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ABSTRACT

During maintenance, it is common to run the new version of a pro-
gram against its existing test suite to check whether the modifica-
tions in the program introduced unforeseen side effects. Although
this kind of regression testing can be effective in identifying some
change-related faults, it is limited by the quality of the existing test
suite. Because generating tests for real programs is expensive, de-
velopers build test suites by finding acceptable tradeoffs between
cost and thoroughness of the tests. Such test suites necessarily
target only a small subset of the program’s functionality and may
miss many regression faults. To address this issue, we introduce the
concept of behavioral regression testing, whose goal is to identify
behavioral differences between two versions of a program through
dynamic analysis. Intuitively, given a set of changes in the code, be-
havioral regression testing works by (1) generating a large number
of test cases that focus on the changed parts of the code, (2) running
the generated test cases on the old and new versions of the code and
identifying differences in the tests’ outcome, and (3) analyzing the
identified differences and presenting them to the developers. By fo-
cusing on a subset of the code and leveraging differential behavior,
our approach can provide developers with more (and more focused)
information than traditional regression testing techniques. This pa-
per presents our approach and performs a preliminary assessment
of its feasibility.

Categories and Subject Descriptors: D.2.5 [Software Engineer-
ing]: Testing and Debugging

General Terms: Verification.

Keywords: Regression testing, software evolution, dynamic anal-
ysis

1. INTRODUCTION

During maintenance, software is modified to enhance its func-
tionality, eliminate faults, and adapt it to changed or new platforms.
When a new version P’ of a program P is produced, developers
must assess whether the changes that they introduced in P’ behave
as expected and did not affect the unchanged code in unforeseen
ways. To this end, developers typically rerun, completely or in

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

WODA — Workshop on Dynamic Analysis, July 21, 2008

Copyright 2008 ACM 978-1-60558-054-8/08/07 ...$5.00.

36

Tao Xie
Department of Computer Science
North Carolina State University
xie@csc.ncsu.edu

part, a set of existing test cases (i.e., a regression test suite) on P’.
If one or more of the test cases that executed correctly on P cause
an unexpected' failure when run on P’, the developers would know
that the changes introduced regression faults and would use these
test cases to investigate and eliminate such faults.

Ideally, this traditional approach to regression testing can iden-
tify most change-related faults. However, in practice, the approach
has a fundamental limitation: it relies exclusively on the quality
of the existing test suite for P. If such test suite is inadequate,
regression testing is likely to be ineffective. Unfortunately, regres-
sion test suites for real, complex programs often target only a small
subset of the program behavior, for two main reasons. First, man-
ually generating test cases that achieve high structural coverage of
non-trivial programs is difficult and time consuming. Therefore,
developers tend to focus on the core functionality of the program
and possibly rely on alternative approaches to verify the rest of the
program, such as smoke tests, beta testing, and inspection. Second,
even in cases where developers manage to build coverage-adequate
test suites (e.g., by leveraging some automated test generation tech-
nique), they have to account for the oracle problem. Because writ-
ing accurate oracles can be as expensive as generating test cases,
developers often settle for approximated oracles that perform only
partial checks of the outcome of a test [27]. In fact, it is common
to consider crashes (or exceptions) as de-facto oracles, even though
they capture only a small subset of the possible erroneous behaviors
of a program.

In summary, regression testing that relies only on existing test
suites can result in limited checking of the changed code because
of one of two issues, or both: (1) the lack of test cases that exer-
cise a changed behavior; (2) the lack of an oracle that can identify
such changed behavior. To address these issues, in this paper we
propose BEhavioral Regression Testing (BERT), a novel approach
that is meant to complement existing regression testing techniques.
The goal of BERT is to accurately and automatically identify be-
havioral differences between two versions of a program by means
of dynamic analysis.

