messages (for 
group discovery) have not been represented for lack of convenient 
language constructs. Note that the sender of an “hello” message 
does not a priori know the number and identity of potential 
receivers. Whoever is at communication range may process the 
message. 
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Let us know consider the extended representation shown in Figure 
2. It contains both (a) a graph-like view of the successive spatial 
configurations, and (b) an MSC-like view of communication 
events with explicit references to the spatial configurations. It is 
now clear that the scenario is triggered by the “hello” message 

broadcasted by Node 2 after a change in spatial configuration. 
Specifically, Node 2 is no longer at a safe distance from Node 4, 
while getting close to Node 1. Both the GetLeader message from 
Node 1 (initiating a merge) and the GroupChange message from 
Node 4 (performing the split) are causally related to the “hello” 
message: when receiving the location data from 2, the other nodes 
get aware of a change in the topology. Without entering the details 
of the scenario, let us insist on the fact that both the ordering of 

messages and the topology of nodes are important for the failure 
to occur. In particular, it is important that: 

• The change in spatial configuration breaks the transitive safe 
path between 4 and 3 (it is precisely the inconsistent treatment 
of Node 3 in the group change operations received by 2 that will 
induce the MCJ violation); 

• When asked about its leader address, Node 2 replies before 
being informed about the split. 

Abstracting from the concrete syntax shown in Figure 2, the 

language extensions to conveniently represent scenarios for 
mobile computing systems are the following: 

• The spatial relationships of nodes need to be considered as first 
class concepts. This requires the user to determine the relevant 
abstraction for such relationships in the target application. For 
example, two spatial relations govern the GMP behavior: being 
at a safe distance (which determines decision to split or merge 

groups), and being at communication range (which determines 
the single-hop connectivity). Labeled graphs are adequate to 
capture such relations, and we may retain the principle of using 
a visual formalism to represent the successive spatial 
configurations. 

• Interaction scenarios are decomposed into fragments, where 
each fragment takes place in one of the previously defined 
spatial configurations, and configuration changes are 

represented by a global synchronization (or equivalently, we 
have a strong sequential composition of fragments). In this way, 
causal dependencies involving both configuration changes and 
node interactions are made explicit. It is also explicit which 
event occurs in which configuration. 

• Broadcast communication is introduced (in Figure 2b, this is 
concretely represented by means of a radio transmission sign). 
There is a unique send event followed by a set of concurrent 
receive events. The notation should allow us to specify a subset 

of receiving nodes, by referring to the spatial relations in the 
underlying configuration. 

 

Messages in GMP 

- GetLeader: Asks for the current leader of a new node detected at a 
safe distance. 

- LeaderAddress (leader): On receiving a GetLeader message, a node 
replies by sending its leader address. 

- GroupInfo (connectivity list): During a merge operation, a node 
sends its connectivity information to the future new leader. 

- GroupChange (members, leader): The old leader sends out 
GroupChange messages containing new members and new leaders 
after performing a merge or a split. 

Figure 1. MSC-like view of a fail scenario 

   
(a) Spatial configuration: Graph-like view (b) Events: MSC-like view 

Figure 2. Scenario mixing spatial and event views 
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We believe that these three extensions would address needs that 
are recurring when trying to model scenarios in mobile settings. 
They should be useful whatever the chosen notation variant (e.g., 
standard MSC, MSC derivatives, or UML sequence diagrams) and 
whatever the intended purpose of the scenarios (capture of 

application requirements, specification of test purposes, of test 
cases, reverse engineering from execution traces). As an example, 
we are currently working on the extension of UML 2.0 sequence 
diagrams, in close collaboration with the Budapest University of 
Technology and Economics. Much attention is paid to semantics 
issues, so that the formal treatment of scenario descriptions 
becomes possible. 

5. PROCESSING OF SCENARIO 

DESCRIPTIONS 
As already mentioned, scenario descriptions may be a useful 

support to various V&V activities, ranging from the capture of 
application requirements to the specification and design of test 
cases. In some cases, the scenarios may be used in conjunction 
with a complete model of behavior. For example, it is formally 
verified whether the model may violate a requirement scenario. Or 
test cases are formally synthesized from the model and a set of 
test purpose scenarios. But the usefulness of scenarios does not 
require commitment to complete formal specification. Indeed, 

some automated treatments become possible by simply using 
scenario descriptions (provided the semantics is well-defined). 
They include checking whether a test execution trace satisfies a 
requirement scenario, or whether a test execution trace covers a 
test purpose. 