Given information on which parts of the code have changed be-
tween P and P’, BERT operates in three main phases. (To make
the description of the approach more concrete, we describe an in-
stantiation of BERT for the Java language, where the changed parts
would consist of a set of classes C.) In the first phase, BERT lever-
ages automated test generation techniques to create a large number
of test cases targeted at each of the changed classes. In its second
phase, BERT considers each changed class ¢ and each test case ¢

"Developers would expect some of the existing test cases to fail
based on the changes that they performed on the code. These test
cases, which are normally called obsolete test cases, would either
be discarded or modified to run on the new code.



public class BankAccount {
private double balance;

public boolean deposit(double amount) {
if (amount > 0.00) {

02 balance = balance + amount;
03 return true;
} else {
04 System.out.println("amount cannot be negative");
05 return false;

}
}

public boolean withdraw(double amount) {

06 if (amount <= 0) {
07 System.out.println("amount cannot be negative");
08 return false;
}
09 if (balance < 0) {
10 System.out.println("account is overdraft");
11 return false;
}
12 balance = balance - amount;
13 return true;

}

Figure 1: Version 10 of the bank account example.

created for ¢, runs ¢ on the old and new versions of ¢, and com-
pares the outcome of ¢ in the two cases. The technique performs
this comparison by checking several aspects of the test executions:
the state of c after the execution of ¢, the values returned by the
methods of ¢ invoked by ¢, and the various outputs produced by ¢
during the execution of ¢. Finally, in its third phase, BERT analyzes
any difference in test outcomes identified in the previous phase to
abstract away some of the information and factor together related
differences (e.g., differences in the value of a given field observed
for multiple test cases). The result of this phase is a set of behav-
ioral differences that BERT reports to the developers. Developers
can then use this information to assess which of these changes may
indicate the presence of a regression fault and eliminate the fault.

The characteristics of BERT allow it to overcome the aforemen-
tioned limitations of traditional regression testing techniques and
enable it to provide developers with more information than such
traditional techniques. By focusing on the (typically small) sub-
set of the code that has changed, our approach can address the
first limitation of existing techniques: the lack of test cases that
can adequately exercise the differences in behavior between P and
P’. And by leveraging differential behavior, BERT can sidestep
the second issue with traditional regression testing and perform an
accurate assessment of the changed code without the need for any
externally provided oracle.

We also present a proof-of-concept assessment of BERT per-
formed by applying the approach to an example and examining the
feedback provided by BERT to the developer. Although our results
are too preliminary to draw any conclusion on the general effec-
tiveness of the approach, they show that BERT has the potential to
produce useful information for developers. Such information can
either give developers confidence that the changed code behaves as
intended or point them to potential issues in the code.

The main contribution of this paper is the definition of the con-
cept of behavioral regression testing, a novel approach to regression
testing that can complement existing approaches by addressing two
of their major limitations.

The rest of the paper is organized as follows. Section 2 intro-
duces an example that we use to show possible issues with tradi-
tional regression testing techniques and to illustrate our behavioral

public class BankAccount {
private double balance;
private boolean isOverdraft;

public boolean deposit(double amount) {

02
03

04
05

if (amount >= 0.00) {

balance = balance + amount;
return true;
} else {

System.out.println("amount cannot be negative");
return false;

}

}

public boolean withdraw(double amount) {
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balance
if (balance < 0) {

if (amount <= 0) {

System.out.println("amount cannot be negative");
return false;

}
if (isOverdraft) {

System.out.println("account is overdraft");
return false;

}

balance - amount;

isOverdraft = true;

}

return true;

Figure 2: Version V1 of the bank account example.

regression testing approach. Section 3 defines our approach. We
present our preliminary assessment of the approach in Section 4
and discuss related work in Section 5. Finally, we conclude and
sketch possible future research directions in Section 6.

2. MOTIVATING EXAMPLE

Before presenting the details of our technique, we introduce a
small example that we use in the rest of the paper to show the lim-
itations of existing regression testing approaches, motivate behav-
ioral regression testing, and illustrate our approach. The example
consists of a single class, BankAccount, which implements the
main functionality of a bank account and that we assume to be part
of a larger bank management system. Figures 1 and 2 show the
code of two consecutive versions of the class.

Class BankAccount contains two methods: deposit and with-
draw. Method deposit is the same in V0 and V'1. It allows for de-
positing funds in the account. When called, the method first checks
whether the deposit amount is positive. If so, it adds amount to
field balance and returns true; otherwise, it leaves the account
balance unchanged, prints an error message, and returns the value
false.

Method withdraw allows for withdrawing funds from the bank
account and is different in the two versions. In V0, the method first
checks whether the withdrawal amount is negative. If so, it prints
an error message and returns false. Otherwise, it checks the value
of balance. If balance is negative, it reports that the account is
overdraft and returns false. Conversely, if balance is positive,
the method subtracts the amount from the account balance and
returns a value true.

Assume that the developers decide to make the overdraft status
of the account explicit. To this end, they make three changes to
class BankAccount, which are shown in boldface font in Figure 2.
First, they add a boolean field, isoverdraft, which keeps track
of whether the account is in an overdraft state. Then, they modify
the conditional at Line 9 of method withdraw so that it checks the
value of field isOverdraft instead of balance. Finally, they add
to method withdraw instructions to set isOverdraft to true if
the balance becomes negative (Lines 13—14).



Although these changes to method withdraw are correct, there
is a fault in the new version of the code. The developers forgot to
reset the value of field isOverdraft when a deposit causes the
balance to become positive after an overdraft. The practical effect
of this omission fault is that an account that reaches an overdraft
state will never leave it.

To be able to identify the regression fault introduced in version
V1 of BankAccount, a regression test suite would need to contain
a test case that (1) performs a withdraw that causes the account
to enter an overdraft state, (2) performs a deposit that causes the
account to exit the overdraft state, (3) performs a withdraw with an
amount greater than zero, (4) checks whether the last withdraw was
successful. Figure 3 shows a possible test case that would satisfy
these requirements.

public void testBehavioralDifference() {
BankAccount acc = new BankAccount();
acc.deposit(10.00);
acc.withdraw(20.00);
acc.deposit(50.00);
boolean result = acc.withdraw(20.00);
assertEquals(result, true);

Figure 3: A test case that could reveal the regression fault in-
troduced in version /1 of BankAccount.

Although BankAccount’s regression test suite may contain such
a test case, there is no specific reason why it should. For example,
if the test suite was developed with a coverage goal in mind, 100%
of BankAccount’s code can be covered with a set of simple test
cases that do not include the one in Figure 3 (or any other test case
that would reveal the fault). Moreover, this is a fairly simple ex-
ample. The situation is only going to worsen for more realistic
code and regression faults. As we discussed in the Introduction,
the test cases in the regression test suite may not exercise the mod-
ified behavior. For our example, the test suite may not exercise
the specific sequence of method calls and corresponding parameter
values required to expose the erroneous behavior of BankAccount
V1. Even in the case where there are test cases in the regression
test suite that exercise the erroneous behavior, the oracle associated
with such test cases may be inadequate and fail in identifying such
behavior. This is commonly the case when test cases are gener-
ated in large quantities automatically, and the only cost-effective
way to define an oracle is to use generic, and thus fairly inaccu-
rate, ones. Considering again our example, a generic oracle would
likely ignore the semantics of the code and simply check that the
application does not generate an exception at runtime. (In the case
of object-oriented languages, the oracle problem is further compli-
cated by the presence of encapsulation and information hiding.)

In Section 4, we illustrate how the two key elements of our
approach—change-centric automated generation of test cases and
focus on differential behavior—dramatically increase the likelihood
of our approach to find regression faults such as the one in our ex-
ample.

3. BEHAVIORAL REGRESSION TESTING

Figure 4 provides a high-level view of our approach compared
to traditional regression testing. In traditional regression testing
(e.g., [10, 16,20, 25]), an existing test suite (7°0) defined for the
old version of a program (V'0) is run on the modified version of
a program (V'1). Non-obsolete test cases that, according to their
oracle, fail on V'1 and did not fail on V0 are reported to the devel-
opers as regression errors—{failures that may indicate the presence
of regression faults.

38

BEhavioral Regression Testing (BERT) complements the tradi-
tional approach that we just discussed by improving regression test-
ing along two main dimensions: (1) it generates a set of test cases
that are specifically targeted at the changed code, and (2) it explic-
itly leverages both the old and the new versions of the code. The
result is a set of behavioral differences between the old and the
new code. This information would provide developers with more
and finer grained data on how their changes have affected the be-
havior of the code. Unexpected changes in the behavior, together
with the detailed information about these changes, would help de-
velopers identify and remove regression faults. The scenario of use
that we envision of BERT is one where the technique is integrated
into the IDE used by the developers and is activated every time the
code is updated and compiled. Therefore, the amount of changes
in the code would typically be limited and localized.

BERT consists of three phases: generation of test cases for changed
code, behavioral comparison of original and changed code, and dif-
ferential behavior analysis and reporting. We discuss these three
phases in detail by referring to the overview of BERT provided in
Figure 4. Because the specific characteristics of the programming
language and environment targeted by the technique affect its defi-
nition, we define our technique for Java and assume test cases to be
encoded as JUnit [9] test cases (i.e., each test case for a given class
¢ creates an instance of ¢, invokes one or more methods of ¢ on
that instance, and performs some checks on the test outcome). Al-
though we focus on this context in our presentation, BERT should
be generally applicable to other languages and types of test cases.