These treatments involve classical treatments in scenario-based 
frameworks, such as the comparison of the orders of events in two 
scenario representations. In mobile settings, the proposed 

extensions now consider the spatial relationships of mobile 
devices as first class concepts. We then argue that graph 
algorithms, and more specifically algorithms for graph matching 
problems, are also needed to support automation of the above 
treatments. Such algorithms may even be useful to assist in the 
production of contextual data that instantiate a test case, as will be 
explained below. 

5.1 Relevance of Graph Matching Problems 
Suppose a GMP test case has been specified using an extended 
notation, as proposed in the previous section. In the test case 
specification, movement is abstracted by graph modifications. But 
ultimately the tested implementation will need to be fed with 
physical location data for each node. How to produce concrete 
contextual data, that instantiate the desired evolution of topology, 

is an acute problem. 

Generally speaking, the location data may have to obey a complex 
mobility model (for example, cars moving in a geographical area, 
with a given network of roads). Also, the abstractions used in the 
labeled graph may be richer than just the distance of nodes. As a 
result, the manual production of context data may be cumbersome, 
if not unrealistic. 

Although we may not be able to manually tune data, it may not be 

too difficult to trigger the desired configuration at least once by 
random simulation. In test platforms, context simulators are used 
to manage the movement of nodes and produce context data 
accordingly (see Section 3.3). Our proposal is then to have a 

preliminary production phase of context data, based on runs of the 
context simulator taken in isolation: 

• A run may involve numerous nodes moving according to the 
implemented mobility model. At each simulation step, relevant 
contextual data for each node are recorded. 

• The concrete simulation trace is then abstracted by a series of 
graphs representing the evolution of the system topology. 

• It is then searched whether sub-graphs can match the desired 
evolution pattern (defined in the scenario). 

• The list of matches provides alternative baseline configurations 
for the implementation of the scenario. 

For example, from a simulation run, we may identify four nodes 
exhibiting the spatial configurations shown in Figure 2a. The 

recorded contextual data for these nodes (e.g., their location 
coordinates) can then be extracted from the complete trace, and 
replayed for the test case execution. 

Graph matching algorithms are also relevant to comparing a test 
execution trace to either a test purpose (in order to detect 
coverage), or an application requirement (in order to detect 
violation). In both cases, the comparison involves two steps: 

• Determine which physical nodes can play the role of the nodes 

appearing in the specified configuration graphs, according to the 
observed topology; 

• Analyze the order of events in the identified configurations. 

Obviously, the first step is typical from a graph matching 
problem. 

We now get into the technical aspects of the search for matches, 
which calls for building graph homomorphisms. 

5.2 Graph Homomorphisms 
Let LV and LE denote sets of labels for vertices and edges, and let 
G = (V, E, μ, ) denote a graph structure, where:  

• V is the set of vertices, 

• E  V  V is the set of edges, 

•  : V  LV is a function assigning labels to the vertices, 

• μ : E  LE is a function assigning labels to the edges. 

A graph homomorphism is a mapping between two graphs that 
respects their structure. It can be mathematically defined as 
follows. 

Definition. Let G1 = (V1, E1, 1, μ1) and G2 = (V2, E2, 2, μ2) be 

two graphs. A function f : V1  V2 is a graph homomorphism 

from G1 to G2 if and only if: 

• It is injective, 

• 1 (v1) = 2 (f(v1)) for all v1  V1, 

• For any edge e1 = (v1s, v1e)  E1, there exists an edge e2 = 

(f(v1s), f(v1e)) such that μ1(e1) = μ2(e2). 

The definition captures the idea of G1 being matched by a 
subgraph of G2. Usually, G1 is called the model graph, and G2 the 
host graph. In our work, the model graph is expected to come 
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from a scenario description, while the host graph is extracted from 
an execution or simulation trace. 

In practice, the basic definitions of graph structure and graph 
homomorphism need to be slightly extended to fulfill our needs. 
First, it may be convenient to assign tuple of labels to vertices and 

edges in order to allow a richer representation of nodes and 
relations between nodes. For example, assume that an application 
involves both mobile and infrastructure mode. A node could be 
characterized by a 2-tuple <id, type>, where id would be a value 
uniquely identifying the physical node, and type would be an 
element of {Mobile, Infrastructure} that differentiates the mobile 
and infrastructure nodes. Second, we need to allow label variables 
in the model graph. In a scenario description, a node may be 

assigned labels <n1, Mobile> and it should be possible to detect a 
matching by a physical node <“10”, Mobile> with substitution 
n1:= “10”. As can be seen in this example, introducing variables 
means that the graph homomorphism building needs to exhibit a 
valuation that consistently unifies the labels. 