3.1 Phase 1: Generation of Test Cases for
Changed Code

In the initial step of this phase, BERT collects change informa-
tion by leveraging a change analyzer that takes as input the two ver-
sions of the program considered, V0 and V'1, and produces a list of
the classes that differ in the two versions. Because of the general-
ity of this step, BERT can use different kinds of change analyzers,
such as the ones typically provided by modern IDEs, specific dif-
ferencing techniques (e.g., [1]), or even a slightly modified version
of the Unix dif £ utility. In our current implementation, we use the
change information provided by the Eclipse IDE* through its APL.

BERT then generates a set of test cases for the changed classes
in V'1 by feeding each of these classes to a fest generator. As it was
the case for the change analyzer, BERT can use any test generator
that is able to automatically build test cases for Java classes. Be-
cause the goal is to generate test cases that cover as many behaviors
as possible, the technique can even use multiple generators and just
combine the set of generated test cases (possibly after eliminating
redundant tests). Our current implementation of BERT relies on
Agitar’s JUnit Factory [12] and Randoop [21] for the test case gen-
eration part. We chose these tools because they are fairly effective
in generating test cases for single classes and have the advantage of
automatically generating the scaffolding needed for the test cases,
such as drivers and stubs (mock objects).

3.2 Phase 2: Behavioral Comparison of Orig-
inal and Changed Code

In this phase, BERT first runs all of the test cases generated in
Phase 1 on their corresponding classes. For each changed class ¢
and each test case ¢ for ¢, the fest runner module runs t on the old
and new versions of ¢, c,o and ¢,1,> while logging the following
information:

’http://www.eclipse.org

3Note that it may not be possible to run all test cases created for ¢,
on ¢y (e.g., due to changes to the class’s interface). These cases are
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Figure 4: High-level view of our approach.

State: At the end of test £, BERT logs the state of the instances of
cyo and c,1 created and exercised by ¢, inst_c,o and inst_cy1.
To do this, it retrieves the values of each field f in both inst_c,o
and inst_c,1 and stores them as < name, value > pairs, where
name is f’s name, and value is the value of f. The values
logged are either the actual values of f in inst_c,0 and inst_cy1,
if f is scalar, or its hash values, if f is an object reference.

Return values: For each method m of ¢ invoked by ¢ on inst_cuo
and tnst_c,1, BERT stores the value returned by m in the two
cases as a < seq_id, m_sig,value > tuple. In each tuple,
seq_id is a unique (per version) id whose value is one for the
first call and is increased for each following call; m_sig is m’s
signature; value is again either an actual value or a hash value,
depending on m’s return type (scalar or object).

Qutput: While running ¢ on inst_c,o and inst_c,1, BERT cap-
tures the output produced by execution of the test and stores it
in the form < destination, data >, where destination is the
entity where the output is sent (e.g., a textual terminal, a network
port, a graphical element) and data is the raw data sent to that
entity, concatenated in the common case where multiple output
is sent to the same entity. In our current definition, for simplicity,
we handle output produced only on standard output, on standard
error, and on a set of graphical widgets (i.e., text widgets). We
propose possible ways to extend the definition in Section 6.

When t’s execution terminates and the data logs are produced,
BERT'’s behavioral comparator accesses the logs for inst_c,o and
inst_c,1 and compares states, return values of corresponding calls,

fairly uninteresting because they provide information that could be
discovered through static differencing. We therefore discard such
test cases.
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and outputs collected for the two versions of the class. For each dif-
ference that it finds, BERT records the fact that there was a differ-
ence and a set of relevant data for differences of that type. For each
state difference, BERT records which field was different and what
were the different values in the old and new versions. Similarly,
for each difference in return values, it records the signature of the
method involved and the different values returned in the two ver-
sions. Finally, for output differences, it records the destination(s)
on which different output was produced and the difference between
the two outputs. Each of the recorded changes is also tagged with
a unique identifier for ¢, which allows to map individual changes to
the test case that revealed them.

After executing all of the test cases generated in Phase 1 on all of
the changed classes, the result is a set of zero or more raw behav-
ioral differences for each class. Each behavioral difference consists
of a state, return value, or output difference together with its context
information, as discussed above.