The problem of graph homomorphism building has been 
extensively studied in the literature. It is thus possible for us to use 
an existing tool as the basis for the comparison of scenario 

descriptions and concrete traces. One of the existing tools has 
been developed by colleagues at LAAS-CNRS [10] in the 
framework of research on dynamically reconfigurable 
architectures. The tool searches for the set of all homomorphisms 
(f,Val) from a model graph Gm to a host graph Gh, where f is a 
mapping and Val is a valuation. In the definition of graph 
structures, the tool offers the following features: 

• Vertices may be assigned at most 3 labels, yielding a 3-tuple of 

type STRING  INT  INT. 

• Edges have at most one label of type INT. 

• Label variables are supported for vertices. 

The complexity of the search is polynomial in the number of 
vertices of Gh, but exponential in the number of vertices of Gm 
(which is not surprising, since the search problem is known to be 
NP-complete). 

In addition to graph homomorphism building, the tool also offers 

other facilities that are convenient for us. For example, the 
function VALUATE_VERTEX(G,Val) takes as inputs a graph 
and a valuation, and rewrites all vertices according to the 
valuation (see [10] for the full functionality of the tool). 

5.3 Algorithm for analyzing a simulation run 
We retrieved this tool and have used it as a basic element to 
develop an algorithm for the analysis of execution traces and 
described scenarios, as discussed in Section 5.1.  

The algorithm concerns the detection of a sequence of 
configurations. Suppose a scenario description involves two 
successive configurations, denoted Gm1 and Gm2. Suppose also 
that a simulation run is abstracted by a sequence of graphs Gh1, 
…, Ghn, where n is the number of simulation steps in the run. We 

require that the first label in the 3-tuple represents an id that 
uniquely identifies the corresponding node, so as to be able to 
trace this node from one simulation step to the other. A 
configuration change from Gm1 to Gm2 is then detected when there 
is an i, 1 i<n, such that: 

• there is an homomorphism (f, Val) from Gm1 to Ghi 

• there is an homomorphism (f’, Val’) from 
VALUATE_VERTEX (Gm2, Val) to Ghi+1. 

Note that it is necessary, at the second step, to retain the valuation 
choices made at the first step. Hence, the model graph is not Gm2 

but VALUATE_VERTEX (Gm2, Val).  

Some additional processing is required to account for nodes that 
are explicitly created or eliminated by the configuration change: 

• Ghi should not include vertices with the same id as the new 
nodes in the second configuration. 

• Ghi+1 should not include vertices with the same id as the 
eliminated nodes in the first configuration. 

In addition to detecting the configuration change, we also need to 

identify the temporal window for the two configurations. This is 
so because when we will analyze the event view, we need to be 
sure that a given trace event occurs in the expected configuration. 
Hence, we have to determine the start date 1  s i of the first 
configuration, and the end date i+1  e  n of the second one, 
again using graph homomorphisms with appropriate valuations. 

An obvious problem with this set of on-going developments is 
that we consider all possible matches for the n simulation steps, 

which adds to the complexity problem. We are currently studying 
how to alleviate the problem, by taking advantage of the fact that 
successive graphs differ only slightly from one step to the other. 
Also, we may consider a bounded number of matches rather than 
all of them.  

6. CONCLUSION AND PERSPECTIVE 
This paper elaborates on testing technology. It discusses some 
issues in testing mobile computing applications, from both 
technological and conceptual viewpoints. The issues are 
exemplified by the GMP case study. We then present orientation 
of our work towards the definition of a scenario language that 
aims to better account for mobile settings. This language is based 
on graphical scenario languages with the following extensions: 

• The spatial relationships of nodes are now considered as first 

class concepts, and introduced in labeled graph representations. 

• The event view makes it explicit which communication event 

occurs in which spatial configuration, and configuration changes 

are introduced as global events. 

• Broadcast communication in a local vicinity is introduced by 

means of special symbols. 

The language has been informally presented, and we are currently 

working on a precise definition of both the syntax and the 
semantics. 

Since scenario descriptions now involve graph constructs, their 
formal treatment has to include graph matching algorithms. We 
have started to develop an algorithm, based on an existing graph 
tool, to search for the matches of scenarios in a simulation run. 
Future work will investigate how to accommodate richer 
descriptions of the node configurations in the scenarios, such as 

the introduction of min, max duration constraints for the 
configurations. For example, a scenario may require that a given 
configuration lasts at least k steps. 
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Our ultimate goal is the development of a scenario-based testing 
framework, which we believe would be a pragmatic contribution 
to the difficult issue of testing mobile computing applications. 
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