3.3 Phase 3: Differential Behavior Analysis and
Reporting

This phase analyzes and manipulates the set of differences pro-
duced in the previous phase to simplify and refine them and allow
developers to better consume the information produced by BERT.
To achieve this goal, BERT’s behavioral differences analyzer tries
to abstract away some of the information contained in the raw dif-
ferences and to reduce redundancy within the set of identified dif-
ferences. For state-related differences, the analyzer groups all dif-
ferences that involve the same field as a single behavioral difference
involving that field. It also associates such behavioral difference
with the set of test cases that reveal each individual difference. In-
formation on the individual pairs of different values for the field in
inst_cyo and inst_c,1 are maintained separately as possible addi-
tional information for the developer.



Analogously, for differences related to return values, BERT groups
all differences involving calls to the same method as a single be-
havioral difference associated with the set of test cases that reveal
the individual differences. Also in this case, the individual value
differences are stored separately for possible further analysis.

The process is different for output-related differences. Because
the current incarnation of BERT considers only text-related out-
put, the only grouping performed is for aggregating differences in
output directed to graphical widgets. That is, multiple differences
in the output directed to the GUI are grouped as a generic group
output difference.

The overall results of this phase is therefore a set of behavioral
differences between ¢, and ¢,1 that includes: (1) which fields can
have different values in ¢, and c,1 and which test cases can cause
such differences to manifest; (2) which methods can return differ-
ent values in c,0 and ¢,1 and which test cases can cause such dif-
ferences to manifest; (3) which differences in (textual) output can
occur between c,o and c,1 on the terminal and graphically, and
which test cases reveal them.

BERT reports these behavioral differences to the developers, who
can use this information to assess which of these differences may
indicate the presence of a regression fault and which instead are
expected given the changes the developers performed on the code.
If the developers identify regression faults, they can then use the
test cases associated to the corresponding behavioral differences to
investigate and eventually eliminate the fault.

4. EXPERIENCE

To perform an initial assessment of the feasibility of our ap-
proach, we applied it to the example that we presented in Section 2.
We developed a proof-of-concept prototype of BERT that provides
a partial implementation of the technique. Currently, the prototype
takes as input two versions of a class, generates test cases for the
newest of the two versions, runs the generated test cases on the two
versions and collects raw behavioral differences. At this stage of
the work, we decided not to implement Phase 3 because the results
of Phase 2 are enough to get a preliminary idea of the feasibility of
the approach.

We fed the two versions of BankAccount to our prototype, and
it automatically generated a set of test inputs for version V'1 of the
class. To generate test inputs, the prototype used both Randoop [21]
(default configuration) and Agitar’s JUnit Factory [12], as we stated
in Section 3.1. Overall, 2,569 test inputs were generated, most of
which by Randoop (all but 11). Each test input consists of pseudo-
random method sequences with pseudo-random method arguments.
(It is worth noting that executing the complete set of test inputs on
BankAccount takes less than a second in this case.)

At this point, our prototype ran each input on both versions of
BankAccount, while logging state, return value, and output infor-
mation. To implement the logging, we used reflection and instru-
mentation of the test scaffolding. The prototype then performed the
comparison of the recorded logs and suitably generated the set of
raw behavioral differences for the two versions of the classes. The
results of the comparison were encouraging: about 60% of the au-
tomatically generated test cases (1,557 out of 2,569) were able to
reveal the behavioral difference that indicates the regression fault in
the example. Figure 5 shows an example of one of such test cases.
As the figure shows, the test case exercises the fault-revealing se-
quence that we discussed in Section 2.

In all these cases, the behavioral difference was identified auto-
matically and manifested itself in two ways: some calls to method
withdraw returned two different values in the two versions and
produced some output only in the new version of the code. To il-
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public void testclasses3() throws Throwable {

0l BankAccount var0 = new BankAccount();

02 double varl = (double)l.0;

03 boolean var2 = var0.deposit((double)varl);
04 double var3 = (double)2.0;

05 boolean var4 = var0O.withdraw((double)var3);
06 double var5 = (double)l.0;

07 boolean var6 = var0.deposit((double)var5);
08 double var7 = (double)2.0;

09 boolean var8 = var(O.withdraw((double)var7);

Figure 5: An example test input of BankAccount.

lustrate, consider again the test case in Figure 5. For that test case,
the last call to withdraw would return true and produce no out-
put in version V0 of BankAccount, whereas it would return false
and produce the output “account is overdraft” in version V1. Note
that the prototype did not report any state-related behavioral dif-
ference because of the presence of the new field isOverdraft in
V1. Since the addition or removal of a field is almost always in-
tentional, BERT only identifies state differences that involve fields
that are present in both versions of a class.

We stress that the successful identification of the erroneous be-
havior, which would easily reveal the corresponding regression fault,
is due to the two key characteristics of BERT: the automatic gener-
ation of a large number of test cases for the changed code and the
use of automatically identified detailed behavioral differences.

S. RELATED WORK

Regression testing has been a fairly active research area for a
number of years, and there is thus a considerable amount of related
work. In this section, we review and discuss the approaches that
are most closely related to ours.

The Orstra approach [28] augments a set of automatically gen-
erated test inputs with extra assertions targeted at regression faults.
Orstra first runs the given test-input set and collects the return val-
ues and receiver-object states after the execution of each method
under test. Based on the collected information, it then synthesizes
and inserts new assertions into the existing test-input set to check
future runs against the collected method-return values and receiver-
object states. Parasoft Jtest [22], Agitar Agitator [3], and JUnit Fac-
tory [12] adopt a similar approach to generate test inputs with asser-
tions called characterization tests. Our approach does not generate
assertions, but captures instead behaviors from data collected via
dynamic analysis; such data provides more detailed information—
not only return values, but also receiver-object states and output. In
addition, our approach generates new test inputs instead of relying
only on existing test inputs. As we discussed earlier, existing test
inputs may often not be sufficient to expose differential behaviors.

The Diffut approach [29] exploits the preconditions and post-
conditions provided by the Java Modeling Language (JML) [15] to
enable synchronized execution of two versions (V0 and V1) of a
class. In particular, before the execution of a method in V'1 with
a given set of method arguments, Diffut invokes the correspond-
ing method in V'1 with the same arguments. After the execution of
the two corresponding methods from V0 and V'1, Diffut compares
the return values and updated receiver-object states of these two
method executions to detect behavioral differences. Diffut suffers
from a number of limitations. For example, corresponding classes
from V0 and V'1 with the same package and class name cannot be
executed in the same Java Virtual Machine (JVM), as required by
Diffut, and system outputs from the two versions cannot be cap-
tured or compared by Diffut. In contrast, our approach does not



suffer from these limitations because it runs the same test cases sep-
arately on two versions and compares the captured data from two
versions offline. In addition, our approach is also flexible enough to
allow for incorporating heuristics for filtering out intended behav-
ioral differences, such as addition, deletion, or renaming of object
fields.

Daniel and colleagues [4] generate bounded-exhaustive test in-
puts for testing refactoring engines. Their generated test inputs are
compilable programs to be used as inputs to the refactoring engines
under test. They then compare the refactored programs produced
by multiple refactoring engines under test. If these refactored pro-
grams are different, they consider that at least one of the refactor-
ing engines is incorrect. This type of testing, called differential
testing [17], tests several implementations of the same functional-
ity. Differential testing has been previously applied to the testing
of C compilers [17], grammar-driven functionality [14], and flash
file systems [11]. These previous approaches focus on differential
testing of whole systems, whereas our approach focuses on testing
the changed parts of two versions of a system and accounts for be-
havioral changes related to method return values, object states, and
program outputs.

Evans and Savoia [8] propose a differential testing approach in
which they generate test suites for the two given versions of a soft-
ware system (V0 and V1) using JUnit Factory [12]. They then
adopt the technique of assertion synthesis described earlier to cre-
ate assertions in the test suite generated for each version. Assume
that the generated test suites for the two versions V0 and V'1 be
T0 and T'1, respectively. Their approach then runs test suite 7°0
on V1 and test suite 7'1 on V0. By using this approach, they were
able to find 20-30% more behavioral differences than traditional re-
gression testing approaches. Our approach does not synthesize or
add assertions in the generated test inputs, but runs the same test
inputs on both versions while capturing and comparing data related
to the execution of each version. The behaviors being compared
by our approach are more detailed than the ones targeted by the
approach proposed by Evans and Savoia, which does not compare
program outputs and compares receiver-object states in a limited
way. Therefore, our approach is likely to provide better regression-
fault detection capability.

Some existing capture and replay techniques [7, 19,26] capture
the inputs and outputs of the unit under test during system-test ex-
ecution. These techniques then replay the captured inputs for the
unit as less expensive unit tests, and can also check the outputs of
the unit against the captured outputs. Different from these exist-
ing approaches, our new approach captures runtime behavior of the
execution of automatically generated new unit tests, which exer-
cise behaviors that are not necessarily exercised by system tests.
However, our approach can also be used in combination with these
previous approaches by comparing the behaviors of the unit tests
generated by such approaches.

Sometimes the quality of the existing test cases might not be
good enough to cause the outputs of two program versions to be
different and expose behavioral differences between them. Some
previous regression test generation approaches try to generate new
tests to expose such behavioral differences. DeMillo and Oftutt [6]
developed a constraint-based approach to generate unit tests that
can exhibit program-state deviations caused by the execution of a
slightly changed program line (in a mutant produced during mu-
tation testing [5]). Korel and Al-Yami [13] propose an approach
for differential test generation for Pascal programs. They use a
search-based chaining approach to generate inputs for which the
two methods under test take a different execution path. They re-
quire that there is only a slight change in the methods in the two
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versions. Although these approaches are related to our work, they
target a different problem and are more limited in scope than our
approach.

Apiwattanapong and colleagues [2] use data and control depen-
dence information, along with state information gathered through
partial symbolic execution of the old and new version of a program,
to help testers augment an existing regression test suite. Their ap-
proach does not automatically generate any test case, but simply
provides guidelines for testers on how to improve an existing re-
gression test suite. Our approach not only generates unit tests, but
also compares the behaviors captured while running the generated
unit tests on multiple versions.

Ren and colleagues [24] propose a change impact analysis tool
called Chianti. Chianti categorizes and decomposes the changes
between two versions of a program into different atomic types, and
assesses the effects of the different changes on the test cases in the
program’s test suite. Chianti uses only an existing test suite and
does not aim to exercise behavioral differences between the two
versions of the software system under test. In contrast, the goal of
our approach is specifically to expose behavioral differences across
versions.

Podgurski and Weyuker [23] propose a technique for re-estimating
the reliability of a new version of the software based on the behav-
ioral differences between such version and the previous one. Our
approach is complementary to theirs, in that it detects behavioral
differences that could be used as inputs for their reliability estima-
tion technique.

6. CONCLUSION AND FUTURE WORK

We have presented a novel regression testing approach, called
BEhavioral Regression Testing (BERT), that is based on automati-
cally identifying behavioral differences between two versions of a
program through dynamic analysis. BERT consists of three main
phases: (1) generating a large number of test cases for the changed
parts of the code, (2) running the generated test cases on the old and
new versions of the code and identifying differences in the outcome
of the tests, and (3) analyzing the identified differences and present-
ing them to the developers. Our approach has two key aspects that
distinguish it from traditional regression testing. First, it focuses on
a small subset of the code, which allows it to generate a more thor-
ough set of test cases. Second, it leverages differential behavior,
which eliminates the need for developer-provided oracles. Because
of these novel aspects, our approach can give developers more (and
more detailed) information than traditional regression testing ap-
proaches. Our proof-of-concept study provides initial evidence of
the feasibility of the approach.

We believe that these initial results, albeit preliminary, are en-
couraging and motivate further research along several directions.
We sketch some of these possible directions for future work. A first,
obvious direction is the implementation of a complete prototype of
the approach that would allow us to perform an extensive empirical
evaluation of the current approach. A second direction is the adop-
tion of finer-grained differencing techniques (e.g., [1]) to further
reduce the scope of the test generation portion of BERT. Moving to
the method or even code-fragment level might allow for an increas-
ingly thorough testing of the changes. A third research direction
involves investigating the use of test generation techniques that are
guided by the characteristics of the identified changes, rather than
being based on a mainly random generation. We will also inves-
tigate more aggressive ways to cluster, filter, and abstract changes
in Phase 3, before presenting them to the user. In this context, we
may also be able to leverage bug isolation techniques targeted at
specific parts of the code (e.g., [18]) to further reduce the develop-



ers’ inspection efforts. We believe that this aspect of the technique
will be of key importance when we will apply the technique to real
software. Finally, as discussed in Section 3.2, BERT currently han-
dles only a small subset of the possible outputs of a program. We
plan to expand the scope of the work by including other common
types of outputs, such as network-related output and graphical out-
put in general.
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